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Abstract. We investigate proof-theoretic properties of hypersequent calculi for intermediate logics using
algebraic methods. More precisely, we consider a new weakly analytic subformula property (the bounded

proof property) of such calculi. Despite being strictly weaker than both cut-elimination and the subformula

property this property is sufficient to ensure decidability of finitely axiomatised calculi. We introduce one-
step Heyting algebras and establish a semantic criterion characterising calculi for intermediate logics with

the bounded proof property and the finite model property in terms of one-step Heyting algebras. Finally,

we show how this semantic criterion can be applied to a number of calculi for well-known intermediate logics
such as LC,KC and BD2.
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1. Introduction

Having a well-behaved proof system for a logic, e.g., intermediate, modal, substructural etc., can help de-
termine various desirable properties of this logic such as consistency, decidability, interpolation etc. Gentzen-
style sequent calculi have for a long time played a pivotal role in proof theory [46] and proving admissibility
of the cut-rule has been one of the main techniques for establishing good proof theoretic properties of sequent
calculi. However, for various non-classical logics finding a cut-free sequent calculus can be a difficult task,
even when the logic in question has a very simple semantics. In fact, in many cases no such calculus seems
to exist. In the 1980’s Pottinger [42] and Avron [4] introduced hypersequent calculi for handling certain
modal and relevance logics. Hypersequents are nothing more than finite (multi)sets of sequents. Never-
theless, they give rise to simple cut-free calculi for many logics for which no ordinary cut-free calculus has
been found. Since then many cut-free hypersequent calculi for various modal and intermediate logics have
been developed [5, 21, 20, 38, 24, 41]. However, establishing cut-elimination for Gentzen-style sequent or
hypersequent calculi by syntactic means can be very cumbersome. Although the basic idea behind syntactic
proofs of cut-elimination is simple, each individual calculus will need its own proof of cut-elimination and
proofs obtained for one calculus do not necessarily transfer easily to other—even very similar—calculi.

Despite the fact that having a cut-free calculi for a given logic entails various desirable properties it can
be argued that cut-free derivations in themselves are not very natural, see e.g., [28, 16]. For example, in the
worst case, insisting on cut-free derivations may lead to an exponential blow-up; even for simple propositional
logics, see e.g., [46, Thm. 5.2.13]. In fact, for some purposes it is sufficient to know that the cut-rule can
be restricted to some well-behaved set of formulas. These two considerations, namely, (i) that cut-free
calculi are difficult to construct and that (ii) in practise cut-free derivations may be unfeasible, motivates
us to consider a proof-theoretic property, weaker than cut-elimination, ensuring that the cut-rule can be
restricted to the set of formulas of implicational degree not exceeding that of the formulas in the premise or
the conclusion.

Semantic proofs of cut-elimination have been known since at least 1960 [44], but in recent years general
and more systematic approaches to constructing cut-free calculi for various non-classical logics have been
developed. For example, [41] provide general methods for obtaining cut-free calculi for larger classes of modal
logics based on their frame semantics, and in [22, 23] an algebraic approach connecting cut-elimination with
closure under MacNeille completion can be found. One of the attractive features of these approaches is that
it allows one to establish cut-elimination for large classes of logics in a uniform way. Moreover, [22, 23] also
provide algebraic criteria determining when cut-free (hyper)sequent calculi for a given substructural logic
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can be obtained.1 This algebraic approach suggests that algebraic semantics can be used to detect other
desirable features of a proof system.

We take a somewhat different approach to connecting algebra and proof theory than the one found in
[22, 23]. Our approach can be seen as arising from the careful investigation of the structure of finitely
generated free algebras. The free algebra of a propositional logic encodes a lot of information about the
logic. For instance, it is well known that the finitely generated free algebras constitute a powerful tool when
it comes to establishing meta-theoretical properties for various propositional logics such as interpolation,
definability, admissibility of rules etc. In [31] it was shown how to construct finitely generated free Heyting
algebras as (chain) colimits of finite distributive lattices. In [32] a similar construction for finitely generated
free modal algebras was presented; showing how these algebras arise as colimits of finite Boolean algebras.2

The intuition behind these constructions is that one builds the finitely generated free algebra in stages
by freely adding the Heyting implication (or in the case of modal algebras the modal operator) step by
step. Lately this construction has received renewed attention in [17, 11] (for Heyting algebras) and in
[15, 33, 27, 35, 14] (for modal algebras).

It was realised in [12] that the so-called modal one-step algebras arising as consecutive pairs of algebras in
the colimit construction of finitely generates free modal algebras can be used to characterise a certain weak
analytic subformula property of proof systems for modal logics. This property—called the bounded proof
property—holds for an axiom system Ax if for every finite set of formulas Γ ∪ {ϕ} of modal depth3 at most
n such that Γ entails ϕ over Ax there exists a derivation in Ax witnessing this in which all the formulas
have modal depth at most n. We write Γ `nAx ϕ if this is the case. With this notation the bounded proof
property may be expressed as

Γ `Ax ϕ =⇒ Γ `nAx ϕ,

for all n ∈ ω and all sets of formulas Γ∪ {ϕ} of depth at most n. Even though this is a fairly weak property
it does, e.g., bound the search space when searching for proofs and thus it ensures decidability of calculi
with a finite axiomatisation. Furthermore, having this property might serve as an indication of robustness
of the axiom system in question. In this way it is like cut-elimination although in general it is much weaker.

In light of the original colimit construction of finitely generated free Heyting algebras it seems natural to
ask if one can adapt the work of [12] to the setting of intuitionistic logic and its consistent extensions, i.e.,
intermediate logics. That is, we ask if it is possible to formulate the bounded proof property for intuitionistic
logic and define a notion of one-step Heyting algebras which can characterise proof systems of intermediate
logics with the bounded proof property.

In order to do this one first needs to choose a proof theoretic framework for which to ask this question. In
this respect there are two remarks to be made. First of all as any use of modus ponens will evidently make
the bounded proof property with respect to implications fail, we will have to consider proof systems different
from natural deduction or Hilbert-style proof systems. Therefore, a Gentzen-style sequent calculus might be
a better option. In these systems modus ponens is replaced with the cut-rule which for good systems can be
eliminated or at least restricted to a well-behaved fragment of the logic in question. Secondly, as mentioned
in the beginning of the introduction, ordinary sequent calculi are often ill-suited when it comes to giving
well-behaved calculi for concrete intermediate logics, in that they generally do not admit cut-elimination.
Therefore, keeping up with the recent trend in proof theory of non-classical logics, we base our approach on
hypersequent calculi. This makes our results more general and more importantly allows us to consider more
interesting examples of proof systems for intermediate logics. This approach is also in line with [13] where
the results of [12] are generalised to the framework of multi-conclusion rule systems for modal logics.

We define a notion of one-step Heyting algebras and develop a theory of these algebras parallel to the
theory of one-step modal algebras [12]. We show that just as in the modal case the bounded proof property
for intuitionistic hypersequent calculi can be characterised algebraically using one-step Heyting algebras. We
also develop a notion of intuitionistic one-step frames dual to that of one-step Heyting algebras. Finally, we
test the obtained criterion for the bounded proof property on a number of examples of hypersequent calculi
for intermediate logics.

1However, these criteria only cover the lower levels (N2 and P3) of the substructural hierarchy of [22].
2The basic idea of constructing finitely generated free modal algebras in an incremental way is in some sense already present

in [30] and [1]. Note that [1] is based on a talk given at the BCTCS already in 1988.
3Recall that the modal depth of a formula ϕ is the maximal number of nestings of modalities occurring in ϕ.
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The paper is organised as follows. In Section 2 we recall hypersequent calculi for intermediate logics, and
define the bounded proof property for such calculi. In Section 3 we introduce one-step Heyting algebras and
one-step intuitionistic frames and in Section 4 we provide a semantic characterisation of the bounded proof
property in terms of these algebras and frames. Finally, Section 5 discusses a number of examples of calculi
for intermediate logics with and without the bounded proof property.

2. Hypersequent calculi and universal classes of Heyting algebras

Let Prop be a set of propositional variables and let Form(Prop) denote the set of formulas determined by
the following grammar:

ϕ ::= ⊥ | p | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ, p ∈ Prop.

Note that any function σ : Prop → Form(Prop) may be extended to a function σ : Form(Prop) →
Form(Prop) in the evident way. Such functions are called substitutions. Given a (multi)set of formulas
Γ and a substitution σ we let Γσ denote the (multi)set {σ(ϕ) : ϕ ∈ Γ}.4

In this paper we shall be concerned with so-called intermediate logics, i.e., consistent extensions of intu-
itionistic logic. We therefore recall the definition of the intuitionistic propositional calculus

Definition 2.1. The intuitionistic propositional calculus (IPC) is the smallest set of formulas containing
the formulas

p→ (q → p),

(p→ (q → r))→ ((p→ q)→ (p→ r)),

(p ∧ q)→ p,

(p ∧ q)→ q,

p→ (p ∨ q),
q → (p ∨ q),
(p→ r)→ ((q → r)→ ((p ∨ q)→ r))

⊥ → p,

and closed under the following two inference rules

ϕ ϕ→ ψ
(MP)

ψ

ϕ
(Subst)

σ(ϕ)

where σ is any substitution.

A consistent set of formulas L ⊇ IPC closed under the inference rules (MP) and (Subst) is called an
intermediate logic.

We define the implicational degree d(ϕ) of a formula ϕ by the following recursion: d(⊥) = 0 and d(p) = 0
for all p ∈ Prop. Moreover,

d(ϕ ∧ ψ) = d(ϕ ∨ ψ) = max{d(ϕ), d(ψ)} and d(ϕ→ ψ) = max{d(ϕ), d(ψ)}+ 1.

For n ∈ ω we let Formn(Prop) denote the subset of Form(Prop) consisting of formulas of implicational
degree at most n. The following observation about Formn(Prop) will be crucial later on.

Proposition 2.2. If Prop is a finite set of propositional letters and n ∈ ω, then the set Formn(Prop) of
formulas of implicational degree at most n, modulo provable equivalence, is finite.

Proof. Letting Form−1(Prop) = Prop ∪ {⊥,>}, it is straightforward to verify that every formula in
Formn(Prop) is equivalent to a formula of the form

∨m
i=1

∧ni

j=1 ψij with ψij ∈ Formn−1(Prop). Consequently,

if Prop is a finite set of propositional letters Formn(Prop) must be finite for each n ∈ ω. �

4In case Γ is a multiset σ(ϕ) should be counted according to the multiplicity of ϕ ∈ Γ.
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A sequent is a pair of finite (possible empty) multisets of formulas written as Γ⇒ ∆ and a hypersequent
is a finite multiset of hypersequents written as

Γ1 ⇒ ∆1 | . . . | Γn ⇒ ∆n.

The sequents Γk ⇒ ∆k, for k ∈ {1, . . . , n}, are called the components of the hypersequent.
We will let lower case letters s, s0, s1, . . . denote sequents while upper case letters G,H, S, S0, S1, . . . will

denote hypersequents. Note that the notion of implicational degree extends to sequents and hypersequents
as follows:

d(Γ⇒ ∆) = max{d(ϕ) : ϕ ∈ Γ ∪∆} and d(s1 | . . . | sn) = max{d(sk) : 1 ≤ k ≤ n}.
Furthermore, the implicational degree of a finite set of hypersequents will be the maximal implication degree
of the hypersequents in that set.

