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Abstract. We use coalgebraic methods to describe finitely generated free Heyt-
ing algebras. Heyting algebras are axiomatized by rank 0-1 axioms. In the process
of constructing free Heyting algebras we first apply existing methods to weak
Heyting algebras—the rank 1 reducts of Heyting algebras—and then adjust them
to the mixed rank 0-1 axioms. On the negative side, our work shows that one can-
not use arbitrary axiomatizations in this approach. Also, the adjustments made for
the mixed rank axioms are not just purely equational, but rely on properties of im-
plication as a residual. On the other hand, the duality and coalgebra perspectives
do allow us, in the case of Heyting algebras, to derive Ghilardi’s (Ghilardi, 1992)
powerful representation of finitely generated free Heytingalgebras in a simple,
transparent, and modular way using Birkhoff duality for finite distributive lattices.

1 Introduction

Coalgebraic methods and techniques are becoming increasingly important in investigat-
ing non-classical logics [19]. In particular, logics axiomatized by rank 1 axioms allow
coalgebraic representation as coalgebras for a functor [14, 18]. We recall that an equa-
tion is of rank 1 for an operationf if each variable occurring in the equation is under
the scope of exactly one occurrence off . As a result the algebras for these logics be-
come algebras for a functor. Consequently, free algebras inthe corresponding varieties
are initial algebras in the category of algebras for this functor. This correspondence
immediately gives a constructive description of free algebras for rank 1 logics [11, 1,
5]. Examples of rank 1 logics are the basic modal logicK , basic positive modal logic,
graded modal logic, probabilistic modal logic, coalition logic and so on [18]. For a
coalgebraic approach to the complexity of rank 1 logics we refer to [18]. On the other
hand, rank 1 axioms are too simple—very few well-known logics are axiomatized by
rank 1 axioms. Therefore, one would, of course, want to extend the existing coalgebraic
techniques to non-rank 1 logics. As follows from [15] algebras for these logics cannot
be represented as algebras for a functor. Therefore, for these algebras we cannot use the
standard construction of free algebras in a straightforward way.

In this paper, which is a facet of a larger joint project with Alexander Kurz [5], we try
to take the first steps toward a coalgebraic treatment of modal logics beyond rank 1.
We recall that an equation is of rank 0-1 for an operationf if each variable occurring
in the equation is under the scope of at most one occurrence off . With the ultimate
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goal of generalizing a method of constructing free algebrasfor varieties axiomatized
by rank 1 axioms to the case of rank 0-1 axioms, we consider thecase of Heyting al-
gebras (intuitionistic logic, which is of rank 0-1 forf =→). In particular, we construct
free Heyting algebras. For an extension of coalgebraic techniques to deal with the finite
model property of non-rank 1 logics we refer to [17].

Free Heyting algebras have been the subject of intensive investigation for decades. The
one-generated free Heyting algebra was constructed by Rieger and Nishimura in the
50s. In the 70s Urquhart gave an algebraic characterizationof finitely generated free
Heyting algebras. A very detailed description of finitely generated free Heyting alge-
bras in terms of their dual spaces was obtained in the 80s by Grigolia, Shehtman, Bel-
lissima and Rybakov. This method is based on a description ofthe points of finite depth
of the dual frame of the free Heyting algebra. For the detailsof this construction we
refer to [9, Section 8.7] and [4, Section 3.2] and the references therein. Finally, Ghilardi
[10] introduced a different method for describing free Heyting algebras. His technique
builds the free Heyting algebra on a distributive lattice step by step by freely adding
to the original lattice the implications of degreen, for eachn ∈ ω. Ghilardi [10] used
this technique to show that every finitely generated free Heyting algebra is a bi-Heyting
algebra. A more detailed account of Ghilardi’s construction can be found in [7] and
[12]. Ghilardi and Zawadowski [12], based on this method, derive a model-theoretic
proof of Pitts’ uniform interpolation theorem. In [3] a similar construction is used to
describe free linear Heyting algebras over a finite distributive lattice and [16] uses the
same method to construct high order cylindric Heyting algebras.

Our contribution is to derive Ghilardi’s representation offinitely generated free Heyt-
ing algebras in a simple, transparent, and modular way usingBirkhoff duality for finite
distributive lattices. We split the process into two parts.We first apply the initial al-
gebra construction to weak Heyting algebras—the rank 1 reducts of Heyting algebras.
Then we adjust this method to the mixed rank 0-1 axioms. Finally, by using Birkhoff
duality we obtain Ghilardi’s [10] powerful representationof the finite approximants of
the dual of finitely generated free Heyting algebra in a simple and systematic way. On
the negative side, our work shows that one cannot use arbitrary axiomatizations in this
approach. In particular, we give an example of a valid equation of Heyting algebras of
rank 1 that cannot be derived, within the setting of distributive lattices, from other equa-
tions of rank 0-1 that are known to provide a full axiomatization of Heyting algebras.
In addition, we use properties of Heyting algebras that are not directly equational, and
thus our work does not yield a method that applies in general.Nevertheless, we expect
that the approach, though it would have to be tailored, is likely to be successful in other
instances as well.

The paper is organized as follows. In Section 2 we recall the so-called Birkhoff (dis-
crete) duality for distributive lattices. We use this duality in Section 3 to build free weak
Heyting algebras and in Section 4 to build free Heyting algebras. We conclude the paper
by listing some future work.



