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Abstract. We use coalgebraic methods to describe finitely generagedHeyt-
ing algebras. Heyting algebras are axiomatized by rankxXehes. In the process
of constructing free Heyting algebras we first apply existinethods to weak
Heyting algebras—the rank 1 reducts of Heyting algebrasd-then adjust them
to the mixed rank 0-1 axioms. On the negative side, our wookvstthat one can-
not use arbitrary axiomatizations in this approach. Alse adjustments made for
the mixed rank axioms are not just purely equational, bytaelproperties of im-
plication as a residual. On the other hand, the duality adbebra perspectives
do allow us, in the case of Heyting algebras, to derive Gtifa(Ghilardi, 1992)
powerful representation of finitely generated free Heytitgebras in a simple,
transparent, and modular way using Birkhoff duality fortfrdistributive lattices.

1 Introduction

Coalgebraic methods and techniques are becoming incghasgimportant in investigat-
ing non-classical logics [19]. In particular, logics axiatized by rank 1 axioms allow
coalgebraic representation as coalgebras for a functed gl4We recall that an equa-
tion is of rank 1 for an operatioffi if each variable occurring in the equation is under
the scope of exactly one occurrencefofAs a result the algebras for these logics be-
come algebras for a functor. Consequently, free algebréminorresponding varieties
are initial algebras in the category of algebras for thiscfan This correspondence
immediately gives a constructive description of free atgstfor rank 1 logics [11, 1,
5]. Examples of rank 1 logics are the basic modal ldgjdasic positive modal logic,
graded modal logic, probabilistic modal logic, coalitimygic and so on [18]. For a
coalgebraic approach to the complexity of rank 1 logics verre [18]. On the other
hand, rank 1 axioms are too simple—very few well-known lsgice axiomatized by
rank 1 axioms. Therefore, one would, of course, want to ektiea existing coalgebraic
technigues to non-rank 1 logics. As follows from [15] alggebfor these logics cannot
be represented as algebras for a functor. Therefore, fee thigebras we cannot use the
standard construction of free algebras in a straightfoiwaay.

In this paper, which is a facet of a larger joint project wittexander Kurz [5], we try
to take the first steps toward a coalgebraic treatment of tlodi&s beyond rank 1.
We recall that an equation is of rank 0-1 for an operatfaheach variable occurring
in the equation is under the scope of at most one occurrenge \With the ultimate
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goal of generalizing a method of constructing free algefwasarieties axiomatized
by rank 1 axioms to the case of rank 0-1 axioms, we considecdle of Heyting al-
gebras (intuitionistic logic, which is of rank 0-1 fgr=—). In particular, we construct
free Heyting algebras. For an extension of coalgebraiaiigcies to deal with the finite
model property of non-rank 1 logics we refer to [17].

Free Heyting algebras have been the subject of intensiesiigation for decades. The
one-generated free Heyting algebra was constructed byeRatd Nishimura in the
50s. In the 70s Urquhart gave an algebraic characterizafidinitely generated free
Heyting algebras. A very detailed description of finitelyngeated free Heyting alge-
bras in terms of their dual spaces was obtained in the 80s igwl@r, Shehtman, Bel-
lissima and Rybakov. This method is based on a descriptitireqfoints of finite depth
of the dual frame of the free Heyting algebra. For the dets#Hilthis construction we
refer to [9, Section 8.7] and [4, Section 3.2] and the refeesritherein. Finally, Ghilardi
[10] introduced a different method for describing free Hiegtalgebras. His technique
builds the free Heyting algebra on a distributive lattioepsby step by freely adding
to the original lattice the implications of degreefor eachn € w. Ghilardi [10] used
this technique to show that every finitely generated freetidgyalgebra is a bi-Heyting
algebra. A more detailed account of Ghilardi’s construtiian be found in [7] and
[12]. Ghilardi and Zawadowski [12], based on this methodjwea model-theoretic
proof of Pitts’ uniform interpolation theorem. In [3] a silai construction is used to
describe free linear Heyting algebras over a finite distiedattice and [16] uses the
same method to construct high order cylindric Heyting atgeb

Our contribution is to derive Ghilardi’s representatiorfioftely generated free Heyt-
ing algebras in a simple, transparent, and modular way Biitkdpoff duality for finite
distributive lattices. We split the process into two paw first apply the initial al-
gebra construction to weak Heyting algebras—the rank latschf Heyting algebras.
Then we adjust this method to the mixed rank 0-1 axioms. Kinay using Birkhoff
duality we obtain Ghilardi’s [10] powerful representatiofthe finite approximants of
the dual of finitely generated free Heyting algebra in a sergrid systematic way. On
the negative side, our work shows that one cannot use agbéréomatizations in this
approach. In particular, we give an example of a valid equadif Heyting algebras of
rank 1 that cannot be derived, within the setting of distiiilattices, from other equa-
tions of rank 0-1 that are known to provide a full axiomatiaatof Heyting algebras.
In addition, we use properties of Heyting algebras that atelirectly equational, and
thus our work does not yield a method that applies in genBalertheless, we expect
that the approach, though it would have to be tailored, &yiko be successful in other
instances as well.