Recall that a Heyting algebra is a bounded distributive lattice (A,∧,∨, 0, 1) with an additional binary
operation → satisfying

a ∧ c ≤ b ⇐⇒ c ≤ a→ b.

Given a set Prop of propositional letters and a Heyting algebra A = (A,∧,∨,→, 0, 1) a function v : Prop→ A
is called a valuation on A. Such a valuation extends to a function v : Form(Prop)→ A in the evident way. A
formula ϕ is said to be true in a Heyting algebra A under a valuation v iff v(ϕ) = 1. Furthermore, a formula
is said to be valid in A if it is true under all valuations v on A. Using the well-known Lindenbaum-Tarski
construction we obtain completeness for IPC with respect to the Heyting algebra semantics, see e.g. [18,
Thm. 7.21]. Thus ϕ is a theorem of IPC iff it is valid in all Heyting algebras.

The above definitions may easily be extended to (hyper)sequents. To be precise: We say that a sequent
Γ ⇒ ∆ is true in A under a valuation v, written (A, v) � Γ ⇒ ∆, if v(

∧
Γ) ≤ v(

∨
∆), and we say that a

hypersequent Γ1 ⇒ ∆1 | . . . | Γn ⇒ ∆n is true in A under a valuation v, if (A, v) � Γk ⇒ ∆k for some
k ∈ {1, . . . , n}. Finally, we say that A validates a sequent (or hypersequent) if it is true under all valuations.

2.1. Hypersequent proofs and hypersequent calculi. A hypersequent rule (in the language of intu-
itionistic logic) is a pair consisting of a finite set of hypersequents {S1, . . . , Sn}, called the premises, and a
single hypersequent S, called the conclusion. We write hypersequent rules as

S1 . . . Sm (r)
S

We define the degree of a hypersequent rule as max{d(S), d(S1), . . . , d(Sm)}.

Remark 2.3. Note that the definition of a hypersequent rule excludes any rule in an extended language,
e.g., with quantifiers, modalities or a co-implication. However, as we are here only interested in propositional
logics between IPC and CPC this limitation is of no concern to us.

Given a Heyting algebra A and a hypersequent rule (r) we say that A validates (r) if for each valuation
v on A we have that the conclusion S is true in A under v if all the premisses Sj are true in A under v.

Definition 2.4. Let {S, S1, . . . , Sn} be a set of hypersequents and let

S′1 . . . S′n (r)
S′

be a hypersequent rule. We say that a hypersequent S is obtained from S1, . . . , Sn by an application of the
rule (r), if there exist a substitution σ and a hypersequent G such that S is of the kind G | S′σ and Si is of
the kind G | S′iσ for i ∈ {1, . . . , n}.5 Where given a substitution σ and a sequent s = Γ⇒ ∆ we let sσ denote
the sequent Γσ ⇒ ∆σ. Similarly given a hypersequent S = s1 | . . . | sn we let Sσ denote the hypersequent
s1σ | . . . | snσ.

In this way uniform substitution and external weakening are taken into account in the definition of rule
application.

We here present the rules for a multi-succedent hypersequent calculus for IPC.

5Due to the presence of the external weakening rule (ew) (see Definition 2.5 below), this is the same as saying that Si is of
the kind Gi | S′

iσ and that S is of the kind G | S′σ for some G ⊇
⋃n

i=1Gi.
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Definition 2.5 (see also [24]). The calculus HLJ′ consists of the following rules.

Axioms:
(init)p⇒ p

(l⊥)⊥ ⇒
External structural rules:

Γ⇒ ∆ | Γ⇒ ∆
(ec)

Γ⇒ ∆

Γ′ ⇒ ∆′ (ew)
Γ′ ⇒ ∆′ | Γ⇒ ∆

Internal structural rules:
Γ⇒ p, p,∆

(ric)
Γ⇒ p,∆

Γ, p, p⇒ ∆
(lic)

Γ, p⇒ ∆

Γ⇒ ∆ (liw)
Γ, p⇒ ∆

Γ⇒ ∆ (riw)
Γ⇒ p,∆

Logical rules:

Γ⇒ p,∆ Γ, q ⇒ ∆
(l→)

Γ, p→ q ⇒ ∆

Γ, p⇒ q
(r →)

Γ⇒ p→ q

Γ, p, q ⇒ ∆
(l∧)

Γ, p ∧ q ⇒ ∆

Γ⇒ p,∆ Γ⇒ q,∆
(r∧)

Γ⇒ p ∧ q,∆

Γ, p⇒ ∆ Γ, q ⇒ ∆
(l∨)

Γ, p ∨ q ⇒ ∆

Γ⇒ p, q,∆
(r∨)

Γ⇒ p ∨ q,∆
The cut rule:

Γ⇒ p,∆ p,Σ⇒ Π
(cut)

Γ,Σ⇒ Π,∆

Since in this paper we are only interested in the implicational degree of formulas occurring in a deriva-
tion we may in fact take the meta-variables for contexts Γ,∆,Σ,Π etc. to be single propositional letters.
Consequently, we do not have to rely on rule schemes but can restrict attention to single rules.

Remark 2.6. Thus, with the exception of the external structural rules, the rule of the calculus HLJ′ are the
same as for the multi-succedent sequent calculus LJ′ for IPC. The essential difference is that the definition
of rule application has been changed so as to fit the framework of hypersequents. Consequently, only after
adding additional hypersequent rules will it be possible to derive sequents not already derivable in LJ′.

As we will only be interested in calculi for intermediate logics we shall understand by a hypersequent
calculus any collection of hypersequent rules extending the calculus HLJ′. This means that rules such
as external contraction and the cut-rule belong to every hypersequent calculus even though they may be
eliminable. Of course, this can no longer be guaranteed when additional rules are added.

If S ∪ {S} is a set of hypersequents and HC is a hypersequent calculus we say that S is derivable (or
provable) from S over HC, written S `HC S, if there exists a finite sequence of hypersequents S1, . . . , Sm
such that Sm is the hypersequent S and for all k ∈ {1, . . . ,m− 1} either Sk belongs to S or Sk is obtained
by applying a rule from HC to some subset of {S1, . . . , Sk−1}. If moreover there is n ∈ ω such that d(Sk) ≤ n
for all k ∈ {1, . . . ,m} we write S `nHC S.

Note that applying substitutions to hypersequents in S are not allowed. Thus `HC denotes the global
consequence relation, in the sense that the members of S will be taken as axioms, i.e., leaves in a derivation
tree.
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Definition 2.7. A hypersequent rule (S1, . . . Sn)/S is derivable in a hypersequent calculi HC if

{S1, . . . , Sn} `HC S.

Two hypersequent calculi HC and HC′ are equivalent if all the rules of HC are derivable in HC′ and vice
versa.

Note that if HC and HC′ are equivalent then for all finite sets S ∪ {S} of hypersequents we have that

S `HC S iff S `HC′ S.

The next proposition will be used throughout the paper.

Proposition 2.8. Any hypersequent rule is equivalent (in HLJ′) to a finite set of hypersequent rules all
having single component hypersequents as premisses.

Proof. Let (r) = (S1, . . . , Sn)/S be given and let m1 be the number of components of S1, say S1 = s11 | . . . |
s1m1

. We show that (r) is equivalent to the set of rules

s1k S2 . . . Sn (r1k)
S

for k ∈ {1, . . . ,m1}. The following derivation shows that S is indeed derivable from {S1, . . . , Sn} using the
rules (r1k)m1

k=1.

S1 . . . Sn (r11)
s12 | . . . | s1m1

| S S2 . . . Sn
(r12)

s13 | . . . | s1m1 | S | S (ec)
s13 | . . . | s1m1 | S

...

s1m1
| S S2 . . . Sn

(r1m1
)

S | S
(ec)

S

Conversely, using external weakening it follows all of the rules (r1k)m1

k=1 are derivable from the rule (r).
Applying this procedure n times yields a finite set of hypersequent rules with single component hypersequents
as premisses equivalent to (r). �

In order to establish soundness and completeness of derivability of hypersequent rules with respect to
Heyting algebras we will need the following facts.

Lemma 2.9. Let S ∪ {S} be a set of hypersequents and let s be a sequent. Then for every hypersequent
calculus HC we have that

(S ∪ {s} `HC S and S `HC s | S) =⇒ S `HC S.

Proof. Assuming that S `HC s | S we see that for any hypersequent S′ if S ∪{s} `HC S
′, then, by induction

on the length of a derivation witnessing this, we must have that S `HC S′ | S. Therefore, if S `HC s | S
and S ∪{s} `HC S we may conclude that S `HC S | S, whence by applying external contraction we obtain
that S `HC S, as desired. �

We then introduce a variant of the well-known Lindenbaum-Tarski construction.

Proposition 2.10. For every hypersequent calculus HC and every set of hypersequents S ∪ {S} such that
S 6`HC S there exists a Heyting algebra LTHC(S , S) validating HC and a valuation on LTHC(S , S) under
which all the hypersequents S are true but the hypersequent S is not.
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Proof. Let Prop be the set of propositional letters occurring in S ∪ {S} and let S̃ be a maximal set of

hypersequents, based on Form(Prop), extending S such that S̃ 6`HC S. By Zorn’s Lemma such a set
always exists. Then define an equivalence relation ≈ on the set of formulas Form(Prop) as follows:

ϕ ≈ ψ ⇐⇒ S̃ `HC ⇒ ϕ↔ ψ.

Since HC extends a hypersequent calculus of IPC one may readily verify that LTHC(S , S) = Form(Prop)/≈
is a Heyting algebra.

We observe that by the maximality of S̃ , Lemma 2.9 together with the assumption that S̃ 6`HC S yields
that

(1) S̃ `HC s1 | . . . | sm | S =⇒ S̃ `HC si for some 1 ≤ i ≤ m,

for all sequents s1, . . . , sm. For suppose not, then in particular S̃ 6`HC s1 and therefore by the maximality

of S̃ we can conclude that S̃ ∪ {s1} `HC S. So by Lemma 2.9 we must have that S̃ `HC s2 | . . . | sm | S.

Thus after repeating this argument m times we obtain S̃ `HC S, in direct contradiction with the initial
assumption.

Observe that from (1) and external weakening it follows that if S̃ `HC s1 | . . . | sm then S̃ `HC si for
some i ∈ {1, . . . ,m}. From this it is easy to verify that LTHC(S , S) validates all the rules of HC.

