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Abstract. We introduce a new topological semantics for evidence, evidence-
based justifications, belief and knowledge. This setting builds on the evidence
model framework of van Benthem and Pacuit, as well as our own previous work
on (a topological semantics for) Stalnaker’s doxastic-epistemic axioms. We prove
completeness, decidability and finite model property for the associated logics, and
we apply this setting to analyze key issues in Epistemology: “no false lemma”
Gettier examples, misleading defeaters, and undefeated justification versus unde-
feated belief.

1 Introduction

In this paper we propose a topological semantics for evidence-based belief, as well
as for a notion of “soft” (defeasible) knowledge, and explore their connections with
various notions of evidence possession. This work is largely based on looking from a
new perspective at the models for evidence and belief proposed by van Benthem and
Pacuit [21], and developed further in [20].

The basic pieces of evidence possessed by an agent are modeled as non-empty sets of
possible worlds. A combined evidence (or just “evidence”, for short) is any non-empty
intersection of finitely many pieces of evidence. This notion of evidence is not neces-
sarily factive3, since the pieces of evidence are possibly false (and possibly inconsistent
with each other). The family of (combined) evidence sets forms a topological basis, that
generates what we call the evidential topology. This is the smallest topology in which
all the basic pieces of evidence are open, and it will play an important role in our setting.
We study the operator of “having (a piece of) evidence for a proposition P” proposed
by van Benthem and Pacuit, but we also investigate other interesting variants of this
concept: “having (combined) evidence for P”, “having a (piece of) factive evidence for
P” and “having (combined) factive evidence for P ”. We show that the last notion coin-
cides with the interior operator in the evidential topology, thus matching McKinsey and
Tarski’s original topological semantics for modal logic [15]. We also show that the two
factive variants of evidence-possession operators are more expressive than the original
(non-factive) one, being able (when interacting with the global modality) to define the
non-factive variants, as well as many other doxastic/epistemic operators.

3 Factive evidence is true in the actual world. In Epistemology it is common to reserve the term
“evidence” for factive evidence. But we follow here the more liberal usage of this term in [20],
which agrees with the common usage in day to day life, e.g. when talking about “uncertain
evidence”, “fake evidence”, “misleading evidence” etc.



We propose a ‘coherentist’ semantics for justification and justified belief, that is ob-
tained by extending, generalizing and (to an extent) “streamlining” the evidence-model
framework for beliefs introduced in [21]. An argument for P consists of one or more
(combined) evidence sets supporting the same proposition P (thus providing multiple
evidential paths towards a common conclusion). A justification for P is an argument
for P that is consistent with every other evidence. Our proposed definition of belief is
equivalent to requiring that: P is believed iff there is some (evidence-based) justification
for P. According to this setting, in order to believe P one needs to have an “undefeated”
argument for P: one that is not refuted by any available evidence. We show that our
notion of belief coincides with the one of van Benthem and Pacuit [21] for finite mod-
els, but involves a different generalization of their notion in the infinite case. But, in
contrast to the later one, our semantics always ensures consistency of belief, even when
the available pieces of evidence are mutually inconsistent.4 Our proposal is also very
natural from a topological perspective: essentially, P is believed iff P is true in “almost
all” epistemically-possible worlds (where ‘almost all’ is interpreted topologically: all
except for a nowhere-dense set).

Moving on to ‘knowledge’, there are a number of different notions one may consider.
First, there is “absolutely certain” or “infallible” knowledge, akin to Aumann’s con-
cept of ‘partitional knowledge’ or van Benthem’s concept of ‘hard information’. In our
single-agent setting, this can be simply defined as the global modality (quantifying uni-
versally over all epistemically-possible worlds). There are propositions that are ‘known’
in this infallible way (-e.g. the ones known by introspection or by logical proof), but
very few: most facts in science or real-life are unknown in this sense. Hence, it is more
interesting to look at notions of knowledge that are less-than-absolutely-certain: so-
called ‘defeasible knowledge’. The famous Gettier counterexamples [7] show that sim-
ply adding “factivity” to belief will not do: true (justified) belief is extremely fragile
(i.e. it can be too easily lost), and it is consistent with having only wrong justifications
for an (accidentally) true conclusion.