2 Discrete duality for distributive lattices

We recall that a non-zero elementa of a distributive latticeD is calledjoin-irreducible
if for everyb, c ∈ D we have thata ≤ b∨c impliesa ≤ b or a ≤ c. For each distributive
lattice (DL for short)D let J(D) denote the set of all join-irreducible elements ofD.
Let also≤ be the restriction of the order ofD to J(D). Then(J(D),≤) is a poset.
Recall also that for every posetX a subsetU ⊆ X is called adownsetif x ∈ U and
y ≤ x imply y ∈ U . For each posetX we denote byO(X) the distributive lattice
(O(X),∩,∪, ∅, X) of all downsets ofX . Then every finite distributive latticeD is
isomorphic to the lattice of all downsets of(J(D),≤) and vice versa, every posetX is
isomorphic to the poset of join-irreducible elements ofO(X). We call(J(D),≤) the
dual posetof D and we callO(X) thedual latticeof X .

This duality can be extended to the duality of the categoryDLfin of finite bounded
distributive lattices and bounded lattice morphisms and the categoryPosfin of finite
posets and order-preserving maps. In fact, ifh : D → D′ is a bounded lattice mor-
phism, then the restriction ofh♭, the lower adjoint ofh, toJ(D′) is an order-preserving
map between(J(D′),≤′) and(J(D),≤), and if f : X → X ′ is an order-preserving
map between two posetsX andX ′, thenf↓ : O(X) → O(X ′), S 7→ ↓f(S) is

∨

-
preserving and its upper adjoint(f↓)♯ = f−1 : O(X ′) → O(X) is a bounded lattice
morphism. Moreover, injective bounded lattice morphisms (i.e. embeddings or, equiv-
alently, regular monomorphisms) correspond to surjectiveorder-preserving maps, and
surjective lattice morphisms (homomorphic images) correspond to order embeddings
that are in one-to-one correspondence with subsets of the corresponding poset.

We also recall that an elementa, a 6= 1, of a distributive latticeD is calledmeet-
irreducible if for every b, c ∈ D we have thatb ∧ c ≤ a impliesb ≤ a or c ≤ a. We let
M(D) denote the set of all meet-irreducible elements ofD.

Proposition 2.1. Let D be a finite distributive lattice. Then for everyp ∈ J(D), there
existsκ(p) ∈M(D) such thatp � κ(p) and for everya ∈ D we have

p ≤ a or a ≤ κ(p).

Proof. Forp ∈ J(D), letκ(p) =
∨

{a ∈ D | p � a}. Then it is clear that the condition
involving all a ∈ D holds. Note that ifp ≤ κ(p) =

∨

{a ∈ D | p � a}, then,
applying the join-irreducibility ofp, we geta ∈ D with p � a but p ≤ a, which is
clearly a contradiction. So it is true thatp � κ(p). Now we show thatκ(p) is meet
irreducible. First note that sincep is not belowκ(p), the latter cannot be equal to1.
Also, if a, b � κ(p) thenp ≤ a, b and thusp ≤ a∧ b. Thus it follows thata∧ b � κ(p).
This concludes the proof of the proposition.

Proposition 2.2. LetX be a finite set andFDL(X) the free distributive lattice overX .
Then the poset(J(FDL(X)),≤) of join-irreducible elements ofFDL(X) is isomorphic
to (P(X),⊇), whereP(X) is the power set ofX and each subsetS ⊆ X corresponds
to the conjunction

∧

S ∈ FDL(X). Moreover, forx ∈ X andS ⊆ X we have
∧

S ≤ x iff x ∈ S.

Proof. This is equivalent to the disjunctive normal form representation for elements of
FDL(X).



3 Weak Heyting algebras

3.1 Freely adding weak implications

Definition 3.1. [8] A pair (A,→) is called aweak Heyting algebra3 if A is a bounded
distributive lattice and→: A2 → A a weak implication, that is, a binary operation
satisfying the following axioms for alla, b, c ∈ A:

(1) a→ a = 1,
(2) a→ (b ∧ c) = (a→ b) ∧ (a→ c).
(3) (a ∨ b)→ c = (a→ c) ∧ (b→ c).
(4) (a→ b) ∧ (b→ c) ≤ a→ c.

Let D andD′ be distributive lattices. We let→ (D × D′) denote the set{a →
b : a ∈ D andb ∈ D′}. We stress that this is just a set bijective withD × D′. The
implication symbol is just a formal notation. For every distributive latticeD we also let
FDL(→ (D ×D)) denote the free distributive lattice over→ (D ×D). Moreover, we
let

H(D) = FDL(→ (D ×D))/≈

where≈ is the DL congruence generated by the axioms (1)–(4). We wantto stress that
we are not thinking of the axioms as a basis for an equational theory for a binary oper-
ation→ here. The point of view is that of describing a bounded distributive lattice by
generators and relations. That is, we want to find the quotient of the free bounded dis-
tributive lattice over the set→ (D×D) with respect to the lattice congruence generated
by the pairs of elements ofFDL(→ (D × D)) in (1)–(4) witha, b, c ranging overD.
For an elementa→ b ∈ FDL(→ (D ×D)) we denote by[a→ b]≈ the≈ equivalence
class ofa→ b.