Finally, we claim that under the valuation determined by sending propositional variables to their respective
equivalence classes of the equivalence relation ≈, the algebra LTHC(S , S) makes all the hypersequents from
S true but does not make the hypersequent S true. This, however, is evident. �

Remark 2.11. One could initially be tempted to believe that the construction in the proof of Proposition
2.10 will yield free algebras for the universal class of Heyting algebras validating the calculus HC. However,
this is not the case. Indeed, there exist universal classes of algebras without free algebras [37, Cor. 3]. To
see why the construction fails to produce free algebras note that ϕ ≈ ψ in the above construction (taking
S = ∅) does not imply that the corresponding terms are identified in all Heyting algebras validating HC,
only that they may consistently (relative to HC) be identified. Consequently, given a Heyting algebra A
validating HC and a function v : Prop→ A, i.e., a valuation on A, it can not be ensured that [ϕ]≈ 7→ v(ϕ) will
be a well-defined homomorphism from LTHC(S , S) to A. This is because the equivalence relation depends

both on the hypersequent S and and on some maximally consistent set ∅̃ such that ∅̃ 6`HC S.

Proposition 2.12 (Algebraic soundness and completeness). Let HC be a hypersequent calculus and let (r)
be a hypersequent rule. Then the following are equivalent:

(1) The rule (r) is derivable in HC;
(2) All Heyting algebras validating HC also validates (r).

Proof. That item 1 implies item 2 follows from a straightforward induction on the length of derivations of
rules. That item 2 implies item 1 is an immediate consequence of Proposition 2.10. �

2.2. Hypersequents calculi, multi-conclusion rules and universal classes of Heyting algebras.
Given a hypersequent calculus HC we obtain an intermediate logic Λ(HC) := {ϕ ∈ Form(Prop) : `HC ⇒ ϕ}.
We say that a hypersequent calculus HC is a calculus for an intermediate logic L if Λ(HC) = L. This means
that derivability relations `L and `HC coincides for sequents in the sense that

(2) `L
∧

Γ→
∨

∆ iff `HC Γ⇒ ∆

holds for all sequents Γ⇒ ∆.
Given a hypersequent calculus HC the class U(HC) of Heyting algebras validating HC will evidently

be a universal class. Conversely, given a universal class U of Heyting algebras, determined by a set of
universal sentences Φ, we obtain a hypersequent calculus HC(U) by adding for each universal sentence
σ = ∀x(

∧m
k=1(ϕk(x) = 1) =⇒

∨m
l=1(ψl(x) = 1)) ∈ Φ the rule

⇒ ϕ1 . . .⇒ ϕn
(rσ)

⇒ ψ1 | . . . | ⇒ ψm
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to the hypersequent calculus HLJ′. Of course, in concrete instances appropriate invertible rules of HLJ′

may then be applied to obtain a cleaner version of the rule (rσ). Here we are tacitly identifying quantifier-
free formulas in the language of Heyting algebras and propositional formulas in the language of intuitionistic
logic6.

Using Proposition 2.12 it is easy to verify that U(HC(U)) = U and that HC(U(HC)) will be equivalent
to HC. Thus we have a one-to-one correspondence between hypersequent calculi for intermediate logics
(modulo equivalence) and universal classes of Heyting algebras.

Similarly we obtain a correspondence between multi-conclusion rules [39, 9] and hypersequent calculi.
Given a multi-conclusion rule (r) = (ϕ1, . . . , ϕn)/(ψ1, . . . , ψm) we obtain a hypersequent rule:

⇒ ϕ1 . . .⇒ ϕn
(rH)

⇒ ψ1 | . . . | ⇒ ψm

Again, in concrete instances appropriate invertible rules of HLJ′ may then be applied to obtain a cleaner
version of the rule (rH).

Conversely, given a hypersequent rule with single component premises

Γ1 ⇒ ∆1 . . .Γn ⇒ ∆n (r)
Σ1 ⇒ Π1 | . . . | Σm ⇒ Πm

we obtain a multi-conclusion rule: ∧
Γ1 →

∨
∆1, . . . ,

∧
Γn →

∨
∆n

(rM )∧
Σ1 →

∨
Π1, . . . ,

∧
Σm →

∨
Πm

Example 2.13. Consider the universal clause

(σ) ∀x∀y (x ∧ y ≤ 0 =⇒ x ≤ 0 or y ≤ 0).

This corresponds to the single rule:

p ∧ q ⇒ ⊥
(rσ)

p⇒ ⊥ | q ⇒ ⊥
Finally, the rule (rσ) may be transformed into the multi-conclusion rule

¬(p ∧ q)
((rσ)M )¬p,¬q

Evidently a Heyting algebra validates a multi-conclusion rule (resp. hypersequent rule) iff it validates
the corresponding hypersequent rule (resp. multi-conclusion rule). Since by Proposition 2.8 every hyper-
sequent calculus is equivalent to one only consisting of rules with single component premisses this yields
(modulo equivalence) a correspondence between multi-conclusion consequence relations and hypersequent
calculi. Thus, for the purposes of axiomatising intermediate logics hypersequent calculi and multi-conclusion
consequence relations may be used interchangeably.

2.3. The bounded proof property. We say that a hypersequent calculus HC has the bounded proof prop-
erty if whenever S ∪{S} is a set of hypersequents of implicational degree at most n such that S `HC S then
S `nHC S, i.e., there exists a proof witnessing S `HC S consisting only of hypersequents of degree at most n.
The bounded proof property is thus a very weak form of analyticity7 in the sense that having the bounded
proof property ensures that some backward proof search strategy will be applicable. However, having the
bounded proof property will indicate some kind of robustness of the hypersequent calculus in question. For
instance the subformula property will entail the bounded proof property. Therefore, if a hypersequent cal-
culus enjoys cut-elimination it will also, under mild additional assumptions, have the subformula property
and hence the bounded proof property. Finally, as in the modal case [12, 13], having the bounded proof
property will ensure that the derivability relation `HC is decidable, given that HC consists of finitely many
rules. This is due to the fact that by Proposition 2.2 for a given finite set of propositional variables Prop
there are only finitely many non-equivalent formulas in Prop of implicational degree at most n.

6Formally this is done by fixing a bijection between the set of variables of the first-order language and the set of propositional

letters which may then be extended in the evident way.
7Recall that a calculus is analytic if it enjoys the subformula property, i.e., derivations using only subformulas can always

be found.

8



As follows from the definition, checking whether or not a hypersequent calculus HC enjoys the bounded
proof property we are required to check for every n ∈ ω if S `HC S entails S `nHC S for each set S ∪ {S}
of hypersequents of degree at most n. However, for each such set S ∪ {S} of hypersequents, by replacing
the inner most implications ϕ → ψ in the formulas of S ∪ {S} with fresh variables, say pϕψ, and adding
appropriate premisses we obtain a set of hypersequents S ′ ∪ {S′} of degree n− 1 with the property

S `HC S ⇐⇒ S ′ `HC S
′.

Moreover, if S ′ `n−1HC S′ is witnessed by a derivation D , then we obtain a derivation witnessing S `nHC S
by replacing all the fresh variables pϕψ occurring in D with the corresponding formulas ϕ → ψ of degree
one. Thus, if we know that HC satisfies the bounded proof property for all hypersequents of degree at most
n− 1, then it must also satisfy it for hypersequents of degree at most n. Using this idea we may show that
the bounded proof property is completely determined by the degree 1 case.

Proposition 2.14. A hypersequent calculus HC has the bounded proof property iff for each set S ∪ {S}
consisting of hypersequents of degree at most 1, we have

S `HC S iff S `1HC S.

Proof. The left-to-right direction is evident.
For the converse implication let S ∪ {S} be a set of hypersequents of degree at most n. We define a

sequence of triples (Si, Si, σi)
n−1
i=0 such that

(i) Si ∪ {Si} is a set of hypersequents of degree at most n − i and σi is a substitution such that
d(σi(χ)) ≤ d(χ) + 1 for all formulas χ occurring in Si ∪ {Si};

(ii) Si+1σi+1 = Si;
(iii) Si+1σi+1 equals Si union some set of sequents of the form χ⇒ χ;
(iv) Si+1 `HC Si+1 ⇐⇒ Si `HC Si.

Let S0 be S , S0 be S and let σ0 be the identity substitution. Now assume that the triple (Si, Si, σi) has
been defined. Then for each subformula of the form ϕ→ ψ with d(ϕ) = d(ψ) = 0 occurring in some formula
of some sequent of some hypersequent in Si ∪ {Si} we introduce a fresh variable pϕψ and replace ϕ → ψ
with pϕψ everywhere. Let S ′i and Si+1 be the result of such replacements. Finally, let

Si+1 = S ′i ∪ {pϕψ ⇒ ϕ→ ψ, ϕ→ ψ ⇒ pϕψ}ϕ→ψ.

The substitution σi+1 is then defined as σi+1(pϕψ) = ϕ→ ψ.
With this definition (i)-(iv) are easily seen to hold.
Now if S `HC S then by construction we must have that Sn−1 `HC Sn−1. Moreover, by item (i) the

degree of Sn−1 ∪ {Sn−1} is at most 1, hence the initial hypothesis yields Sn−1 `1HC Sn−1. From items (ii)
and (iii) together with the fact that for any hypersequent S we have that d(Sσi+1) ≤ d(S)+1 we observe that

if Sn−k `kHC Sn−k then Sn−(k+1) `k+1
HC Sn−(k+1), for all k ∈ {0, . . . , n− 1}. Consequently, Sn−1 `1HC Sn−1

entails that S0 `nHC S0. �

The polarity (positive or negative) of an occurrence of a subformula in a formula is given by the following
recursive definition. The formula ϕ is positive in ϕ. The connectives ∧ and ∨ preserves polarities while the
connective → preserve polarities in the consequent and reverses polarities in the antecedent. We say that a
formula ψ occurs in a sequent Γ ⇒ ∆ if it is a subformula of a formula ϕ ∈ Γ ∪∆. If ψ occurs positively
(resp. negatively) in ϕ and ϕ ∈ Γ then we count the occurrence of ψ in Γ⇒ ∆ as negative (resp. positive)
and vice versa if ϕ ∈ ∆. Finally, ψ is said to occur positively (resp. negatively) in a hypersequent if it occurs
positively (resp. negatively) in some component.

We say that a hypersequent rule (r) is reduced if all the formulas occurring in (r) have implicational
degree at most 1. Evidently not all rules will be reduced. However, every rule (r) may be transformed into
an equivalent rule (r′) which is reduced—of course, there is nothing that guarantees that (r) and (r′) will
share the same proof-theoretic properties. Consider, for example, the rule

(r0)
¬q → p⇒ ((p→ q)→ p)→ p
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of degree 3. As (p → q) → p has exactly one occurrence (with negative polarity) we may introduce fresh
propositional letter r for this formula and add a new premise r ⇒ (p→ q)→ p to obtain the equivalent rule

r ⇒ (p→ q)→ p
(r1)¬q → p⇒ r → p

of degree 2. In (r1) the formula (p → q) has exactly one occurrence (again with negative polarity) and ¬q
has exactly one occurrence (with positive polarity). We may thus abstract these occurrence away with fresh
propositional letters s and t, respectively, to obtain the equivalent rule

r ⇒ s→ p s⇒ p→ q ¬q ⇒ t
(r2)

t→ p⇒ r → p

of degree 1.
The following proposition shows that such a transformation may always be performed.

Proposition 2.15. Any hypersequent rule is equivalent to a reduced hypersequent rule.