Clark’s [5] influential “no false lemma” proposal is to require a correct justification:
one that doesn’t use any falsehood. We formalize this notion by saying that P is known
if there is a factive (true) justification for P. Note though that our proposal imposes
a stronger requirement than Clark’s, since our concept of justification requires con-
sistence with all the available (combined) evidence. In our terminology, Clark only
requires a factive argument for P. So Clark’s approach is ‘local’, assessing a knowl-
edge claim based only on the truth of the evidence pieces (and the correctness of the
inferences) that are used to justify it. Our proposal is coherentist, and thus ‘holistic’, as-
sessing knowledge claims by their coherence with all of the agent’s acceptance system:
justifications need to be checked against all the other arguments that can be constructed
from the agent’s current evidence.

Another approach to knowledge (also stronger than the no-false-lemma requirement)
was championed by Lehrer, Klein and others [13, 14, 11, 12, 17], under the name of

4 Another, purely technical advantage of our setting is that the resulting doxastic logic has finite
model property, in contrast to the one in [21].



“Defeasibility Theory of Knowledge”. According to this view, P is known (in the in-
defeasible sense) only if there is a factive justification for P that cannot be defeated
by any further true evidence. This means that the justification is consistent, not only
with the currently available evidence, but also with any potential (new) factive evidence
that the agent might learn in the future. This version of the theory has been criticized
as being too strong: some new evidence might be ‘misleading’ or ‘deceiving’ despite
being true. A weaker version of Defeasibility Theory requires that knowledge is unde-
feated only by “non-misleading” evidence. In our setting, a proposition P is said to be
a potentially misleading evidence if it can indirectly generate false evidence (i.e. if by
adding P to the family of currently available pieces of evidence we obtain at least one
false combined evidence). Misleading propositions include all the false ones, but they
may also include some true ones. We show that our notion of knowledge matches this
weakened version of Defeasibility Theory (though not the strong version).

Yet another path leading to our setting in this paper goes via our previous work [1, 2] on
a topological semantics for the doxastic-epistemic axioms proposed by Stalnaker [18].
These axioms were meant to capture a notion of fallible knowledge, in close interac-
tion with a notion of “strong belief” (defined as “subjective certainty” or the “feeling
of knowledge”). The main principle specific to this system was that “believing implies
believing that you know” (Bp→ BK p), which goes in direct contradiction to Negative
Introspection for Knowledge.5 The topological semantics that we proposed for these
concepts in [1, 2] was overly restrictive (being limited to the rather exotic class of “ex-
tremally disconnected” topologies). In this paper, we show that these notions can be
interpreted on arbitrary topological spaces, without changing their logic. Indeed, our
definitions of belief and knowledge above can be seen as the natural generalizations to
arbitrary topologies of the notions in [1, 2].

We apply our models to various Gettier-type examples, and completely axiomatize the
resulting logics, proving their decidability and finite model property. Our hardest result
refers to our richest logic (that can define all the modal operators mentioned above). We
end with a discussion of possible research lines for future work.

2 Evidence, Belief and Knowledge in Topological Spaces

2.1 Topological Models for Evidence

Definition 1 (Evidence Models) (van Benthem and Pacuit)6 Given a countable set of
propositional letters Prop, an evidence model for Prop is a tupleM = (X, E0,V), where:
X is a non-empty set of “states”; E0 ⊆ P(X) \ {∅} is a family of non-empty sets called
basic evidence sets (or pieces of evidence), with X ∈ E0; and V : Prop → P(X) is a
valuation function.

5 Indeed, the logic of Stalnaker’s knowledge is not S 5, but the modal logic S 4.2.
6 The notion of evidence model in [21] is more general, covering cases in which evidence de-

pends on the actual world, but we stick with what they call ‘uniform’ models, since this corre-
sponds to restricting to agents who are “evidence-introspective”.



Given an evidence model M = (X, E0,V), a family F ⊆ E0 of pieces of evidence
is consistent if

⋂
F , ∅, and inconsistent otherwise. Abody of evidence is a family

F ⊆ E0 s.t. every non-empty finite subfamily is consistent. We denote by F the family
of all bodies of evidence, and by F f inite the family of all finite ones. A body of evidence
F supports a proposition P iff P is true in all worlds satisfying the evidence in F (i.e.⋂

F ⊆ P).

The strength order between bodies of evidence is given by inclusion: F ⊆ F′ means
that F′ is at least as strong as F. Note that stronger bodies of evidence support more
propositions: if F ⊆ F′ then every proposition supported by F is also supported by
F′. A body of evidence is maximal (“strongest”) if it’s not included in any other such
body. We denote by Max⊆F = {F ∈ F : ∀F′ ∈ F (F ⊆ F′ ⇒ F = F′)} the family
of all maximal bodies of evidence. By Zorn’s Lemma, every body of evidence can be
strengthened to a maximal body of evidence: ∀F ∈ F ∃F′ ∈ Max⊆F (F ⊆ F′).