The rest of the section will be devoted to showing that for each finite distributive
lattice D the poset(J(H(D)),≤) is isomorphic to(P(J(D)),⊆). Below we give a
dual proof of this fact. The dual proof, which relies on the fact that identifying two
elements of an algebra simply corresponds to throwing out those points of the dual that
are below one and not the other, is produced in a simple, modular, and systematic way
that doesn’t require any prior insight.

We start with a finite distributive latticeD and the free DL generated by the set

→ (D ×D) = {a→ b | a, b ∈ D}

of all formal arrows overD. As follows from Proposition 2.2,J(FDL(→ (D×D))) is
isomorphic to the power set of→ (D ×D), ordered by reverse inclusion. Each subset
of→ (D×D) corresponds to the conjunction of the elements in that subset; the empty
set of course corresponds to1. Now we want to take quotients of this free distributive
lattice wrt various lattice congruences, namely the ones generated by the set of instances
of the axioms of weak Heyting algebras.

The axiomx→ x = 1.

Here we want to take the quotient ofFDL(→ (D × D)) with respect to the lattice
congruence ofFDL(→ (D × D)) generated by the set{(a → a, 1) | a ∈ D}.

3 In [8] weak Heyting algebras are called ‘weakly Heyting algebras’.



By duality this quotient is given dually by thesubset, call it P1, of our initial poset
P0 = J(FDL(→ (D×D))), consisting of those join-irreducibles ofFDL(→ (D×D))
that do not violate this axiom. Thus, forS ∈ J(FDL(→ (D × D))), S is admissible
provided

∀a ∈ D (
∧

S ≤ 1 ⇐⇒
∧

S ≤ a→ a).

Since all join-irreducibles are less than or equal to1, it follows that the only join-
irreducibles that are admissible are the ones that are belowa → a for all a ∈ D. That
is, viewed as subsets of→ (D×D), only the ones that containa→ a for eacha ∈ D:

P1 = {S ∈ P0 | a→ a ∈ S for eacha ∈ D}.

The axiomx→ (y ∧ z) = (x→ y) ∧ (x→ z).

We now want to take a further quotient and thus we want to keep only those join-
irreducibles fromP1 that do not violate this second axiom. That is,S ∈ P1 is admissible
provided

∀a, b, c (
∧

S ≤ a→ (b ∧ c) ⇐⇒
∧

S ≤ a→ b and
∧

S ≤ a→ c).

which means

∀a, b, c (a→ (b ∧ c) ∈ S ⇐⇒ a→ b ∈ S and a→ c ∈ S).

Proposition 3.2. The posetP2 of admissible join-irreducibles at this stage is order
isomorphic to the set

Q2 = {f : D → D | ∀a ∈ D f(a) ≤ a}

ordered pointwise.

Proof. An admissibleS from
P2 corresponds to the functionfS : D → D given by

fS(a) =
∧

{b ∈ D | a→ b ∈ S}.

In the reverse direction a function inP2 corresponds to the admissible set

Sf = {a→ b | f(a) ≤ b}.

The proof that this establishes an order isomorphism is a straightforward verification.

The axiom (x ∨ y)→ z = (x→ z) ∧ (y → z).

We want the subposet ofP2 consisting of thosef ’s such that

∀a, b, c
(

(a ∨ b)→ c ∈ Sf ⇐⇒ a→ c ∈ Sf and b→ c ∈ Sf

)

.



To this end notice that

∀a, b, c
(

(a ∨ b)→ c ∈ Sf ⇐⇒ (a→ c ∈ Sf and b→ c ∈ Sf)
)

⇐⇒ ∀a, b, c
(

f(a ∨ b) ≤ c ⇐⇒ (f(a) ≤ c and f(b) ≤ c)
)

⇐⇒ ∀a, b f(a ∨ b) = f(a) ∨ f(b).

That is, the poset,P3, of admissible join-irreducibles left at this stage is isomorphic to
the set

Q3 = {f : D → D | f is join preserving and∀a ∈ D f(a) ≤ a}.

The axiom (x→ y) ∧ (y → z) ≤ x→ z.

It is not hard to see that this yields, in terms of join-preserving functionsf : D → D,

Q4 = {f ∈ Q3 | ∀a ∈ D f(a) ≤ f(f(a))}

= {f : D → D | f is join-preserving and∀a ∈ D f(a) ≤ f(f(a)) ≤ f(a) ≤ a}

= {f : D → D | f is join-preserving and∀a ∈ D f(f(a)) = f(a) ≤ a}.

We note that the elements ofQ4 are nuclei [13] on the order-dual lattice ofD. Since
thef ’s in Q4 are join and0 preserving, they are completely given by their action on
J(D). The additional property shows that these functions have lots of fixpoints. In fact,
we can show that they are completely described by their join-irreducible fixpoints.

Lemma 3.3. Letf ∈ Q4, then for eacha ∈ D we have

f(a) =
∨

{r ∈ J(D) | f(r) = r ≤ a}.

Proof. Clearly
∨

{r ∈ J(D) | f(r) = r ≤ a} ≤ f(a). For the converse, letr be
maximal inJ(D) wrt the property thatr ≤ f(a). Now it follows that

r ≤ f(a) = f(f(a)) =
∨

{f(q) | J(D) ∋ q ≤ f(a)}.