The paper is organized as follows. In Section 2 we recall theatled Birkhoff (dis-
crete) duality for distributive lattices. We use this dtailn Section 3 to build free weak
Heyting algebras and in Section 4 to build free Heyting atgebWe conclude the paper
by listing some future work.



2 Discrete duality for distributive lattices

We recall that a non-zero elemenbf a distributive latticeD is calledjoin-irreducible
if for everyb, c € D we have thatt < bV cimpliesa < bora < c. For each distributive
lattice (DL for short)D let J(D) denote the set of all join-irreducible elementsiof
Let also< be the restriction of the order db to J(D). Then(J(D), <) is a poset.
Recall also that for every posét a subseU C X is called adownseif = € U and
y < xzimply y € U. For each poseX we denote byO(X) the distributive lattice
(O(X),N,u, 0, X) of all downsets ofX. Then every finite distributive lattic® is
isomorphic to the lattice of all downsets ©f(D), <) and vice versa, every posktis
isomorphic to the poset of join-irreducible elementsfX ). We call (J(D), <) the
dual posebf D and we callO(X) thedual latticeof X .

This duality can be extended to the duality of the cateddky;;,, of finite bounded
distributive lattices and bounded lattice morphisms ardadiitegoryPos ¢;,, of finite
posets and order-preserving maps. In fact, if D — D’ is a bounded lattice mor-
phism, then the restriction éf, the lower adjoint of, to .J(D’) is an order-preserving
map betweert.J(D'), <') and(J(D), <), and if f : X — X’ is an order-preserving
map between two posef§ and X', thenf! : O(X) — O(X'), S — [f(S)is V-
preserving and its upper adjoifit!)* = f~! : O(X’) — O(X) is a bounded lattice
morphism. Moreover, injective bounded lattice morphisimes Embeddings or, equiv-
alently, regular monomorphisms) correspond to surjeaieker-preserving maps, and
surjective lattice morphisms (homomorphic images) cquesl to order embeddings
that are in one-to-one correspondence with subsets of thespmnding poset.

We also recall that an elememta # 1, of a distributive latticeD is calledmeet-
irreducibleif for every b, ¢ € D we have thab A ¢ < a impliesb < a orc < a. We let
M (D) denote the set of all meet-irreducible element®of

Proposition 2.1. Let D be a finite distributive lattice. Then for evepyc J(D), there
existsk(p) € M (D) such thap £ x(p) and for everyu € D we have

p<a or a<k(p).

Proof. Forp € J(D), lets(p) = \/{a € D | p £ a}. Thenitis clear that the condition
involving all « € D holds. Note that ifp < k(p) = \/{a € D | p £ a}, then,
applying the join-irreducibility ofp, we geta € D with p £ a butp < a, which is
clearly a contradiction. So it is true that£ x(p). Now we show that(p) is meet
irreducible. First note that singeis not belowx(p), the latter cannot be equal o
Also, if a,b ¢ k(p) thenp < a,band thup < a Ab. Thus it follows that A b £ (p).
This concludes the proof of the proposition.

Proposition 2.2. Let X be a finite set and’p 1, (X) the free distributive lattice ovek.
Then the posdt/(Fpr (X)), <) of join-irreducible elements dfp 1, (X) is isomorphic
to (P(X), D), whereP(X) is the power set ok and each subset C X corresponds
to the conjunctio\ S € Fpr(X). Moreover, forx € X andS C X we have

NS <ziffzes.

Proof. This is equivalent to the disjunctive normal form repreaéoh for elements of
Fpr(X).



3 Weak Heyting algebras

3.1 Freely adding weak implications

Definition 3.1. [8] A pair (A, —) is called aweak Heyting algebraf A is a bounded
distributive lattice and—: A?> — A a weak implication that is, a binary operation
satisfying the following axioms for all b, ¢ € A:

1) a—a=1,

2 a—(bArc)=(a—=Db)A(a—c).

) (avd) —mc=(a—=c)A(b—c).