Proof. Given a hypersequent rule (r) = (S1, . . . , Sm)/Sm+1 of depth n+ 1 with n ≥ 1 and an occurrence of
a formula α of degree n + 1 in (r) the main connective of which is →, we produce an equivalent rule with
one less occurrence of the formula α.

Let Si be the hypersequent with the given occurrence of α and let Γ ⇒ ∆ be the sequent in Si with
the given occurrence of α. As the formula α is of depth n + 1 it must be of the form ϕ → ψ with
max{d(ϕ), d(ψ)} = n. We introduce a fresh variable p and replace the given occurrence of α in Si with
p→ ψ or ϕ→ p, depending on whether d(ϕ) = n or d(ψ) = n. If both d(ϕ) and d(ψ) = n we introduce two
fresh variables. Let S′i be the hypersequent resulting from such a replacement. Evidently S′i has one less
occurrence of the formula α than Si. In case i ≤ m let S′′i be the hypersequent obtained by replacing the
sequent Γ ⇒ ∆ in Si with the sequent ϕ ⇒ p or p ⇒ ψ depending on whether d(ϕ) = n or d(ψ) = n. In
case i = m+ 1 let S′′i be the hypersequent consisting of the single component hypersequent p⇒ ϕ or ψ ⇒ p
depending on whether d(ϕ) = n or d(ψ) = n.

In this way we obtain a rule

S1 . . . Si−1 S
′
i Si+1 . . . Sm S′′i (r′)
Sm+1

or
S1 . . . Sm S′′m+1

(r′)
S′m+1

depending on whether i ≤ m or i = m+ 1.
By Proposition 2.12 (or by appropriate applications of the cut-rule) this rule must be equivalent to the

rule (r).
Continuing this procedure for each occurrence of a formula of degree n + 1 in (r) we obtain a rule (rn)

of degree n which is equivalent to (r). In this way we obtain a sequence (rn+1), (rn), . . . , (r1) of equivalent
rules such that (rn+1) = (r) and d(rk) = k, for all k ∈ {1, . . . , n+ 1}. �

Remark 2.16. Note as the above procedure abstracts away one occurrence of a formula of the form ϕ→ ψ
at a time, and since we first abstract away outermost occurrences, it is always clear whether to replace the
formula occurring negatively or positively in the formula ϕ → ψ. Note further that this procedure works
just as well for the other connectives. The only thing particular to the implication is that the polarity is
reversed in the antecedent.

In light of Proposition 2.15 we may without loss of generality assume that all hypersequent calculi are
reduced, i.e., only consisting of reduced rules. In the following section we shall introduce algebraic structures
which may interpret such reduced rules.

3. One-step Heyting algebras

Let bDL denote the category of bounded distributive lattices and bounded lattice homomorphisms. Then a
well-known theorem by Birkhoff states that the category bDLω of finite bounded distributive lattice is dually
equivalent to the category Posω of finite posets and order-preserving maps, for details see e.g., [29, Chap. 5].
This duality is established via the downsets functor Do: Pos→ bDL and the functor J : bDL→ Pos mapping
a bounded distributive lattice D to the poset of join-irreducible elements of D. If f : P → P ′ is an order-
preserving map between posets then Do(f) : Do(P ′) → Do(P ) is the preimage function f∗(U) := f−1(U).
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If h : D → D′ is a homomorphism between finite bounded distributive then h has a left adjoint h[ : D′ → D
given by

h[(a′) :=
∧

a′≤h(a)

a.

We may therefore let J(h) : J(D′)→ J(D) be h[ �J(D′).
It is well known that any finite bounded distributive lattice D is in fact a Heyting algebra with Heyting

implication defined as

a→ b :=
∧
{c : a ∧ c ≤ b}.

Therefore the category HAω of finite Heyting algebras and Heyting algebra homomorphisms is a (non-full)
subcategory of bDLω. Let Posopen denote the category of posets and open order-preserving maps, where a
map between posets f : P → Q is open if

∀a ∈ P ∀b ∈ Q (b ≤ f(a) =⇒ ∃a′ ∈ P (a′ ≤ a and f(a′) = b)).

Theorem 3.1 (Folklore). The dual equivalence of the categories bDLω and Posω restricts to a dual equiva-
lence between the categoires HAω and Posopenω .

We now introduce algebraic structures which may interpret the fragment of intuitionistic logic consisting
of formulas of implicational degree at most 1.

Definition 3.2. A one-step Heyting algebra is a triple (D0, D1, i) such that i : D0 → D1 is a homomorphism
between bounded distributive lattices with the property that for all a, b ∈ D0 the Heyting implication
i(a) → i(b) exists in D1. We say that a one-step Heyting algebra (D0, D1, i) is conservative if i : D0 → D1

is an embedding of bounded distributive lattices and D1 is generated (as a bounded distributive lattice) by
the set {i(a)→ i(b) : a, b ∈ D0}. Finally, we say that (D0, D1, i) is finite if both D0 and D1 are finite.

Remark 3.3. In [12] a one-step modal algebra was defined to be a quadruple (A0, A1, i,3) such that
i : A0 → A1 is a Boolean algebras homomorphism between Boolean algebras A0 and A1 and 3 : A0 → A1

is a map preserving 0,∨. Thus the main conceptual difference between one-step modal algebras and their
Heyting algebra counterparts is that since for any finite distributive lattice there is only one choice of
a Heyting implication it is not necessary to consider an additional operation → : D2

0 → D1, satisfying
appropriate equations, as part of the definition. his makes the one-step Heyting algebras somewhat simpler
to work with. In particular, the duals of finite one-step Heyting algebras are simpler than the duals of finite
one-step modal algebras. Instead of working with a relation between two different sets we may simply work
with order-preserving maps between two standard intuitionistic Kripke frames.

Definition 3.4. A one-step homomorphism between two one-step Heyting algebras H = (D0, D1, i) and
H′ = (D′0, D

′
1, i
′) is a pair (g0, g1) of bounded lattice homomorphisms g0 : D0 → D′0 and g1 : D1 → D′1

making the diagram

D0 D′0

D1 D′1

i

g0

i′

g1

commute, such that for all a, b ∈ D0

g1(i(a)→ i(b)) = g1(i(a))→ g1(i(b)).

A one-step extension of a one-step Heyting algebra H0 := (D0, D1, i0) is a one-step Heyting algebra H1 :=
(D1, D2, i1) such that (i0, i1) : H0 → H1 is a one-step homomorphism with i1 injective.

Note that if A is a Heyting algebra, then HA = (A,A, Id) is a one-step Heyting algebra. Consequently,
we may, given a one-step Heyting algebra H, speak of one-step homomorphism between A and H by way of
HA.

The above definitions determines a category OSHA of one-step Heyting algebras and one-step homomor-
phisms between them. This is a non-full subcategory of the arrow category bDL→. We let OSHAω and
OSHAcons

ω denote the full subcategories of OSHA consisting of finite one-step Heyting algebras and finite
conservative one-step Heyting algebras, respectively.
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3.1. Duality. Since in the following we are only concerned with finite one-step Heyting algebras the duality is
particularly well behaved. We construct categories dually equivalent to the categories OSHAω and OSHAcons

ω .
To this end we need the following proposition.

Proposition 3.5. Let f : P → Q and g : Q → R be order-preserving maps between finite posets. Then the
following are equivalent:

(1) The bounded lattice homomorphism f∗ : Do(Q) → Do(P ) preserves all Heyting implications of the
form g∗(U)→ g∗(V ), for U, V ∈ Do(R);

(2) ∀a ∈ P ∀b ∈ Q (b ≤ f(a) =⇒ ∃a′ ∈ P (a′ ≤ a and g(f(a′)) = g(b)))

Proof. Straightforward. �

Definition 3.6 ([31]). Given order-preserving maps f : P → Q and g : Q→ R satisfying one (and therefore
both) of the conditions of Proposition 3.5 we say that f is open relative to g or simply that f is g-open.

Definition 3.7. An intuitionistic one-step frame is a triple (P1, P0, f) such that f : P1 → P0 is an order-
preserving map between posets. We say that an intuitionistic one-step frame (P1, P0.f) is conservative if
f : P1 → P0 is a surjection satisfying

∀a, b ∈ P1 (f [↓a] ⊆ f [↓b] =⇒ a ≤ b).

Definition 3.8. A one-step map from an intuitionistic one-step frame F ′ = (P ′1, P
′
0, f
′) to an intuitionistic

one-step frame F = (P1, P0, f) is a pair (µ1, µ0) of order-preserving maps µ1 : P ′1 → P1 and µ0 : P ′0 → P0,
where µ1 is f -open, making the diagram

P ′1 P1

P ′0 P0

f ′

µ1

f

µ0

commute.
A one-step extension of an intuitionistic one-step frame F0 = (P1, P0, f0) is an intuitionistic one-step

frame F1 = (P2, P1, f1) such that (f1, f0) : F1 → F0 is a one-step map, with f1 surjective.

It is easy to check that this yields a category IOSFrm of intuitionistic one-step frames and one-step
maps. Moreover, the finite and the finite conservative intuitionistic one-step algebras form full subcategories
IOSFrmω and IOSFrmcons

ω of IOSFrm, respectively.
Note that if F is an intuitionistic Kripke frame then FF = (F,F, Id) will be an intuitionistic one-step

frame. Consequently, we may, given an intuitionistic one-step frame F , speak of one-step homomorphism
between F and F by way of FF.

Proposition 3.9. The categories OSHAω and IOSFrmω are dually equivalent. Moreover, this dual equivalence
restricts to a dual equivalence between the categories OSHAcons

ω and IOSFrmcons
ω .

Proof. That the duality between bDLω and Posω extends to a duality between the categories OSHAω and
IOSFrmω is straightforward given Proposition 3.5.

To see that the dual equivalence between OSHAω and IOSFrmω restricts to a dual equivalence between
OSHAcons

ω and IOSFrmcons
ω it suffices to note that under the isomorphism between the poset of bounded

sublattices of Do(P ) and the poset of compatible quasi-orders on P ([43, Thm. 3.7], [7, Thm. 6.15]) the
sublattice generated by the set U ⊆ Do(P ) corresponds to the compatible quasi-order �U given by

a �U b iff ∀U ∈ U (b ∈ U =⇒ a ∈ U).

Thus U ⊆ Do(P ) generates Do(P ) as a bounded distributive lattice iff the quasi-order a �U b coincides
with the order on P .

From this it is easy to see that (P1, P0, f) is a conservative intuitionistic one-step frame if and only if
(Do(P0),Do(P1), f∗) is a conservative one-step Heyting algebra. �
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3.2. One-step semantics. Recall from Section 2 that for a given set Prop of propositional letters the set
Formn(Prop) is the subset of Form(Prop) consisting of formulas of implicational degree at most n. We show
how one-step Heyting algebras may interpret reduced hypersequent rules, i.e., rules using only formulas from
Form1(Prop).

Given two disjoint finite sets Prop0 and Prop1 of propositional variables, a valuation on a one-step algebra
H = (D0, D1, i) is a pair of functions v = (v0, v1) such that v0 : Prop0 → D0 and v1 : Prop1 → D1.