Sincer is join-irreducible, there isq ∈ J(D) with q ≤ f(a) and r ≤ f(q). Thus
r ≤ f(q) ≤ q ≤ f(a) and by maximality ofr we conclude thatq = r. Now r ≤ f(q)
andq = r yields r ≤ f(r). However,f(r) ≤ r as this holds for any element ofD
and thusf(r) = r. Since any element in a finite lattice is the join of the maximal
join-irreducibles below it, we obtain

f(a) =
∨

{r ∈ J(D) | r is maximal inJ(D) wrt r ≤ f(a)}

≤
∨

{r ∈ J(D) | f(r) = r ≤ f(a)} ≤ f(a).

Finally, notice that iff(r) = r ≤ f(a) then asf(a) ≤ a, we havef(r) = r ≤ a.
Conversely, iff(r) = r ≤ a thenr = f(r) = f(f(r)) ≤ f(a) and we have proved the
lemma.

Proposition 3.4. The set of functions inQ4, ordered pointwise, is order isomorphic to
the powerset ofJ(D) in the usual inclusion order.



Proof. The order isomorphism is given by the following one-to-one correspondence

Q4 ⇆ P(J(D))

f 7→ {p ∈ J(D) | f(p) = p}

fT ←[ T

wherefT : D → D is given byfT (a) =
∨

{p ∈ J(D) | T ∋ p ≤ a}. Using the
lemma, it is straightforward to see that these two assignments are inverse to each other.
Checking thatfT is join preserving and satisfiesf2 = f ≤ idD is also straightforward.
Finally, it is clear thatfT ≤ fS if and only if T ⊆ S.

Theorem 3.5. LetD be a finite distributive lattice andX = (J(D),≤) its dual poset.
Then

1. The poset(J(H(D)),≤) is isomorphic to the poset(P(X),⊆) of all subsets ofX
ordered by inclusion.

2. J(H(D)) = {[
∧

q 6∈T (q → κ(q))]≈ | T ⊆ J(D)}, (whereκ(q) is the element
defined in Proposition 2.1).

Proof. As shown above, the posetJ(H(D)), obtained fromJ(FDL(→(D ×D))) by
removing the elements that violate the congruence schemes (1)–(4), is isomorphic to the
posetQ4, andQ4 is in turn isomorphic toP(J(D)) ordered by inclusion, see Proposi-
tion 3.4.

In order to prove the second statement, letq ∈ J(D), and considerq → κ(q) ∈
FDL(→ (D×D)). If we representH(D) as the lattice of downsetsO(J(H(D))), then
the action of the quotient map on this element is given by

FDL(→ (D ×D)) → H(D)

q → κ(q) 7→ {T ′ ∈ P(J(D)) | q → κ(q) ∈ ST ′}.

Now
q → κ(q) ∈ ST ′ ⇐⇒ fT ′(q) ≤ κ(q)

⇐⇒
∨

(↓q ∩ T ′) ≤ κ(q)

⇐⇒ q 6∈ T ′.

The last equivalence follows from the fact thata ≤ κ(q) if and only if q � a and the
only element of↓q that violates this isq itself. We now can see that for anyT ⊆ J(D)
we have

FDL(→ (D ×D)) → H(D)

[
∧

q 6∈T

(q → κ(q))]≈ 7→ {T ′ ∈ P(J(D)) | ∀q (q 6∈ T ⇒ q → κ(q) ∈ ST ′}

= {T ′ ∈ P(J(D)) | ∀q (q 6∈ T ⇒ q 6∈ T ′}

= {T ′ ∈ P(J(D)) | ∀q (q ∈ T ′ ⇒ q ∈ T }

= {T ′ ∈ P(J(D)) | T ′ ⊆ T }.



That is, under the quotient mapFDL(→ (D×D)) → H(D), the elements
∧

q 6∈T (q →
κ(q)) are mapped to the principal downsets↓T , for eachT ∈ P(J(D)) = J(H(D)).
Since these principal downsets are exactly the join-irreducibles ofO(J(H(D))) =
H(D), we have that{ [

∧

q 6∈T (q → κ(q))]≈ | T ⊆ J(D) } = J(H(D)).

3.2 Free weak Heyting algebras

In the coalgebraic approach to generating the free algebra,it is a fact of central impor-
tance thatH as described here is actually a functor. That is, for a DL homomorphism
h : D → E one can define a DL homomorphismH(h) : H(D) → H(E) so thatH
becomes a functor on the category of DLs. To see this, we only need to note thatH is
defined by rank 1 axioms, which the given axioms (1)-(4) for weak Heyting algebras
clearly are. Therefore,H gives rise to a functorH : DL → DL [2, 15]. Moreover,
the category of weak Heyting algebras is isomorphic to the categoryAlg(H) of the
algebras for the functorH . For the details of such correspondences we refer to [2, 1,
11, 5, 15]. We would like to give a concrete description of howH applies to DL homo-
morphisms. We describe this in algebraic terms here and givethe dual construction via
Birkhoff duality.