4) (a—=bAb—c)<a—c

Let D and D’ be distributive lattices. We let> (D x D’) denote the sefa —
b:a € Dandb € D'}. We stress that this is just a set bijective withx D’. The
implication symbol is just a formal notation. For every distitive lattice D we also let
Fpr(— (D x D)) denote the free distributive lattice oves (D x D). Moreover, we
let
where= is the DL congruence generated by the axioms (1)—(4). We toasttess that
we are not thinking of the axioms as a basis for an equatitwealt/ for a binary oper-
ation — here. The point of view is that of describing a bounded digtive lattice by
generators and relations. That is, we want to find the quibtietine free bounded dis-
tributive lattice over the set> (D x D) with respect to the lattice congruence generated
by the pairs of elements dfp.,( — (D x D)) in (1)—(4) witha, b, ¢ ranging overD.
Foran element — b € Fpr(— (D x D)) we denote bya — b~ the~ equivalence
class ofa — .

The rest of the section will be devoted to showing that fohefamite distributive
lattice D the posetJ(H (D)), <) is isomorphic to(P(J(D)), C). Below we give a
dual proof of this fact. The dual proof, which relies on thetfthat identifying two
elements of an algebra simply corresponds to throwing @selipoints of the dual that
are below one and not the other, is produced in a simple, rmgcdarid systematic way
that doesn’t require any prior insight.

We start with a finite distributive lattic® and the free DL generated by the set

— (DxD)={a—bl|abe D}

of all formal arrows oveD. As follows from Proposition 2.2](Fp(— (D x D))) is
isomorphic to the power set ek (D x D), ordered by reverse inclusion. Each subset
of — (D x D) corresponds to the conjunction of the elements in that $utheeempty
set of course correspondstoNow we want to take quotients of this free distributive
lattice wrt various lattice congruences, namely the onesgded by the set of instances
of the axioms of weak Heyting algebras.

The axiomz — z = 1.

Here we want to take the quotient & (— (D x D)) with respect to the lattice
congruence offpr,(— (D x D)) generated by the sdt(a — a,1) | a € D}.

3 In [8] weak Heyting algebras are called ‘weakly Heyting dliges’.



By duality this quotient is given dually by theubset call it P;, of our initial poset
Py = J(Fpr(— (D x D))), consisting of those join-irreducibles 8,1, ( — (D x D))
that do not violate this axiom. Thus, fét € J(Fpr(— (D x D))), S is admissible
provided

Ya € D (/\S§1 = /\Sga—wz).
Since all join-irreducibles are less than or equalltat follows that the only join-
irreducibles that are admissible are the ones that are helewa for all « € D. That
is, viewed as subsets ef (D x D), only the ones that contain— « for eacha € D:

P ={S€Py|a—ac Sforeacha € D}.

The axiomz — (yAz) = (x — y) A (z — 2).

We now want to take a further quotient and thus we want to kedyp those join-
irreducibles fromP; that do not violate this second axiom. Thatds¢ P; is admissible
provided

Va,b,c (/\Sga—>(b/\c) = /\Sga—>b and /\Sga—>c).
which means
Ya,b,c (a—(bAhc)eS <<= a—beS anda—ceb?).

Proposition 3.2. The posetP, of admissible join-irreducibles at this stage is order
isomorphic to the set

Q:={f:D—D|VYaeD f(a)<a}
ordered pointwise.

Proof. An admissibleS from
P; corresponds to the functiofy : D — D given by

fsa)= \{beD|a—beS}
In the reverse direction a function i®, corresponds to the admissible set
Sy={a—bl|fla) <b}.
The proof that this establishes an order isomorphism isaggétiforward verification.
The axiom (zVy) — z=(x — 2) A (y — 2).
We want the subposet ¢ consisting of thos¢g’s such that

Ya,b, c ((a\/b)—>c€Sf <= a—c€eSy andb—>ceSf).



To this end notice that

Ya,b,c ((avd) —ceSy < (a—ceSyandb—ce Sy))
<~ Va,b,c (flavb)<ec <= (f(a) <cand f(b) <c))
< Va,b flavd)=fla)V f(b).

That is, the poset’s;, of admissible join-irreducibles left at this stage is isophic to
the set

Qs={f:D— D] f isjoinpreservingand/ia € D f(a) < a}.
The axiom (z — y) A (y — 2) <z — z.

It is not hard to see that this yields, in terms of join-presey functionsf : D — D,

Qa={f€Qs|VaeD f(a) < f(f(a))}
={f:D — D| fisjoin-preservingantfa € D f(a) < f(f(a))
={f:D — D| fisjoin-preservingantfa € D f(f(a)) = f(a)

fla) <aj
aj.

We note that the elements ¢f, are nuclei [13] on the order-dual lattice 6f. Since
the f’s in Q4 are join and) preserving, they are completely given by their action on

J(D). The additional property shows that these functions hasedtfixpoints. In fact,
we can show that they are completely described by theirijoggucible fixpoints.