Given a one-step algebra H together with a valuation v = (v0, v1) for every formula ϕ(~p) ∈ Form0(Prop0)
we define an element ϕv0 ∈ D0 as follows:

⊥v0 = 0 and >v0 = 1 and pv0i = v0(pi) for pi ∈ ~p,

and

(ϕ1 ∗ ϕ2)v0 = ϕv0
1 ∗ ϕ

v0
2 , ∗ ∈ {∧,∨}.

Moreover, for every formula ψ(~p, ~q) ∈ Form1(Prop0 ∪ Prop1), where the elements of ~q ⊆ Prop1 do not have
any occurrence in the scope of an implication, we define an element ψv1 ∈ D1 as follows:

⊥v1 = 0 and qv1 = v1(q) and pv1 = i(v0(p)) for q ∈ ~q and p ∈ ~p,

and

(ψ1 ∗ ψ2)v1 = ψv1
1 ∗ ψ

v1
2 ∗ ∈ {∧,∨,→}.

To see that this is well defined note that if the the main connective of ψ(~p, ~q) is →, say ψ1(~p, ~q)→ ψ2(~p, ~q),
then we must have ~q = ∅, whence ψ1, ψ2 ∈ Form0(Prop0). By the definition of a one-step Heyting algebra
the implications of the form i(a)→ i(a) exist in D1 and so the above is indeed well defined.

Since the function i preserves 0 as well as the connectives ∧ and ∨ it is easily seen that i(ϕv0) = ϕv1 , for
all ϕ ∈ Form0(Prop0).

A valuation v = (v0, v1) on a one-step algebra H is suitable for an expression (i.e., for a formula, sequent,
or hypersequent) ε of degree at most 1 iff the domain of v0 includes all propositional variables having in ε
an occurrence located inside an implication; a 0-valuation is a valuation v = (v0, v1) where the domain of v1
is empty (thus, a 0-evaluation is always suitable for any expression ε).

We say that a sequent Γ⇒ ∆ of degree at most 1 is true in one-step algebra H under a suitable valuation
v = (v0, v1) if

(∧
Γ
)v1
≤
(∨

∆
)v1

,

with the convention that
∧
∅ = > and

∨
∅ = ⊥.

A hypersequent S is true in a one-step algebra H under a suitable valuation v if at least one of the
components of S is true in H under v. We write (H, v) |= S, if this is the case.

Finally, we say that a one-step algebra H validates a hypersequent S if it is true under all possible suitable
valuations v on H, in which case we write H |= S. Moreover, if (r) = (S1, . . . , Sn)/S is a hypersequent rule
of degree at most 1 write (H, v) |= (r), for a suitable valuation v, if (H, v) |= S, whenever (H, v) |= Si, for all
i ∈ {1, . . . , n}. We say that H validates (r) if for all suitable valuations v on H we have that (H, v) |= (r).

We say that an intuitionistic one-step frame F = (P1, P0, f) validates a sequent, hypersequent or hyper-
sequent rule if its dual one-step Heyting algebra F∗ = (Do(P0),Do(P1), f∗) does. The notion of 0-validation
of a sequent, hypersequent or hypersequent rule is defined in the same way, by restricting to 0-valuations.
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Example 3.10. Consider the one-step Heyting algebra (D0, D1, i) drawn below

0

a

b

1

D0

0

i(a) ¬i(a)

i(b)

1

D1

It is straightforward to verify that this is a finite conservative one-step Heyting algebra. Moreover, (D0, D1, i)
will validate the formula (p→ q)∨ (q → p). This is despite the fact that D1, considered as a Heyting algebra
on its own, does not validate this formula. The point of the one-step semantics is thus that it allows us to
restrict the kinds of valuations we allow on D1 to valuations taking values in a certain bounded sublattice
D0 of D1.

With these definitions we can establish the soundness of the derivability relation with respect to the one-
step semantics. There is a subtlety to take care of here, however: A propositional variable p not occurring
in a set of hypersequents S ∪ {S} under the scope of an implication may still occur inside an implication
in a derivation witnessing S `1HC S. Thus, if p is in the domain of v1 when we evaluate S in H, it may
happen that we cannot give a meaning to such a derivation inside H. This is why the correct semantics
for the relation S `1HC S requires the restriction to 0-valuations for S ∪ {S} (but not for the rules of HC,
because the variables from the latter can be instantiated indifferently with formulas of degree 0 or 1).

Proposition 3.11. Let H be a one-step algebra, HC a reduced hypersequent calculus, and S ∪ {S} a set of
hypersequents of degree at most 1. If S `1HC S and H validates HC, then H 0-validates S /S.

Proof. By induction on the length of a derivation witnessing S `1HC S (notice that we can assume that in
such a derivation only propositional variables occurring in S ∪ {S} occur, because extra variables can be
replaced by, say, >). �

If (g0, g1) : H → H′ is a one-step homomorphism such that both g0 and g1 are injective then we say
that (g0, g1) is an embedding. The following lemma shows that the embeddings between one-step Heyting
algebras preserve validity.

Lemma 3.12. Let (g0, g1) : H → H′ be an embedding of one-step algebras. If v = (v0, v1) and v′ = (v′0, v
′
1)

are valuations on H and H′, respectively, such that v′0(p) = g0(v0(p)) and v′1(q) = g1(v1(p)), for all p ∈
Prop0 and q ∈ Prop1, then for any hypersequent rule (r) of degree at most 1 we have that (H, v) |= (r) iff
(H′, v′) |= (r).

Proof. It suffices to show that for all formulas ϕ,ψ ∈ Form1(Prop0 ∪ Prop1)

(3) ϕv1 ≤ ψv1 ⇐⇒ ϕv′1 ≤ ψv′1 .

Since (g0, g1) is a map of one-step algebras an easy inductive argument shows that the assumption v′0(p) =

g(v0(p)) and v′1(q) = g1(v1(p)) for all p ∈ Prop0, q ∈ Prop1 implies that ϕv′1 = g1(ϕv1) for all ϕ ∈
Form1(Prop0 ∪ Prop1). From this (3) readily follows as any injective lattice homomorphism will necessarily
be both order-preserving and order-reflecting. �

In particular, we have that if H′ is a one-step Heyting algebra validating HC and H embeds into H′ then
H validates HC as well.

We wish to establish the algebraic completeness of the derivability relation `1 with respect to one-step
Heyting algebras.
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Proposition 3.13. Let S ∪ {S} be a finite set of hypersequents of implicational degree at most 1, and
let HC be a (reduced) hypersequent calculus. If all one-step Heyting algebras validating HC 0-validate the
hypersequent rule S /S then S `1HC S.

Proof. Let S ∪ {S} be a finite set of hypersequents of degree at most 1 such that S 6`1HC S. We then
construct a one-step Heyting algebra LT HC(S , S) validating HC and a 0-valuation on LT HC(S , S) under
which all hypersequents in S are true but S is false. This is completely similar to the construction found in
the proof of Proposition 2.10. As before we let Prop be the set of propositional letters occurring in S ∪ {S}
and let S̃ be a maximal set of hypersequents, based on Form(Prop), containing S such that S̃ 6`1HC S. We
then have that if s1, . . . , sn are sequents of degree at most 1

(4) S̃ `1HC s1 | . . . | sn | S =⇒ S̃ `1HC si for some i ≤ n.

Letting Dk be the set of equivalence classes of formulas of degree at most k, for k ∈ {0, 1}, of the equivalence
relation

ϕ ≈ ψ iff S̃ `HC⇒ ϕ↔ ψ,

we obtain a (finite conservative) one-step Heyting algebra LT HC(S , S) := (D0, D1, i) where i : D0 → D1

is the evident inclusion. From (4) we see that LT HC(S , S) validates HC and moreover that under the
valuation v on LT HC(S , S) determined by sending propositional variables to the corresponding equivalence
classes in D0,8 we have that (LT HC(S , S), v) |= S but (LT HC(S , S), v) 6|= S. �

Note that since there are only finitely many formulas of degree at most 1 when Prop is finite, the one-
step algebra LT HC(S , S) obtained in the proof of Proposition 3.13 is in fact a finite conservative one-step
Heyting algebra.

4. Characterising the bounded proof property

Given a finite conservative one-step Heyting algebra H = (D0, D1, i) we will define the diagram associated
with H. This construction is analogous to the diagrams of a finite conservative one-step modal algebra from
[12]. In fact they are a two-sorted version of the diagrams known from model theory, see e.g., [19].

We introduce a set of propositional variables PropH0 = {pa : a ∈ D0}. Then by the conservativity of H it

follows that for each a ∈ D1 there exists a formula θa ∈ Form1(PropH0 ) such that θv1b = b, where v is the
natural 0-valuation on H given by v0(pa) = a. In particular, we have that θi(a) = pa for all a ∈ D0.

Now let

S 0
H :={pa∧b ⇒ pa ∧ pb, pa ∧ pb ⇒ pa∧b : a, b ∈ D0}

∪ {pa∨b ⇒ pa ∨ pb, pa ∨ pb ⇒ pa∨b : a, b ∈ D0}
∪ {p0 ⇒ ⊥},∪{ > ⇒ p1},

and

S 1
H :={θa∧b ⇒ θa ∧ θb, θa ∧ θb ⇒ θa∧b : a, b ∈ D1}

∪ {θa∨b ⇒ θa ∨ θb, θa ∨ θb ⇒ θa∨b : a, b ∈ D1}
∪ {θi(a)→i(b) ⇒ θi(a) → θi(b), θi(a) → θi(b) ⇒ θi(a)→i(b) : a, b ∈ D0}.

We then define the positive diagram of H to be SH := S 0
H ∪S 1

H. For each a, b ∈ D1 we let sab be the
sequent θa ⇒ θb if a 6≤ b and the empty sequent if a ≤ b. We then define the negative diagram of H to be
the hypersequent

SH := {sab : a, b ∈ D1}.

Definition 4.1. By the diagram of a finite conservative one-step Heyting algebra we will understand the
hypersequent rule SH/SH.

8Notice that this is a 0-valuation.
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Note that writing down the diagram of even relatively simple one-step Heyting algebra quickly becomes
rather involved. Of course, when considering concrete cases, a lot of clauses in the diagram will be redundant
and may therefore be eliminated. For example, the one-step diagram of the finite conservative one-step
Heyting algebra drawn below

0

a

1

D0

0

i(a) ¬i(a)

1

D1

will be (equivalent to) the hypersequent rule.

p0 ⇒ ⊥ > ⇒ p1 ¬pa ⇒ p¬a p¬a ⇒ ¬pa p1 ⇒ p¬a ∨ pa
pa ⇒ p0 | p1 ⇒ pa

We say that a one-step Heyting algebra H′ refutes a diagram SH/SH under a 0-valuation v if (H′, v) |= SH
but (H′, v) 6|= SH.

The following proposition shows why we are interested in diagrams.

Proposition 4.2. Let H = (D0, D1, i) and H′ = (D′0, D
′
1, i
′) be one-step Heyting algebras with H finite and

conservative. Then the following are equivalent:

(1) There exists a one-step embedding from H into H′;
(2) There exists a 0-valuation v on H′ such that (H′, v′) refutes the diagram of H.