Let h : D → E be a DL homomorphism. Recall that the dual map fromJ(E)
to J(D) is just the lower adjointh♭ with domain and codomain properly restricted.
By abuse of notation we will just denote this map byh♭, leaving it to the reader
to decide what the proper domain and codomain is. NowH(D) = FDL(→ (D ×
D))/<Ax(D)>, where<Ax(D)> is the DL congruence generated byAx(D) and
Ax(D) is the set of all instances of the axioms (1)-(4) witha, b, c ∈ D. Also letqD be
the quotient map corresponding to mod’ing out by<Ax(D)>. The maph : D → E
yields a maph × h : D × D −→ E × E and this of course yields a lattice homo-
morphismFDL(h × h) : FDL(→ (D × D)) −→ FDL(→ (E × E)). Now the point
is thatFDL(h × h) carries elements ofAx(D) to elements ofAx(E) and thus in par-
ticular to elements of<Ax(E)> (it is an easy verification and only requiresh to be
a homomorphism for axiom schemes (2) and (3)). This is equivalent to saying that
Ax(D) ⊆ Ker(qE ◦ FDL(h × h)) and thus<Ax(D)> ⊆ Ker(qE ◦ FDL(h × h)),
or equivalently that there is a unique mapH(h) : H(D) → H(E) that makes the
following diagram commute

FDL(→ (D ×D))
FDL(h×h) //

qD

����

FDL(→ (E × E))

qE

����
H(D)

H(h) //___________ H(E).

The dual diagram is

P(D ×D) oo (h×h)−1

P(E × E)

P(J(D))
� ?

eD

OO

oo P(h♭)
_______ P(J(E))

� ?

eE

OO



The mapeD : P(D) →֒ P(D ×D) is the embedding, viaQ4 and so on intoP0 as
obtained above. That is,eD(T ) = {a→ b | ∀p ∈ T (p ≤ a⇒ p ≤ b}. Now in this dual
setting, the fact that there is a mapP(h♭) is equivalent to the fact that(h × h)−1 ◦ eE

maps into the image of the embeddingeD. This is easily verified:

(h× h)−1(eE(T )) = {a→ b | ∀q ∈ T (q ≤ h(a)⇒ q ≤ h(b)}

= {a→ b | ∀q ∈ T (h♭(q) ≤ a⇒ h♭(q) ≤ b}

= {a→ b | ∀p ∈ h♭(T ) (p ≤ a⇒ p ≤ b}

= eD(h♭(T )).

Thus we can read off directly what the mapP(h♭) is: it is just forward image under
h♭. That is, if we call the dual ofh : D → E by the namef : J(E) → J(D), then
P(f) = f [ ] wheref [ ] is the lifted forward image mapping subsets ofJ(E) to subsets
of J(D). Finally, we note thatP satisfiesP(f) is an embedding if and only iff is
injective, andP(f) is surjective if and only iff is surjective.

Since weak Heyting algebras are the algebras for the functorH , we can make use
of coalgebraic methods for constructing free weak Heyting algebras. Similarly to [5],
where free modal algebras and free distributive modal algebras were constructed, we
construct finitely generated free weak Heyting algebras as initial algebras ofAlg(H).
That is, we have a sequence of bounded distributive lattices, each embedded in the next:

n −→ FDL(n), the free bounded distributive lattice onn generators

D0 = FDL(n)

Dk+1 = D0 + H(Dk), where+ is the coproduct inDL

i0 : D0 → D0 + H(D0) = D1 the embedding given by coproduct

ik : Dk → Dk+1 whereik = idD0
+ H(ik−1)

For a, b ∈ Dk, we denote bya →k b the equivalence class[a → b]≈ ∈ H(Dk) ⊆
Dk+1. Now, by applying the technique of [2], [1], [11], [5] to weakHeyting algebras,
we arrive at the following theorem.

Theorem 3.6. The direct limit(Dω , (Dk → Dω)k) in DL of the system(Dk, ik :
Dk → Dk+1)k with the binary operation→ω: Dω ×Dω → Dω defined bya→ω b =
a→k b, for a, b ∈ Dk is the freen-generated weak Heyting algebra when we embedn
in Dω via n→ D0 → Dω.

Now we will look at the dual of(Dω,→ω). Let X0 = P(n) be the dual ofD0 and let

Xk+1 = X0 × P(Xk)

be the dual ofDk+1.

Theorem 3.7. The sequence(Xk)k<ω with mapsπk : X0 × P(Xk)→ Xk defined by

πk(x, A) = (x, πk−1[A])

is dual to the sequence(Dk)k<ω with mapsik : Dk → Dk+1. In particular, theπk ’s
are surjective.



Proof. The dual ofD0 is X0 = P(n), and sinceDk+1 = D0 + H(Dk), it follows that
Xk+1 = X0 × P(Xk) as sums go to products and asH is dual toP . For the maps,
π0 : X0 × P(X0) → X0 is just the projection onto the first coordinate sincei0 is the
injection given by the sum construction. We note thatπ0 is surjective. Now the dual
πk : Xk+1 = X0 × P(Xk) → Xk = X0 × P(Xk−1) of ik = idD0

+ H(ik−1) is
idX0

× P(πk−1) which is exactly the map given in the statement of the theorem. Note
that a map of the formX×Y → X×Z given by(x, y) 7→ (x, f(y)) wheref : Y → Z
is surjective if and only the mapf is. Also, as we saw aboveP(πk) is surjective if and
only if πk is. Thus by induction, all theπk ’s are surjective.

4 Heyting algebras

4.1 Freely adding Heyting implications

Definition 4.1. [13] A weak Heyting algebra(A,→) is called aHeyting algebra, HA
for short, if the following two axioms are satisfied for alla, b ∈ A:

(5) b ≤ a→ b,
(6) a ∧ (a→ b) ≤ b.