<
<

Lemma 3.3. Let f € Q4, then for eaclu € D we have

@) =\/{r e J(D) | f(r) = < a}.

Proof. Clearly \/{r € J(D) | f(r) = r < a} < f(a). For the converse, let be
maximal inJ (D) wrt the property that < f(a). Now it follows that

r < f(a) =\/{f@ ) 3¢ < f(a)}.

Sincer is join-irreducible, there ig € J(D) with ¢ < f(a) andr < f(q). Thus

r < f(¢) < ¢ < f(a) and by maximality of- we conclude thag = ». Nowr < f(q)
andg = ryieldsr < f(r). However,f(r) < r as this holds for any element @}
and thusf(r) = r. Since any element in a finite lattice is the join of the madima
join-irreducibles below it, we obtain

a) = \/{r € J(D) | ris maximal inJ(D) wrtr < f(a)}
<\/{reJD)| fr)=r<fl@)} < f(a).

Finally, notice that iff(r) = r < f(a )then asf(a) < a, we havef(r) = r < a.
Conversely, iff (r) = r < athenr = f(r) = f(f(r)) < f(a) and we have proved the
lemma.

Proposition 3.4. The set of functions i, ordered pointwise, is order isomorphic to
the powerset of (D) in the usual inclusion order.



Proof. The order isomorphism is given by the following one-to-ongespondence

Qs S PJ(D))
f = {peJ(D)|fp) =np}
fr = T

where fr : D — D is given by fr(a) = \/{p € J(D) | T > p < a}. Using the
lemma, it is straightforward to see that these two assigmsrae inverse to each other.
Checking thatf is join preserving and satisfigé = f < idp is also straightforward.
Finally, it is clear thatfr < fsifand onlyifT" C S.

Theorem 3.5. Let D be a finite distributive lattice and” = (J(D), <) its dual poset.
Then

1. The posetJ(H (D)), <) is isomorphic to the poséP (X ), C) of all subsets oX
ordered by inclusion.

2. J(H(D)) = {[Ayer(a — k(@)= | T C J(D)}, (wherex(q) is the element
defined in Proposition 2)1

Proof. As shown above, the posét H(D)), obtained fromJ(Fpr(—(D x D))) by
removing the elements that violate the congruence schelje@, is isomorphic to the
posetQ,, and@, is in turn isomorphic td?(J (D)) ordered by inclusion, see Proposi-
tion 3.4.

In order to prove the second statement,glet J(D), and conside; — «(q) €
Fpr(— (D x D)). Ifwe representi (D) as the lattice of downse€3(J(H (D))), then
the action of the quotient map on this element is given by

Fpr(— (D x D)) — H(D)
q — r(q) = {T" € P(J(D)) | ¢ — k(q) € St}
Now
q— r(q) € Sr = fr(q) < r(q)
= \(lgnT') <k(q)
= qgT.
The last equivalence follows from the fact tha x(q) if and only if ¢ £ a and the

only element of| ¢ that violates this ig itself. We now can see that for afiyC J(D)
we have

Fpr(— (Dx D)) — H(D)

[N@—r@)~ — {T'ePU(D)|V¥q (@¢T = q— r(q) € S}

q¢T
={I"eP(J(D))|¥q (¢¢T = q&T'}
={T"eP(J(D))|VYq (qeT = qeT}
={T"eP(J(D))|T CT}.



Thatis, under the quotientmdfy . (— (D x D)) — H(D), the elementg\ (¢ —
x(q)) are mapped to the principal downsgts, for eachl’ € P(J(D)) = J(H(D)).
Since these principal downsets are exactly the join-ircédes of O(J(H(D))) =

H(D), we have tha{ [\ (¢ — r(g))l~ | T € J(D) } = J(H(D)).

3.2 Free weak Heyting algebras

In the coalgebraic approach to generating the free algéhsaa fact of central impor-
tance thatd as described here is actually a functor. That is, for a DL homghism
h : D — FE one can define a DL homomorphisti(h) : H(D) — H(E) so thatH
becomes a functor on the category of DLs. To see this, we ardyg mo note that! is
defined by rank 1 axioms, which the given axioms (1)-(4) foakvéleyting algebras
clearly are. Thereforef{ gives rise to a functo”/ : DL — DL [2, 15]. Moreover,
the category of weak Heyting algebras is isomorphic to thegmay Alg(H) of the
algebras for the functok . For the details of such correspondences we refer to [2, 1,
11,5, 15]. We would like to give a concrete description of hdvapplies to DL homo-
morphisms. We describe this in algebraic terms here andtlgévdual construction via
Birkhoff duality.