Proof. First assume that there exists a one-step embedding (g0, g1) : H → H′. We then define a 0-valuation
v′ = (v′0, v

′
1) on H′ by v0(pa) = g0(a). Then as H evidently refutes its own diagram under the natural

valuation v0(pa) = a it immediately follows from Lemma 3.12 that (H′, v′) refutes SH/SH as well.
Conversely if there exists a 0-valuation v′ = (v′0, v

′
1) on H′ such that (H′, v′) refutes the diagram of H,

then we claim that defining (g0, g1) : H → H′ by

g0(a) = v′0(pa) and g1(b) = θ
v′1
b ,

yields an embedding of one-step algebras.
First of all since H is conservative the function g1 is well defined, and because i′ is an injection and

(H′, v′) |= S 0
H we see that g0 must be a bounded lattice homomorphism. Since (H′, v′) also validates S 1

H
we see that g1 is a bounded lattice homomorphism as well.

To see that i′ ◦ g0 = g1 ◦ i we simply observe that for all a ∈ D0

i(g0(a)) = i(v′0(pa)) = p
v′1
a = θ

v′1
i(a) = g1(i(a)).

From the assumption that (H′, v′) does not validate any of the sequents θa ⇒ θb when a 6≤ b it immediately
follows that g1 is an injection. So as i is an injection, we must have that g0, being the first component of
the injection g1 ◦ i, is an injection as well.

Finally because (H′, v′) makes all sequents of the form θi(a)→i(b) ⇒ θi(a) → θi(b) and θi(a) → θi(b) ⇒
θi(a)→i(b) true, we have that

g1(i(a)→ i(a)) = i′(g0(a))→ i′(g0(b)),

and so we can conclude that (g0, g1) is indeed an embedding of one-step algebras. �

Definition 4.3. A class K of one-step Heyting algebras (or intuitionistic one-step frames) has the extension
property if all members of K have a one-step extension also belonging to K.
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Lemma 4.4. Let HC be a hypersequent calculus and let ConAlgω (HC) be the class of finite conservative one-
step Heyting algebras validating HC. If every H ∈ ConAlgω (HC) embeds into some standard Heyting algebra
validating HC then the class ConAlgω (HC) has the extension property.

Proof. Let H = (D0, D1, i) be a finite (conservative) one-step Heyting algebra and suppose that there exists
an embedding (g0, g1) : H → A into some Heyting algebra A validating HC. Letting A be the bounded lattice
reduct of A, we see that H′′ = (D1, A, g1) is a one-step algebra validating HC and extending H.

To obtain a finite conservative one-step Heyting algebra validating HC and extending H let D2 be the
bounded distributive sublattice of A generated by the set {g1(a) → g1(b) : a, b ∈ D1}. As the variety of
bounded distributive lattices is locally finite D2 is finite. Moreover, we have g1[D1] ⊆ D2. Therefore,
H′ = (D1, D2, g1) will be a finite conservative one-step algebra validating HC and extending H. �

Theorem 4.5. Let HC be a (reduced) hypersequent calculus. Then the following are equivalent:

(1) The calculus HC has the bounded proof property;
(2) The class of finite conservative one-step Heyting algebras validating HC has the extension property;
(3) The class of finite conservative intuitionistic one-step frames validating HC has the extension prop-

erty.

Proof. That items 2 and 3 are equivalent is an immediate consequence of the dual equivalence between the
categories OSHAcons

ω and IOSFrmcons
ω .

To see that item 1 implies item 2 let H be a finite conservative one-step Heyting algebra validating HC.
Since H refutes its own diagram SH/SH we obtain from Proposition 3.11 that SH 6`1HC SH. Therefore, if HC
enjoys the bounded proof property it follows that SH 6`HC SH. By algebraic completeness we must have a
Heyting algebra A validating HC and refuting SH/SH. But then by Proposition 4.2 there exists embedding
(g0, g1) : H → A and so by Lemma 4.4 we may conclude that the class of finite conservative Heyting algebras
validating HC has the extension property.

Finally, to see that item 2 implies item 1 let S ∪ {S} be a finite set of hypersequents of implicational
degree at most 1 such that S 6`1HC S. By Proposition 2.14 it then suffices to show that S 6`HC S.

Let H0 = (D0, D1, i0) be the finite conservative one-step Heyting algebra LT HC(S , S) constructed in the
proof of Proposition 3.13. Moreover, let v0 be a 0-valuation on H0 such that (H0, v

0) |= S but (H0, v
0) 6|= S.

If the class of finite conservative one-step algebras validating HC has the extension property then we have
a one-step extension in form of a finite conservative one-step Heyting algebra H1 = (D1, D2, i1) validating
HC. Moreover, i0, i1 induce a 0-valuation v1 on H1 under which S is true but S it not. In this way we
obtain a chain

D0 D1 . . . Dn−1 Dn . . .
i0 i1 in−1 in in+1

of Heyting algebras in the category bDLω, with the property that

in+1(in(a)→n+1 in(b)) = in+1(in(a))→n+2 in+1(in(b)).

Consequently, taking the colimit of the above diagram, in the category bDLω, we obtain a Heyting algebra
A with Heyting implication

[a]→ [b] := [in,k+1(a)→k+2 im,k+1(b)], k = max{n,m},

for a ∈ Dn and b ∈ Dm and in,k : Dn → Dk the evident map for n ≤ k.
It is then easy to see that A must validate HC and moreover that the 0-valuations vn on Hn induces a

valuation v on A which by the injectivity of the in’s is such that (A, v) |= S and (A, v) 6|= S. We may
therefore conclude that S 6`HC S. �

In concrete cases it is not so easy to work with one-step extensions of frames. However, assuming the
finite model property we obtain a version of Theorem 4.5 which avoids the concept of one-step extensions
altogether.

Definition 4.6. We say that a hypersequent calculus HC has the (global) finite model property if for each
set S ∪ {S} of hypersequents, S 6`HC S iff there exists a finite Heyting algebra A validating HC and a
valuation v on A such that (A, v) |= S and (A, v) 6|= S.
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Proposition 4.7. A hypersequent calculus HC has the finite model property iff for each set S ∪ {S} of
hypersequents, S 6`HC S iff there exists a finite intuitionistic Kripke frame F validating HC and a valuation
v on F such that (F, v) |= S and (F, v) 6|= S.

Proof. Immediate by the duality between finite Heyting algebras and finite intuitionistic Kripke frames. �

Lemma 4.8. Let HC be a hypersequent calculus. Then HC has the finite model property iff if for each set
S ∪ {S} of hypersequents of degree at most 1, S 6`HC S iff there exists a finite Heyting algebra A validating
HC and a valuation v on A such that (A, v) |= S and (A, v) 6|= S.

Proof. The statement follows from the fact that given S ∪{S} it is possible to produce at set of hypersequents
S ′ ∪ {S′} having degree at most 1, such that for every Heyting algebra A validating HC (finite or not) we
have that A validates S /S iff it validates S ′/S′ (thus, in particular, S `HC S iff S ′ `HC S

′ by Proposition
2.12). In order to construct S ′ ∪ {S′} from S ∪ {S}, we just need to abstract out implicative subformulas
with fresh propositional variables (we have already applied this procedure e.g., in the proof of Propositions
2.14 and 2.15). �

Theorem 4.9. Let HC be a (reduced) hypersequent calculus. Then the following are equivalent:

(1) The calculus HC has the bounded proof property and the finite model property;
(2) Each finite conservative one-step algebra validating HC embeds into some finite Heyting algebra

validating HC;
(3) Each finite conservative intuitionistic one-step frame validating HC is the relative open image of

some finite intuitionistic Kripke frame validating HC.

Proof. As in the proof of Theorem 4.5 it is immediate that items 2 and 3 are equivalent.
To see that item 1 implies item 2 we observe that if H is a finite conservative one-step Heyting algebra

validating HC then as H refutes its diagram SH/SH we must have that SH 6`1HC SH by Proposition 3.11.
Consequently, it follows from the assumption that HC has the bounded proof property that SH 6`HC SH
and therefore as HC has the finite model property we obtain a finite Heyting algebra A which validates HC
and refutes the diagram SH/SH. By Proposition 4.2 it then follows that H embeds into A.

Conversely, to see that item 2 implies item 1 we first note that by Theorem 4.5, item 2 implies that HC
enjoys the bounded proof property. To see that it also enjoys the finite model property it suffices, by Lemma
4.8, to consider finite set of hypersequents S ∪ {S} of degree at most 1. Given such a set S ∪ {S} with the
property that S 6`HC S let H be the finite conservative one-step algebra LT HC(S , S) as constructed in the
proof of Proposition 3.13. Then by assumption we have a finite Heyting algebra A validating HC such that
H embeds into A, and this embedding induces a valuation on A under which S is true but S is not. �

It is easy to see that if a rule (r) is of degree 0 then an intuitionistic one-step Heyting algebra (D0, D1, i)
validates (r) if and only if D1, considered as a standard Heyting algebra, validates (r). This observation
together with Theorem 4.9 yields the following corollary.

Corollary 4.10. If R is a set of rules of degree 0, then the calculus HLJ′ + R enjoys the bounded proof
property as well as the finite model property.

Remark 4.11. Single-succedent (hyper)sequent rules of degree 0 are equivalent to what is know as struc-
tural (hyper)sequent rules [22]. Any structural single-succedent hypersequent rule (r) may (effectively) be
transformed into an equivalent structural single-succedent hypersequent rule (r′) such HLJ + (r′) enjoys
cut-elimination [22, Thm. 7.1(b), Cor. 8.6]. Whether or not this is also the case for multi-succedent hy-
persequent rules is not known. In any case Corollary 4.10 guarantees the bound proof property also in the
multi-succedent case.

Remark 4.12. Recall [6, 9] that an intermediate logic L is stable if for all subdirectly irreducible Heyting
algebras A and B such that A is isomorphic to a bounded sublattice of B we have that B |= L implies
that A |= L. By [9, Thm. 5.3] these are precisely the intermediate logics L axiomatised by multi-conclusion
rules corresponding to hypersequent rules of degree 0. Furthermore, if a stable intermediate logic is finitely
axiomatisable then it is also axiomatisable by finitely many multi-conclusion rules (hypersequent rules)
[9, Rem. 5.7]. Consequently, by the correspondence between multi-conclusion consequence relations and
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hypersequent calculi outlined in section 2.2 we obtain that the intermediate logics which admit a hypersequent
calculus of the form HLJ′ +R, where R is a set of rules of degree 0 are precisely the stable intermediate
logics—of which there are continuumly many [6, Thm. 6.13]. Moreover, if we restrict to R a finite set of
degree 0 rules we obtain precisely the finitely axiomatisable stable intermediate logics. In particular all
finitely axiomatisable stable intermediate logics must be decidable. Stable modal logics were defined in [8].
In [13, Thm. 5.3] it was proven that (finitely axiomatisable) stable modal logics have (finite) multi-conclusion
axiomatisations with the bounded proof property. That this is also the case for stable intermediate logics is
then an easy consequence of Corollary 4.10. The latter, of course, is not as surprising as in the modal case.

5. Examples

In this section we provide a number of examples showing how to use the methods developed above to
determine whether or not a given sequent or hypersequent calculus enjoys the bounded proof property.