Since bothD andH(D) are embedded inD + H(D) (where+ is the coproduct in
the category of distributive lattices) we will not distinguish between the elements ofD
andH(D) and their images inD + H(D). It is a well-known consequence of duality
that the dual of the coproductD + H(D) is the productJ(D) × J(H(D)), where
(p, T ) ≤ a ∈ D if and only if p ≤ a and(p, T ) ≤ α ∈ H(D) if and only if T ≤ α. The
latter implies in particular that(p, T ) ≤ a → b if and only if a → b ∈ ST if and only
if fT (a) ≤ b if and only if, for eachq ∈ T we haveq ≤ a impliesq ≤ b. Let≡ be a
distributive lattice congruence of the latticeD+H(D) generated by the axioms (5)–(6)
viewed as congruence schemes. We denote(D + H(D))/≡ by V (D). For a posetP ,
call T ⊆ P rootedprovided there is ap ∈ P with p ∈ T ⊆ ↓p, see [10]. Though a
rooted subsetT is completely determined just byT , we often write(p, T ) to identify
the root. We denote the set of all rooted subsets ofP by P r.

Theorem 4.2. LetD be a distributive lattice andX = (J(D),≤) its dual poset. Then

1. The poset(J(V (D)),≤) is isomorphic to the poset(Xr,⊆) of all rooted subsets
of X ordered by inclusion.

2. J(V (D)) = {p ∧
∧

q 6∈T q → κ(q) : J(D) ⊇ T is rooted with rootp}.

Proof. We start from the coproductD + H(D), or dually speaking from the poset
P = J(D) × J(H(D)) = J(D) × P(J(D)) and we impose the axiom scheme (5),
which means dually that we obtain a subsetP5 ⊆ P of all join-irreducible elements
that are admissible wrt the axiom scheme (5). That is,(p, T ) ∈ P5 if and only if

∀a, b ∈ D ((p, T ) ≤ b ⇒ (p, T ) ≤ a→ b)

⇐⇒ ∀a, b ∈ D (p ≤ b ⇒ fT (a) ≤ b)

⇐⇒ ∀a ∈ D (fT (a) ≤ p)

⇐⇒ ∀q ∈ T (q ≤ p).



That is, the poset dual to the lattice obtained by mod’ing outby the axiom scheme (5)
is

P5 = {(p, T ) | T ⊆ ↓p}.

Now further imposing the axiom scheme (6), we retain those elements of(p, T ) ∈ P5

satisfying

∀a, b ∈ D
(

((p, T ) ≤ a and(p, T ) ≤ a→ b) ⇒ (p, T ) ≤ b
)

⇐⇒ ∀a, b ∈ D (p ≤ a andfT (a) ≤ b) ⇒ p ≤ b)

⇐⇒ ∀b (fT (p) ≤ b) ⇒ p ≤ b)

⇐⇒ p ≤ fT (p) =
∨

{q ∈ T | q ≤ p}

⇐⇒ p ∈ T.

That is,P6 = {(p, T ) | p ∈ T ⊆ ↓p}, which corresponds exactly to the set of all
rooted subsets ofJ(D) ordered by inclusion. This proves the first statement. The second
statement is now an easy consequence of this and Theorem 3.5.

Let D be a finite distributive lattice andX its dual poset. ThenD+H(D) is dual to
X×P(X). Consequently, the canonical embeddingi : D →֒ D+H(D) corresponds to
the first projectionπ1 : X×P(X)→ X mapping a pair(x, T ) for x ∈ X andT ⊆ X to
x. Leth : D + H(D) ։ V (D) be the quotient map. Then it follows from Theorem 4.2
thath corresponds to an embeddinge : Xr → X ×P(X) mapping each rooted subset
T to (root(T ), T ). Now we definej : D → V (D) as the compositionj = h ◦ i. Then,
by duality, the dual ofj is the mapπ : Xr → X such thatπ(T ) = root(T ), or denoting
T by (x, T ) we haveπ(x, T ) = x. This implies thatπ is surjective and therefore, by
duality,j : D → V (D) is an embedding.

D
� � i //� r

j

$$IIII
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h
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4.2 Free Heyting algebras

In this section we relate our method to that of Ghilardi [10].Consider the sequence

D0
j0
−→ D1

j1
−→ D2 . . .

whereD0 is the free distributive lattice onn generators,Dk+1 = V (Dk), andjk :
Dk → Dk+1 is the embedding ofDk into V (Dk) discussed in the previous section.
Now let H be anyn-generated Heyting algebra. LetH0 = <n>, Hk+1 =< Hk ∪
{a →H b | a, b ∈ Hk > where all these are DL subalgebras ofH generated by the
given sets. Then we have a sequence

H0
g0
−→ H1

g1
−→ H2 . . .

as well as maps→k: Hk × Hk → Hk+1 given bya →k b = a →H b whenever
a, b ∈ Hk. By freeness ofD0, there is a quotient mapq0 : D0 ։ H0 , and sinceH1 is



generated byH0∪ →H (H0×H0) andH satisfies (1)-(6), it follows thatker(g0◦q0) ⊇
ker(j0) and thusg0 ◦ q0 factors throughj0. By induction on this argument we get a
sequence of quotient mapsqk making a commutative diagram

D0

q0����

� � j0 // D1

q1����

� � j1 // D2

q2����

� � j2 // . . .