Leth : D — E be a DL homomorphism. Recall that the dual map fré(¥)
to J(D) is just the lower adjoink’ with domain and codomain properly restricted.
By abuse of notation we will just denote this map b3, leaving it to the reader
to decide what the proper domain and codomain is. N6GD) = Fpr(— (D x
D))/<Axz(D)>, where<Az(D)> is the DL congruence generated By:(D) and
Az(D) is the set of all instances of the axioms (1)-(4) withh, c € D. Also letgp be
the quotient map corresponding to mod'ing outbylz:(D)>. The maph : D — E
yieldsamaph x h : D x D — FE x F and this of course yields a lattice homo-
morphismFpr(h x h) : Fpr(— (D x D)) — Fpr(— (E x E)). Now the point
is thatFipy, (h x h) carries elements oz (D) to elements ofAz(F) and thus in par-
ticular to elements ok Az(E)> (it is an easy verification and only requirego be
a homomorphism for axiom schemes (2) and (3)). This is etprivdo saying that
Az(D) C Ker(gg o Fpr(h x h)) and thus<Az(D)> C Ker(qg o Fpr(h x h)),
or equivalently that there is a unique maf{h) : H(D) — H(FE) that makes the
following diagram commute

FDL(hXh)

Fpr(— (D x D)) Fpr(— (E x E))

The dual diagram is



The mapep : P(D) — P(D x D) is the embedding, vi§), and so on intd?, as
obtained above. Thatisp(T) = {a — b | Vp € T (p < a = p < b}. Now in this dual
setting, the fact that there is a m&gh’) is equivalent to the fact thgh x h)~' o ep
maps into the image of the embedding. This is easily verified:

(hx h)™ep(T)) ={a—b|Vg € T (¢ < h(a) = ¢ < h(b)}
={a—0b|VgeT ((g) <a=N(g) <b}
={a—b|Vpeh(T)(p<a=p<b}
= ep(R(T)).

Thus we can read off directly what the m&gh”) is: it is just forward image under
h°. That is, if we call the dual ok : D — F by the namef : J(E) — J(D), then
P(f) = f[] wheref]]is the lifted forward image mapping subsets/gf) to subsets
of J(D). Finally, we note thafP satisfiesP(f) is an embedding if and only if is
injective, andP( f) is surjective if and only iff is surjective.

Since weak Heyting algebras are the algebras for the fud€tave can make use
of coalgebraic methods for constructing free weak Heytigglaras. Similarly to [5],
where free modal algebras and free distributive modal agetvere constructed, we
construct finitely generated free weak Heyting algebrasigialialgebras ofdlg(H).
Thatis, we have a sequence of bounded distributive lattéaah embedded in the next:

n — Fpr(n), the free bounded distributive lattice argenerators

D() = FDL (n)

Dyy1 = Do+ H(Dy), where+ is the coproduct iDL

io : Do — Do+ H(Dy) = D, the embedding given by coproduct

ir ¢ Dy — Dy wherei;, = Z.dDo + H(Z'kfl)
Fora,b € Dy, we denote by: — b the equivalence clags — b]~ € H(Dy) C

Dy.+1. Now, by applying the technique of [2], [1], [11], [5] to we&leyting algebras,
we arrive at the following theorem.

Theorem 3.6. The direct limit(D,,, (Dy, — D,,)x) in DL of the system{Dy, i, :
Dy, — Dy41), with the binary operation-,,: D, x D,, — D,, defined byy —,, b =

a —y b, fora,b € Dy, is the freen-generated weak Heyting algebra when we embed
in D, vian — Do — D,,.

Now we will look at the dual of D,,,, —,). Let Xy = P(n) be the dual oD, and let
Xps1 = Xo x P(Xy)
be the dual 0Dy 4.
Theorem 3.7. The sequenceXy, ) k<. With mapsry : Xy x P(Xy) — X, defined by
mie(, A) = (2,11 [A))

is dual to the sequend®y, ) ;<. With mapsiy : D — Dg41. In particular, thery's
are surjective.



Proof. The dual ofDy is Xy = P(n), and sinceDy.; = Do + H(Dy,), it follows that
Xik+1 = Xo x P(X) as sums go to products and Hsis dual toP. For the maps,
o+ Xo X P(Xo) — X is just the projection onto the first coordinate sirgés the
injection given by the sum construction. We note thatis surjective. Now the dual
T @ X1 = Xo X P(Xk) — X = Xp X 'P(kal) of ip, = ’L'dD0 + H(’L'kfl) is
idx, x P(mr—1) which is exactly the map given in the statement of the theoNate
that a map of the fornrX x Y — X x Z given by(z,y) — (z, f(y)) wheref : Y — Z
is surjective if and only the map is. Also, as we saw abov@(ry) is surjective if and
only if 7, is. Thus by induction, all they's are surjective.