We warn the reader that as we base the duality between one-step Heyting algebras and intuitionistic
one-step frames on the downset functor Do: Posopenω → HAω the partial order on Kripke frames may be the
opposite of what the reader is familiar with.

It is possible to adapt the algorithmic correspondence theory for intuitionistic logic (see e.g., [25]) to the
framework of one-step semantics for hypersequent rules. However, as the examples we will be considering
here are rather simple we will derive the correspondence results we need manually.

Finally, we would like to mention the following result9 due to Ciabattoni, Galatos and Terui:

Theorem 5.1 ([22]). There is an effective procedure which given an axiom ϕ belonging to the level P3 of
the substructural hierarchy produces a finite set of structural hypersequent rules Rϕ such that when added to
HLJ yields a hypersequent calculus for IPC + ϕ enjoying cut-elimination and the subformula property.

The hypersequent calculi obtained by this procedure evidently have the bounded proof property. Thus
in order to obtain truly novel results of a positive nature using Theorem 4.5 and 4.9 it will be necessary
to consider axioms at the level N3 of the substructrual hierarchy [22]. Since all intermediate logics are
axiomatizable by canonical formulas [47] which belong to the level N3 over IPC the substructural hierarchy
collapses at this level10.

Note that using the normal form representation given in [22] it is easy to see that each formula appearing
at level P3 of the substructural hierarchy is provably equivalent (over IPC) to an ONNILLI-formula [10].
Consequently, all formulas in the class P3 axiomatise stable intermediate logics [10, Thm. 5].11 Therefore,
non-trivial examples will require that we consider non-stable logics which tend to have rather complicated
axiomatisations, i.e., of degree at least 3. However, for sequent calculi the situation may be different.

5.1. Calculi for LC. The intermediate logic LC, known as the Gödel-Dummett logic, is obtained by adding
the axiom (p → q) ∨ (q → p) to a Hilbert-style presentation of IPC. Using our methods we show that the
sequent calculus obtained by adding the rule

(rLC)
⇒ (p→ q), (q → p)

does not enjoy the bounded proof property.

Proposition 5.2. A intuitionistic one-step frame (P1, P0, f) validates the rule (rLC) iff

∀a0, a1, a2 ∈ P1 (a1 ≤ a0 and a2 ≤ a0 =⇒ (f(a1) ≤ f(a2) or f(a2) ≤ f(a1))).

Proof. Straightforward. �

9In fact it holds more generally for Full Lambek calculus with exchange and weakening FLew.
10Somewhat surprisingly this is also the case for FLe as recently established in [40].
11Incidentally, each formula appearing at level P2 is provably equivalent to a NNIL-formula and thus P2-formulas axiomatise

subframe logics [10].
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To see that adding the rule (rLC) does not yield a sequent calculus with the bounded proof property,
consider the one-step frame F = (P1, P0, f) presented as:

a0

a2 a1

P1

b0

b1

b2

P0

The function f is the obvious map given by ai 7→ bi for i ∈ {0, 1, 2}. This is easily seen to be a finite
conservative one-step frame validating the rule (rLC). Now suppose towards a contradiction that F has a
one-step extension, say F ′ = (P2, P1, g). As f is bijective it follows from the assumption that g is f -open
that g must be an open map. Therefore, we must have a′0, a

′
1, a
′
2 ∈ P2 with a′2, a

′
1 ≤ a′0, such g(a′i) = ai for

i ∈ {0, 1, 2}. But this shows that F ′ fails to validate the rule (rLC) and consequently that F does not have
any one-step extension validating (rLC).

Thus, by Theorem 4.5, we see that the hypersequent calculus obtained by adding the rule (rLC) does not
have the bounded proof property.

However, we know from [5] that adding the so-called communication rule

G | Γ1,Γ
′
1 ⇒ Π G | Γ2,Γ

′
2 ⇒ Π′

(com)
G | Γ1,Γ2 ⇒ Π | Γ′1,Γ′2 ⇒ Π′

to the hypersequent calculus HLJ yields a hypersequent calculus for the logic LC which preserves cut-
eliminability.

Since this rule is structural it follows from Corollary 4.10 that the rule (com) enjoys the bounded proof
property and the finite model property.

In fact, it is easy to see that an intuitionistic one-step frame (P1, P0, f) validates the rule (com) iff P1 is
a linear order.

Finally, we consider a (variant of the) calculus for LC due to Sonobe [45], see also [26], given by adding
the following rules to the standard multi-succedent sequent calculus LJ′:

p0, p1 ⇒ q1, p2 → q2, . . . , pn → qn . . . p0, pn ⇒ qn, p1 → q1, . . . , pn−1 → qn−1
(LRn)p0 ⇒ p1 → q1, . . . , pn → qn

for each n ≥ 1.
Note that (LR1) is just the rule (r →). As the original calculus has cut-elimination we should expect

to be able to establish the bounded proof property, as well as the finite model property, using the methods
developed here. In the following we show that this is indeed the case.

Proposition 5.3. Let F = (P1, P0, f) be a finite intuitionistic one-step frame then F |= (LRn) for all n ≥ 1
iff

∀a ∈ P1 ∀T ⊆ ↓a ∃a1 ∈ T ∃a2 ≤ a (f(a1) = f(a2) and f [T ] ⊆ f [↓a2]).

Proof. Let n ≥ 1 be given. The rule (LRn) fails on F iff there exists U1, . . . , Un, V1, . . . , Vn ∈ Do(P0) and
W ∈ Do(P1) such that

ANDni=1

W ∩ f−1(Ui) ⊆ f−1(Vi) ∪
⋃
j 6=i

P1\↑f−1(Uj\Vj)

 and W 6⊆
n⋃
i=0

P1\↑(Ui\Vi).

This happens precisely when

∃a0 ∈W∃a1 . . . , an ≤ a0 ANDni=1

W ∩ f−1(Ui) ⊆ f−1(Vi) ∪
⋃
j 6=i

P1\↑f−1(Uj\Vj) and f(ai) ∈ Ui and f(ai) 6∈ Vi

 .
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By using Ackermann’s Lemma [2] with W := ↓a0 and Ui := ↓f(ai) and Vi := (↑f(ai))
c, we obtain that this

is equivalent to

∃a0 ∈ P1∃a1 . . . , an ≤ a0 ANDni=1

↓a0 ∩ f−1(↓f(ai)) ⊆ f−1((↑f(ai))
c) ∪

⋃
j 6=i

P1\↑f−1(↓f(aj)\(↑f(aj))
c)

 .

Negating this we obtain the following first-order condition

∀a0, . . . , an

{a1, . . . , an} ⊆ ↓a =⇒ ORni=1(↓a0 ∩ f−1(↓f(ai)) 6⊆ f−1((↑f(ai))
c) ∪

⋃
j 6=i

P1\↑f−1(↓f(aj)\(↑f(aj)
c))

 .

This first-order condition may in turn be rewritten as

∀a0, . . . , an ({a1, . . . , an} ⊆ ↓a0 =⇒ ∃a′ ∈ {a1, . . . , an}∃a′′ ≤ a0 (f(a′) = f(a′′) and f [{a1, . . . , an}\{a′}] ⊆ f [↓a′′])) .

Finally, by the assumption that F is finite it follows that F |= (LRn) for all n ≥ 1, iff

∀a ∈ P1 ∀T ⊆ ↓a ∃a1 ∈ T ∃a2 ≤ a(f(a1) = f(a2) and f [T ] ⊆ f [↓a2]),

where T is required to be non-empty. �

Remark 5.4. It is worth noting that the first-order condition obtained in Proposition 5.3 is somewhat
similar to the condition on modal one-step frames corresponding to the calculus of S4.3 considered in [12,
Sec. 8.2.1].

Remark 5.5. Note that as an immediate consequence of Proposition 5.3 we have that if (P1, P0, f) is a
finite intuitionistic one-step frame validating the rules (LRn)n≥1 then we have that

∀a0 ∈ P1∀a1, a2 ≤ a0 (f(a1) ≤ f(a2) or f(a2) ≤ f(a1)).

In particular ↓f(a) is linearly ordered for all a ∈ P1.

Example 5.6. Given this it is easy to verify that the intuitionistic one-step frame (P1, P0, f) given by

a0

a2 a1

P1

b0

b1

P0

with f(a2) = f(a0) = b0 and f(a1) = b1 is a conservative intuitionistic one-step frame validating (LRn) for
all n ≥ 1. Evidently, considered by itself P1 is not a frame for LC. However, one may easily verify that we
have an extension in terms of

a0

a2 a1

P1

b0

b1

P0

a′0

a′1a′2

P2
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For an intuitionistic one-step frame F := (P1, P0, f) we define a relation <f on (the underlying set of) P1

as follows

a <f a
′ iff a ≤1 a

′ and f(a) 6= f(a′),

and let ≤f be the reflexive closure of <f . It is easy to verify that ≤f is a partial order. A ≤f -path will then
by a (finite) sequences p = a1, . . . , an such that ai <f aj for all indices i < j. We say that an ≤f -path p is
good if for all a ≤ max p there exists an initial segment pa of p such that f(a) = f(max pa).

Lemma 5.7. Any finite (conservative) one-step frame F := (P1, P0, f) validating the rules (LRn)n≥1 has
enough good ≤f -paths in the sense that for every a ∈ P1 there exist a good ≤f -path p in P1 with max p = a.

Proof. We proceed by induction on the cardinality of ↓f(a). If |↓f(a)| = 1, then a itself will be a good path
and clearly max a = a. Suppose that for all a′ with |↓f(a′)| < |↓f(a)| there is a good path pa′ such that
max pa′ = a′. Then to find a good path for a let Ta = {a′ ≤ a : f(a) 6= f(a′)}. Since by assumption F
validates all the rules (LRn)n≥1 we obtain from Proposition 5.3 that there exists a′′ ≤ a such that f [Ta] ⊆
f [↓a′′] and f(a′′) = f(a′) for some a′ ∈ Ta. From the latter it follows that |↓f(a′′)| = |↓f(a′)| < |↓f(a)| and
so by induction hypothesis we have that there is a good path pa′′ for a′′. We claim that pa = pa′′ , a is a good
path for a. To see this we note that if a′ ≤ max pa then either f(a′) = f(a) or a′ ∈ Ta. In the former case
we may take pa itself as initial segment of pa witnessing that pa is a good path. In the latter case we have
that f(a′) = f(b) for some b ≤ a′′ = max pa′′ and so as pa′′ is a good path for a′′ there must be an initial
segment pb of pa′′ such that f(max pb) = f(b) = f(a′). Since pb is also an initial segment of pa this shows
that pa is indeed a good path for a. �

As an immediate corollary of Lemma 5.7 we obtain that for any finite conservative intuitionistic one-step
frame (P1, P0, f) validating the rules (LRn)n≥1 the poset P2 of good ≤f -paths is a finite (standard) LC-
frame extending (P1, P0, f) via the map p 7→ max p. Consequently, we obtain that the calculus determined by
adding the rules {(LRn)}n≥1 to LJ′ enjoys the bounded proof property as well as the finite model property.