H0
� � g0 // H1

� � g1 // H2
� � g2 // . . .

On the lower sequence we have that each map is a ‘partial’ homomorphism in the
sense that for eachk ≥ 0 we have→k: Hk×Hk → Hk+1 and fork ≥ 1 in the sequence

Hk−1
gk−1

−→ Hk
gk−→ Hk+1 we havegk(a →k−1 b) = gk−1(a) →k gk−1(b). Now

because this is a HA implication and each finite DL is a HA we have in addition that
a →k b = gk(a) →Hk+1

gk(b) for eachk. This is of course very special to HAs. As
was applied in [10], this property is equivalent to saying that the dual sequence

Q0
oooo π0

Q1
oooo π1

Q2 . . .

of maps are ‘partial p-morphisms’, i.e., for eachk ≥ 1

∀τ ∈ Qk+1 ∀S ∈ Qk (S ≤ πk(τ) ⇒ ∃τ ′ ∈ Qk+1 (τ ′ ⊆ τ&πk−1πk(τ ′) = πk−1(S)).

Note that the commutative diagram between theDk and theHk sequences translates to
a dual diagram

P0OO
i0

?�

oooo r0

P1OO
i1

?�

oooo r1

P2OO
i2

?�

oooo r2 . . .

Q0
oooo π0

Q1
oooo π1

Q2
oooo π2 . . .

which tells us thatQk+1 ⊆ Qr
k, the set of rooted subsets ofQk, and that the action of

theπk ’s is to take the root. Now, a second fact that is very special to HAs is that not only
is Qk−1 և Qk և Qk+1 a partial p-morphism diagram, but so isQk−1 և Qk ←֓ τ
for anyτ ∈ Qk+1 viewed as a subset ofQk (and thus as an embedding). The ensuing
property on rooted subsetsτ ∈ Qr

k for them to be admissible in a sequence ofQk ’s for
a Heyting algebraH is easily derivable in the same manner as our earlier calculations.
This was done by Ghilardi in [10] and results in

∀T ∈ τ ∀S ∈ Qk (S ≤ T ⇒ ∃T ′ ∈ τ (T ′ ≤ T & root(T ′) = root(S)) (G)

The point is now that since, in each step and for eachn-generated HA,H , the
admissible rooted subsets can at most be those satisfying (G), if we start from the largest
initial poset namelyR0 = P0 = J(FDL(n)) and proceed withR1 = Rr

0, andRk+1 =
{τ ∈ Rr

k | τ satisfies (G)} then, for any Heyting algebra with dual sequence{Qk} we
have

P0OO
i0

?�

oooo root
P1OO

i1
?�

oooo root
P2OO

i2
?�

oooo root . . .

R0OO
i0

?�

oooo R1OO
i1

?�

oooo R2OO
i2

?�

oooo . . .

Q0
oooo π0

Q1
oooo π1

Q2
oooo . . .



and thusH factors throughlim
−→
O(Rk) and this latter algebra thus has the universal map-

ping property for HA. By the same argument, the same is true for any algebra given by
any sequenceR′

k between thePk ’s and theRk ’s for which the local operations→k glue
together correctly. However there is of course no guaranteethat any of these algebras
are themselves Heyting algebras (at most one is, as it is thenthe freen-generated HA).

Theorem 4.3. The limit lim
−→
O(Rk) of the sequence{O(Rk)}k∈ω in the categoryDL

of distributive lattices is the free Heyting algebra onn generators.

Proof. (Sketch) It follows from the discussion above thatlim−→O(Rk) satisfies the re-
quired universal properties of the free algebra. Therefore, we only need to show that
lim
−→
O(Rk) is a Heyting algebra, or dually thatlim

←−
Rk = Rω, with the standard topol-

ogy of the inverse limit, is an Esakia space (see e.g., [4, Section 2.3.3], for details of this
duality). The crucial part is that↑U must be clopen forU clopen inlim

←−
Rk. For each

k ∈ ω let πω
k : Rω → Rk be the projection map. A subset U is clopen in the limitRω

providedU = (πω
k−1)

−1(V ) for somek− 1 andV ⊆ Rk−1 and thenU = (πω
k )−1(Vk)

with Vk = π−1
k (V ) is also true. Now, clearly↑U ⊆ (πω

k )−1(↑Vk). The crux of this
proof is that (G) implies that the reverse inclusion also holds. To see this, letx ∈ Rω

with πω
k (x) = xk ≥ yk for someyk ∈ Vk. Applying (G) with τ = πω

k+1(x) andT =
root(τ) = xk andS = yk, there isT ′ ≤ T, T ′ ∈ τ with root(S) = root(T ′). Now note
thatroot(T ′) = root(S) = root(yk) ∈ πk−1(Vk) = V . ThusT ′ is inVk. Also, we now
takeyk+1 = τ ′ = τ ∩↓T ′. As mentioned by Ghilardi this is easily seen to be admissible
again, and sinceroot(τ ′) = T ′ ∈ Vk, thenyk+1 = τ ′ ∈ (πk+1)

−1(Vk) = Vk+1. Also
yk+1 = τ ′ ≤ τ = xk+1 and in this way we build a sequencey = (yk) ∈ (πω

k−1)
−1(V )

with y ≤ x. This provesx ∈↑ U and we are done.