4 Heyting algebras

4.1 Freely adding Heyting implications

Definition 4.1. [13] A weak Heyting algebrd A, —) is called aHeyting algebraHA
for short, if the following two axioms are satisfied for allb € A:

B) b<a—0b,
(6) aA(a—Db)<b.

Since bothD andH (D) are embedded ifv + H (D) (where+ is the coproductin
the category of distributive lattices) we will not distirighn between the elements bf
and H (D) and their images itD + H (D). It is a well-known consequence of duality
that the dual of the coprodud® + H (D) is the product/(D) x J(H (D)), where
(p,T)<ae Difandonlyifp <aand(p,T) < a € H(D)ifandonlyifT' < a. The
latter implies in particular thap, T') < a — b if and only ifa — b € St if and only
if fr(a) < bifand only if, for eachy € T we haveg < a impliesq < b. Let=be a
distributive lattice congruence of the latti€e+ H (D) generated by the axioms (5)—(6)
viewed as congruence schemes. We de(bte- H(D))/= by V(D). For a poseP,
callT C P rootedprovided there is @ € P withp € T' C |p, see [10]. Though a
rooted subsel” is completely determined just ¥, we often write(p, T') to identify
the root. We denote the set of all rooted subsetB bfy P".

Theorem 4.2. Let D be a distributive lattice anc = (J(D), <) its dual poset. Then

1. The posetJ(V (D)), <) is isomorphic to the poséfX”, C) of all rooted subsets
of X ordered by inclusion.
2. JV(D)) ={p A Nygra— &lq) : J(D) 2 T is rooted with rootp}.

Proof. We start from the coprodudd + H(D), or dually speaking from the poset
P = J(D) x J(H(D)) = J(D) x P(J(D)) and we impose the axiom scheme (5),
which means dually that we obtain a subggtC P of all join-irreducible elements
that are admissible wrt the axiom scheme (5). Thatis]") € Ps if and only if

Va,be D ((p,T)<b = (pT)<a—Db)

Va,be D (p<b = fr(a)<Dh)

Va e D (fr(a) <p)

VgeT (q¢<p).
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That is, the poset dual to the lattice obtained by mod’ingtyuthe axiom scheme (5)
is

Py ={(p,T)|T < |p}.

Now further imposing the axiom scheme (6), we retain thosmehts ofp, T') € P;
satisfying

Va,be D (((p,T) <aand(p,T) <a—b) =
Va,be D (p<aandfr(a)<b) = p<b)
Vo (fr(p)<b) = p<b)

p< frip)=\/{aeT|q¢<p}

peT.

(p,T) <b)

reet

Thatis,Ps = {(p,T) | p € T C |p}, which corresponds exactly to the set of all
rooted subsets of (D) ordered by inclusion. This proves the first statement. Therse
statement is now an easy consequence of this and Theorem 3.5.

Let D be a finite distributive lattice and its dual poset. The® + H (D) is dual to
X xP(X). Consequently, the canonical embeddind — D+ H (D) corresponds to
the first projectionr! : X xP(X) — X mapping a paifz, T) forz € X andT C X to
x.Leth: D+ H(D) — V(D) be the quotient map. Then it follows from Theorem 4.2
thath corresponds to an embeddiag X" — X x P(X) mapping each rooted subset
T to (root(T),T). Now we defing/ : D — V(D) as the compositiof = h o i. Then,
by duality, the dual of is the mapr : X” — X such thatr(T") = root(T'), or denoting
T by (z,T) we haver(z,T) = x. This implies thatr is surjective and therefore, by
duality,j : D — V(D) is an embedding.

DL D+ H(D) X <" X x P(X)
V(D) X7

4.2 Free Heyting algebras

In this section we relate our method to that of Ghilardi [XD§nsider the sequence

Do 2% D, 25 D,y ...
where Dy is the free distributive lattice on generatorsDy.1 = V(Dg), andjy :
Dy — D41 is the embedding oDy, into V(Dy,) discussed in the previous section.
Now let H be anyn-generated Heyting algebra. L&ty = <n>, Hypy1 =< Hj U
{a =g b ]| a,b € H, > where all these are DL subalgebrasiéfgenerated by the
given sets. Then we have a sequence

Hy * H, 25 H,. ..