Remark 5.8. Note that the poset of good ≤f -paths is a generated subframe of the poset of all ≤f -paths in
P1, in fact even of all ≤1-paths in P1. It follows that the Heyting algebra Do(P2) is a homomorphic image,
i.e., a quotient, of the Heyting algebra dual to the poset Path(P1) of all ≤1-paths in P1. It is known [3, Thm.
1] (see also [34, Sec. 2]) that Do(Path(P1)) ' FLC(D1) the free LC Heyting algebra over the distributive
lattice D1 = Do(P1). Thus, from the algebraic point of view we obtain a standard extension D2 of a one-step
Heyting algebra (D0, D1, i) validating the rules (LR)n≥1 by taking a quotient of FLC(D1).

The above example illustrates how the bounded proof property for a (collection of) degree 1 rule(s) may
be established in an almost mechanical manner. The only part of the above which requires a bit of ingenuity
is to find the appropriate one-step extensions.

5.2. Calculi for KC. Recall that the logic KC is obtained by adding the axiom ¬p ∨ ¬¬p to IPC. It is
well known that this is the logic of (finite) directed frames.

Now consider the rule

p, q ⇒ ⊥
(rKC)⇒ ¬q,¬p

Proposition 5.9. A step frame (P1, P0, f) validates the rule (rKC) iff

∀a0, a1, a2 ∈ P1 (a1 ≤ a0 and a2 ≤ a0 =⇒ ∃b ∈ P0 (b ≤ f(a1) and b ≤ f(a2)).

Proof. Straightforward. �
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Consider the one-step frame F = (P1, P0, f) presented as

a0

a1 a2

a3

P2

b0

b1 b2

b3

P1

with f given by ai 7→ bi, for i ∈ {0, . . . , 3}. Then F is a finite conservative one-step frame validating the rule
(rKC). If P2 is a finite poset and g : P2 → P1 is an f -open surjection, then as f is a bijection the f -openness
condition on g implies that g is an open surjection and therefore, that for a′0 ∈ g−1(a0) we have a′1, a

′
2 ≤ a′0

such that g(a′1) = a1 and g(a′2) = a2. But as ↓a1 and ↓a2 are disjoint we see that (P2, P1, g) does not validate
the rule (rKC), and thus F does not have any one-step extension validating (rKC).

By Theorem 4.5, it then immediately follows that the calculus obtained by adding the rule (rKC) does
not have the bounded proof property.

However, we know from [21] that adding the rule

G | Γ,Γ′ ⇒
(lq)

G | Γ⇒ | Γ′ ⇒
to the hypersequent calculus HLJ yields a hypersequent calculus for the logic KC, which enjoys cut-
elimination.

Again from Corollary 4.10 it follows that the rule (lq) enjoys the bounded proof property and the finite
model property.

Remark 5.10. The two examples above show that unlike what usually happens in the modal case, adding a
rule of the form /⇒ ϕ for ϕ a formula of degree 1 does not necessarily yield a calculus for IPC +ϕ with the
bounded proof property. Moreover, we see that reducing even a simple rule may not necessarily ensure the
bounded proof property. This indicates that even though the bounded proof property only place a seemingly
weak requirements on derivations it is nevertheless not so easy to obtain sequent calculi for even relatively
simple intermediate logics with this property. This is to some extent to be expected from the modal case: A
calculus for K + ϕ with the bounded proof property often does not always lift to a calculus for S4 + ϕ with
the bounded proof property.

5.3. Calculi for BD2. The logic BD2, consisting of formulas valid precisely on frames of depth at most 2,
is axiomatized by the axiom p2 ∨ (p2 → (¬p1 ∨ p1)) which belongs to the class P4, in fact by [40, Thm. 3.2]
it is equivalent (over IPC) to a N3-formula, and so Theorem 5.1 does not apply.

Consider the rule

G | Γ′,Γ⇒ ∆′ G | Γ, p⇒ q,∆
(bd2)∗

G | Γ′ ⇒ ∆′ | Γ⇒ p→ q,∆

In [24] it is shown that this rule determines a calculus for BD2 which enjoys cut-elimination. In fact, the
resulting calculus HBD2 := HLJ′ + (bd2)∗ will enjoy the subformula property and consequently also the
bounded proof property. Therefore, we should be able to establish this using our methods.

Proposition 5.11. A finite one-step frame-validates the rule (bd2)∗ iff

∀a2, a1, a0 ∈ P1 ((a2 ≤ a1 and a0 6≤ a1) =⇒ f(a2) = f(a1)).

Proof. We have that the rule (bd2)∗ fails on a finite one-step frame (P1, P0, f) iff there exist U1, U2, V1, V2 ∈
Do(P1) and there exist W1,W2 ∈ Do(P0) such that

U1 ∩ U2 ⊆ V2 and U1 ∩ f−1(W1) ⊆ f−1(W2) ∪ V1 and U2 6⊆ V2 and U1 6⊆ P1\↑f−1(W1\W2) ∪ V1
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This is easily seen to be equivalent to there also existing a2, a1, a0 ∈ P1 with a2 ≤ a1 such that

U1 ∩ U2 ⊆ V2 and U1 ∩ f−1(W1) ⊆ f−1(W2) ∪ V1 and a0 ∈ U2 ∩ V c
2 and a1 ∈ U1 ∩ V c

1 and f(a2) ∈W1 ∩W c
2 .

Using Ackermann’s Lemma the second-order quantifiers may be eliminated to yield

∃a1, a2, a3 ∈ P1 (a2 ≤ a1 and ↓a0 ∩ ↓a1 ⊆ (↑a0)c and ↓a1 ∩ f−1(↓f(a2)) ⊆ f−1([↑f(a2)]c) ∪ (↑a1)c).

Consequently, negating this formula we obtain the first-order condition

∀a2, a1, a0 ∈ P1(a2 ≤ a1 =⇒ (↓a0 ∩ ↓a1 6⊆ (↑a0)c or ↓a1 ∩ f−1(↓f(a2)) 6⊆ f−1([↑f(a2)]c) ∪ (↑a1)c)),

which again may be rewritten to

∀a2, a1, a0 ∈ P1((a2 ≤ a1 and a0 6≤ a1) =⇒ (↓a1 ∩ f−1(↓f(a2)) 6⊆ f−1([↑f(a2)]c) ∪ (↑a1)c))).

Further rewriting yields

∀a2, a1, a0 ∈ P1((a2 ≤ a1 and ≤ a0 6≤ a1) =⇒ ∃a ≤ a1 (f(a) ≤ f(a2) and f(a2) ≤ f(a) and a1 ≤ a)).

That is

∀a2, a1, a0 ∈ P1((a2 ≤ a1 and a0 6≤ a1) =⇒ f(a2) = f(a1)),

as desired. �

Example 5.12. Given Proposition 5.11 it is easy to see that the following is a finite intuitionistic one-step
frame validating the rule (bd2)∗

a′1

a1

a0

a2

a′2

P1

b2

b1

b0

P0

where f(a0) = b0 and f(ai) = f(a′i) = bi for i ∈ {1, 2}.
This shows that there exist finite intuitionistic one-step frames (P1, P0, f) validating the rule (bd2)∗ such

that, considered on their own, neither P1 nor P0 are frames for the logic BD2. Nevertheless, we will still
show that all such (not necessarily conservative) one-step frames admit an extension in terms of a standard
frame of BD2.

Proposition 5.13. Every finite one-step frame validating the rule (bd2)∗ can be extended to a finite standard
frame validating BD2.

Proof. Let F := (P1, P0, f1) be a finite one-step frame validating (bd2)∗. Let ≤f1 be the partial order on
(the underlying set of) P1 defined in Section 5.1. The identity on (the underlying set of) P1 will then be an
order-preserving map since ≤f1⊆≤1. Moreover this map will also be open map relative to f1, (that this is so,
is in fact always the case). It thus remains to be shown that there cannot be any ≤f1 -chains of length strictly
greater than 2. This, however, is straightforward. For suppose that a2 ≤f1 a1 <f1 a0 then a2 ≤ a1 < a0
and either f1(a2) < f1(a1) or a1 = a2. As F |= (bd2)∗ we have by Proposition 5.11 that f(a2) = f(a1) from
which we may conclude that a1 = a2, showing that there are no ≤f1-chains of length strictly greater than
2. �

Remark 5.14. Note that the step-condition for the rule (bd2)∗ in conjunction with conservativity entails
that every finite conservative intuitionistic one-step frame F = (P1, P0, f) validating the rule (bd2)∗ is such
that P1 will be of depth at most 2 and thus validate the logic BD2. That this is indeed the case can be see
as follows: If a1 < a0 in P1 then for all a2 ≤ a1 we have that f(a2) = f(a1). Consequently, f [↓a1] = {f(a1)}
and so since F is conservative this entails that ↓a1 is a singleton. Therefore, no chain in P1 is of length
greater than 2.

24



Of course the fact that the calculus HBD2 obtained by adding the rule (bd2)∗ to HLJ′ enjoys the bounded
proof property is an immediate consequence of the fact that the calculus HBD2 enjoys cut-elimination and
the subformula property as shown in [24]. However, the point is that with our method establishing the—
admittedly weaker—bounded proof property can be done very easily—and in fact, as we have just seen,
almost completely mechanically.

6. Conclusion and future work

We have shown how to transfer the techniques and results of [12, 13] from the setting of modal logic to
the setting of intermediate logics. That is, we have established semantic criteria determining when a given
hypersequent calculi for an intermediate logic enjoys a certain weakly analytic subformula property; namely
the bounded proof property. Analogously to the modal case these criteria are based on extension properties
of structures interpreting the degree 1 fragment of the language of IPC. Furthermore, we have tested these
criteria on a number of examples.

The results obtained in this paper suggest that the methodology introduced in [12] is fairly modular and
that it may successfully be applied to obtain similar results for other non-classical logics. For instance, we
expect that in the case of intermediate logics it would also be possible to characterise (hyper)sequent calculi
for which the maximal number of ∨-nestings can be bounded. Moreover, we find it worth investigating if
similar results can be obtained for substructural logics. That is, given a connective ∗ and a substructural
logic L such that the ∗-free reduct is locally tabular over L can extension properties of appropriate one-step
structures characterising the bounded proof property with respect to ∗ of (hyper)sequent calculi for extension
of L?

Showing that a given calculus has the bounded proof property and the finite model property via the se-
mantic characterisation of Theorem 4.9 looks an automatisable task: One applies some version of algorithmic
correspondence theory and then looks for the appropriate pattern in order to transform one-step frames into
Kripke frames. Experience shows that such patterns are classifiable, so that the relevant meta-theory of
these logics should effectively be handled with the help of a proof assistant.

Computational complexity issues are still to be investigated: Although the mere invocation of bounded
proof property yields heavy (usually non-optimal) complexity bounds, there is still the possibility that
semantic constructions employed in this paper could give useful search bounds for sufficient classes of ‘one-
step’ countermodels.

Finally, we point out yet another open question: is it possible to find a class Q of formulas, extending
the class P3, and an effective procedure, similar to the one found in [22], yielding for each ϕ ∈ Q a finite set
of (logical) hypersequent rules Rϕ which determine a hypersequent calculus for IPC + ϕ with the bounded
proof property?
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