We conclude this section with a few points on where this leaves us in the quest for a
systematic approach to the generative description of free finitely generated algebras in
DL based varieties. First an example concerning the choice of axiomatization.

Example 4.4.Let D be a finite distributive lattice and letH ′(D) denoteFDL(→ (D×
D)) modulo axioms (1),(2), (3) of Definition 3.1. This means thatthe dual ofH ′(D) is
isomorphic to the setQ3 = {f : D → D | f is join-preserving and∀a ∈ D f(a) ≤ a}.
Since thef ’s are join preserving we may consider them as order preserving functionsf :
J(D) → O(J(D)) ∼= D as this restriction uniquely determinesf . We also letV ′(D)
denoteD + H ′(D) modulo axioms (5),(6) of Definition 4.1. The dual ofD + H ′(D)
is isomorphic toJ(D)× P3 and by imposing axiom schemes (5) and (6), we get

P ′ = {(p, f) | f(q) ⊆ ↓q ∩ ↓p, f(p) = ↓p}.

Then we can show that in general,V ′(D) is not isomorphic toV (D).

•

MMMMMMMMM

1→ b •

qqqqqqqqq

MMMMMMMMMM b→ a •

LLLLLLLLL •

rrrrrrrrrr a→ 0

1→ a •

qqqqqqqqq

•
1→ b ∧ b→ 0

• b→ a ∧ a→ 0

• b→ 0



In fact, the inequality(a → b) ∧ (b → c) ≤ a → c will not be valid onV ′(D) for
all a, b, c ∈ D, whereas onV (D) it is valid by definition. To see this consider the four
element chain0 < a < b < 1. The posetP ′, where we write eachSf as the conjunction
of theq → f(q) for whichf(q) < q is depicted above.

This poset is larger thanJ(V (D)) as the point(b→ a)∧(a→ 0) is not inJ(V (D)).
We recall that axioms (1),(2) of Definition 3.1 and (5),(6) ofDefinition 4.1 are already
sufficient to axiomatize Heyting algebras; see e.g., [13, Lemma 1.10] or [4, Theorem
2.2.6]. In logical terms the above observation means that the inequality(a→ b)∧ (b→
c) ≤ (a → c) is an example of a valid rank 1 inequality of the theory of Heyting
algebras whose derivation is not a DL derivation on the basisof the axioms.

Finally a remark on mod’ing out to make the partial operations into operations.

Remark 4.5.Notice that our first sequence for the HA case withDk+1 = V (Dk) is
definitely ‘too free’ and we can make a first cut on general principles. For anyk ≥ 1
and fora, b ∈ Dk−1, we may takejk(a →k−1 b) or jk−1(a) →k jk−1(b), and if
{Hk} is any sequence obtained from an algebra it factors through the DL congruence
sequence generated by

∀a, b ∈ D′
k−1 jk(a→k−1 b) ≈ jk−1(a)→k jk−1(b)

with D′
0 = D0 andD′

1 = D1. Let {P ′
k} be the corresponding dual sequence. In the

case of HA one can prove the following

Claim: τ ∈ (P ′
k)r is admissible if and only if for allp ∈ root(τ) there isT ∈ τ with

root(T ) = p.

Mod’ing out this congruence ensures that the correspondingsequence of algebras yields
an→-algebra in the limit. However mod’ing out must have destroyed the truth of (1)-
(4) as one can show that this is not quite Ghilardi’s sequence. For example, for the
four element chain as in the above example, withP its dual,P1 = P r, we have that
τ = {P, {1, b}, {a, b}, {a}} satisfies the above admissibility condition but does not
satisfy (G) as can be seen from takingT = {1, b} andP1 ∋ S = {b} ≤ T .

5 Conclusions and future work

In this paper we described finitely generated free (weak) Heyting algebras using an
initial algebra-like construction. The main idea is to split the axiomatization of Heyting
algebras into its rank 1 and non-rank 1 parts. The rank 1 reducts of Heyting algebras
are weak Heyting algebras. For weak Heyting algebras we applied the standard initial
algebra construction and then adjusted it for Heyting algebras. We used Birkhoff duality
for finite distributive lattices and finite posets to obtain the dual characterization of
the finite posets that approximate the duals of free algebras. As a result we obtained
Ghilardi’s representation of these posets in a more systematic and transparent way.

There are a few possible directions for further research. Aswe mentioned in the in-
troduction, although we considered Heyting algebras (intuitionistic logic), this method
could be applied to other non-classical logics. More precisely, the method is available



if a signature of the algebras for this logic can be obtained by adding an extra operator
to a locally finite variety. Thus, various non-rank 1 modal logics such asS4, K4 and
other more complicated modal logics, as well as distributive modal logics, are the ob-
vious candidates. On the other hand, one cannot always expect to have such a simple
representation of free algebras. The algebras corresponding to other many-valued logics
such asMV -algebras,l-groups,BCK-algebras and so on, are other examples where
this method could lead to interesting representations. Therecent work [6] that connects
ontologies with free distributive algebras with operatorsshows that such representations
of free algebras are not only interesting from a theoreticalpoint of view, but could have
very concrete applications.
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References

1. S. Abramsky. A Cook’s tour of the finitary non-well-founded sets. In S. A. et alii, editor,We
Will Show Them: Essays in honour of Dov Gabbay, pages 1–18. College Publications, 2005.
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