as well as maps-y: Hy x H, — Hgy1 given bya —; b = a —py b whenever
a,b € Hy. By freeness o), there is a quotient mag, : Dy — Hy , and sincef; is



generated by¥l,U —p (Hy x Hp) andH satisfies (1)-(6), it follows thater(ggoqg) 2
ker(jo) and thusgg o o factors throughjy. By induction on this argument we get a
sequence of quotient maps making a commutative diagram

Jo J1 J2
DyC D, C DyC

¢QO ¢(I1 ¢(I2
H()( 9o Hl( g1 HQ( g2

On the lower sequence we have that each map is a ‘partial’ hmrghism in the
sense that for eadh> 0 we have—y: Hy x H, — Hj1 andfork > 1inthe sequence
He 2 H, 25 Hyyy we havegp(a —k—1 b) = gr—1(a) —% ge—1(b). Now
because this is a HA implication and each finite DL is a HA weehiavaddition that
a —, b= gi(a) —m,,, gr(b) for eachk. This is of course very special to HAs. As
was applied in [10], this property is equivalent to sayingttihe dual sequence

T T
Qo<—Q1<~—Qs...

of maps are ‘partial p-morphisms’, i.e., for eachy 1
V7 € Qri1 VS € Qi (S < (1) = 37’ € Q1 (71 C 7&emp—1mi (7)) = mp—1(9)).

Note that the commutative diagram betweenfheand theH, sequences translates to
a dual diagram

Py<2—p P,

LTiO \j\il \j\iz
o 1 2

Qo Q1 Q2

which tells us that), 1 C Q7, the set of rooted subsets @f;, and that the action of
ther’s is to take the root. Now, a second fact that is very spegillAs is that not only

IS Qr_1 « Qr « Qry1 a partial p-morphism diagram, but so@s,_1 « Qx «— T
foranyr € Qi1 viewed as a subset @), (and thus as an embedding). The ensuing
property on rooted subsetsc Q) for them to be admissible in a sequencé&fs for

a Heyting algebrd{ is easily derivable in the same manner as our earlier cdlonka
This was done by Ghilardi in [10] and results in

T1 T2

VIeTVSeQr(S<T = 1" et (T <T & root(T') = root(S)) (G)

The point is now that since, in each step and for eadglenerated HAH, the
admissible rooted subsets can at most be those satisfy)ni (& start from the largest
initial poset namel?y = Py = J(Fpr(n)) and proceed wittR; = R{, andRy41 =
{7 € R}, |  satisfies (G) then, for any Heyting algebra with dual sequetcg, } we
haveP

Toot Troot root
Py Py

jio jil jm

Ry Ry Rs
N
Qo <" Q1 <— Q>




and thusH factors throughiim O(Ry;) and this latter algebra thus has the universal map-
ping property for HA. By the same argument, the same is truarig algebra given by
any sequencg;, between the?,’s and theR,,’s for which the local operations;, glue
together correctly. However there is of course no guarathizeany of these algebras
are themselves Heyting algebras (at most one is, as it igtiedineen-generated HA).

Theorem 4.3. The limitlim O(R),) of the sequencO(Ry) }re. in the categorybL
of distributive lattices is the free Heyting algebra omenerators.

Proof. (Sketch) It follows from the discussion above thiat O(Ry) satisfies the re-
quired universal properties of the free algebra. Therefeeeonly need to show that
li_n}O(Rk) is a Heyting algebra, or dually théitn R, = R.,, with the standard topol-
ogy of the inverse limit, is an Esakia space (see e.qg., [4i@e2.3.3], for details of this
duality). The crucial part is thatU must be clopen fo/ clopen in@ Ry. For each
k€ wletny : R, — Ry, be the projection map. A subset U is clopen in the lifjt
providedU = (7¢_,)~* (V) for somek — 1 andV C Ry, and therl/ = (7%)~!(V})
with Vi, = ;' (V) is also true. Now, clearljU C (7¢)~!(1V}). The crux of this
proof is that (G) implies that the reverse inclusion alsalsollo see this, let € R,
with 7¢ () = x>y for somey,, € V.. Applying (G) with7 = 7, (z) andT' =
root(r) = x andS = yy, thereisT” < T, T’ € 7 with root(S) = root(T"). Now note
thatroot(T") = root(S) = root(yx) € mr—1(Vx) = V. ThusT” isin V. Also, we now
takeyr+1 = 7/ = 7N |T’. As mentioned by Ghilardi this is easily seen to be admissibl
again, and sinceoot(7') = T’ € Vj,, thenyy1 = 7 € (m1) (Vi) = Vir1. Also
Yk+1 = 7 < T = 41 and in this way we build a sequenge= (yx) € (7¢_,) (V)
with y < z. This provesc €1 U and we are done.

We conclude this section with a few points on where this Isagein the quest for a

systematic approach to the generative description of frifelfy generated algebras in
DL based varieties. First an example concerning the chdiagiomatization.
Example 4.4.Let D be a finite distributive lattice and |1’ (D) denoteF'p . ( — (D x
D)) modulo axioms (1),(2), (3) of Definition 3.1. This means tthegt dual of ' (D) is
isomorphictothese)s = {f : D — D | f isjoin-preserving anda € D f(a) < a}.
Since thef’s are join preserving we may consider them as order prasgfunctionsf :
J(D) — O(J(D)) 2 D as this restriction uniquely determingsWe also letV’ (D)
denoteD + H’(D) modulo axioms (5),(6) of Definition 4.1. The dual Bf+ H'(D)
is isomorphic taJ(D) x Ps; and by imposing axiom schemes (5) and (6), we get

P ={(p, /)| fg) € lgnlp, f(p) = lp}.

Then we can show that in gener#l,(D) is not isomorphic td/ (D).

/.
1—-be_b—aq e

~_
P

l—ae

e qg—0

. *h »aNa—0
1—-bAb—0

*Hh—-0



In fact, the inequalitfa — b) A (b — ¢) < a — ¢ will not be valid onV’(D) for

all a,b,c € D, whereas oV (D) itis valid by definition. To see this consider the four
elementchaif < a < b < 1. The posef’, where we write eacli; as the conjunction
of theq — f(q) for which f(q) < ¢ is depicted above.

This posetis larger thaf(V (D)) as the pointb — a)A(a — 0) is notinJ(V(D)).
We recall that axioms (1),(2) of Definition 3.1 and (5),(6)éfinition 4.1 are already
sufficient to axiomatize Heyting algebras; see e.g., [13ni@& 1.10] or [4, Theorem
2.2.6]. In logical terms the above observation means theinibquality(a — b) A (b —
¢) < (a — c¢) is an example of a valid rank 1 inequality of the theory of Hiayt
algebras whose derivation is not a DL derivation on the hafdise axioms.

Finally a remark on mod’ing out to make the partial operagiono operations.

Remark 4.5.Notice that our first sequence for the HA case with; = V(Dy) is
definitely ‘too free’ and we can make a first cut on generalgpies. For anyt > 1
and fora,b € Dy_1, we may takeji(a —x—1 b) or jir—1(a) —k Jr—1(b), and if
{H}} is any sequence obtained from an algebra it factors thrdugbt congruence
sequence generated by

Va,b € D1 jr(a —k—1b) = jr—1(a) — jr—1(b)

with D = Do andD = D;. Let {P]} be the corresponding dual sequence. In the
case of HA one can prove the following

Claim: 7 € (P])" is admissible if and only if for alp € root(r) thereisI’ € T with
root(T) = p.

Mod’ing out this congruence ensures that the corresporsgiggence of algebras yields
an —-algebra in the limit. However mod’ing out must have destiyhe truth of (1)-
(4) as one can show that this is not quite Ghilardi’'s sequeRoe example, for the
four element chain as in the above example, witlits dual, , = P", we have that

T = {P,{1,b},{a,b}, {a}} satisfies the above admissibility condition but does not
satisfy (G) as can be seen from takifig= {1,b} andP; 5 S = {b} < T.

5 Conclusions and future work

In this paper we described finitely generated free (weak)tiHgyalgebras using an
initial algebra-like construction. The main idea is to sffie axiomatization of Heyting
algebras into its rank 1 and non-rank 1 parts. The rank 1 tedifdHeyting algebras
are weak Heyting algebras. For weak Heyting algebras weeabitie standard initial
algebra construction and then adjusted it for Heyting algeb/Ne used Birkhoff duality
for finite distributive lattices and finite posets to obtalire tdual characterization of
the finite posets that approximate the duals of free algesa result we obtained
Ghilardi's representation of these posets in a more sydtenad transparent way.
There are a few possible directions for further researclwédsentioned in the in-

troduction, although we considered Heyting algebras itiotistic logic), this method
could be applied to other non-classical logics. More pedgjthe method is available



if a signature of the algebras for this logic can be obtaineddding an extra operator
to a locally finite variety. Thus, various non-rank 1 modajits such a$4, K4 and
other more complicated modal logics, as well as distrileuthodal logics, are the ob-
vious candidates. On the other hand, one cannot always &ixpkave such a simple
representation of free algebras. The algebras correspgtalother many-valued logics
such asMV-algebras]-groups,BC K -algebras and so on, are other examples where
this method could lead to interesting representations rébent work [6] that connects
ontologies with free distributive algebras with operasirews that such representations
of free algebras are not only interesting from a theoreficatt of view, but could have
very concrete applications.
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