A combined evidence (or just “evidence”, for short) is any non-empty intersection of
finitely many pieces of evidence. We denote by E := {

⋂
F : F ∈ F f inite s.t.

⋂
F ,

∅} the family of all (combined) evidence.7 A (combined) evidence e ∈ E supports a
proposition P ⊆ X if e ⊆ P. (In this case, we also say that e is evidence for P.) Note that
the natural strength order between combined evidence sets goes the other way around
(reverse inclusion): e ⊇ e′ means that e′ is at least as strong as e.8

The intuition is that e ∈ E0 represent the basic pieces of “direct” evidence (obtained say
by observation or via testimony) that are possessed by the agent, while the combined
evidence e ∈ E represents indirect evidence that is obtained by combining finitely many
pieces of direct evidence. Not all of this evidence is necessarily true though.

We say that some (basic or combined) evidence e ∈ E is factive evidence at world x ∈ X
whenever it is true at x (i.e. x ∈ e). A body of evidence F is factive if all the pieces of
evidence in F are factive (i.e. x ∈

⋂
F).

The plausibility (pre)order vE associated to an evidence model is given by:

x vE y iff ∀e ∈ E0 (x ∈ e⇒ y ∈ e) iff ∀e ∈ E (x ∈ e⇒ y ∈ e).

Definition 2 (Topological Space) A topological space is a pair X = (X, τ), where X
is a non-empty set and τ is a topology on X, i.e. a family τ ⊆ P(X) containing X and
∅, and closed under finite intersections and arbitrary unions. Given a family E ⊆ P(X)
of subsets of X, the topology generated by E is the smallest topology τE on X such
that E ⊆ τE . A set A ⊆ X is closed iff it is the complement of an open set, i.e. it is of
the form X \ U with U ∈ τ. Let τc = {X \ U |U ∈ τ} denote the family of all closed
sets of X = (X, τ). In any topological space X = (X, τ), one can define two important
operators, namely interior Int : P(X)→ P(X) and closure Cl : P(X)→ P(X), given by

7 This is a difference in notation with the setting in [21, 20], where E is used to denote the family
of basic evidence sets (denoted here by E0).

8 This is both to fit with the strength order on bodies of evidence (since F ⊆ F′ implies
⋂

F ⊇⋂
F′), and to ensure that stronger evidence supports more propositions: since, if e ⊇ e′, then

every proposition supported by e is supported by e′.



IntP :=
⋃
{U ∈ τ |U ⊆ P}, ClP :=

⋂
{C ∈ τc | P ⊆ C}. A set A ⊆ X is called dense in X

if ClA = X and it is called nowhere dense if IntClA = ∅. For a topological space X =

(X, τ), the specialization preorder vτ is given by: x vτ y iff ∀U ∈ τ (x ∈ U ⇒ y ∈ U).

Special Case: Relational Spaces. A topological space is called Alexandroff iff the
topology is closed under arbitrary intersections. An Alexandroff topology is fully cap-
tured by its specialization preorder: in this case, the interior operator coincides with
the Kripke modality for the specialization relation (i.e. IntP = {x ∈ X | ∀y (x vτ y ⇒
y ∈ P)}). There is a canonical bijection between Alexandroff topologies X = (X, τ) and
preordered spaces9 (X,≤), mapping (X, τ) to (X,vτ); the inverse map takes (X,≤) into
(X,U p(X)), where U p(X) is the family of upward-closed sets10.

An Even More Special Case: (Grove/Lewis) Sphere Spaces. These are topological
spaces in which the opens are “nested”, i.e. for every U,U′ ∈ τ, we have either U ⊆ U′

or U′ ⊆ U. Sphere spaces are Alexandroff, and moreover they correspond exactly to
totally preordered spaces (i.e. sets X endowed with a total preorder ≤).

Definition 3 (Topological Evidence Models) A topological evidence model (“topo-e-
model”, for short) is a structure M = (X, E0, τ,V), where (X, E0,V) is an evidence
model and τ = τE is the topology generated by the family of combined evidence E
(or equivalently, by the family of basic evidence sets E0)11, which will be called the
evidential topology. It is easy to see that the plausibility order vE ofM coincides with
the specialization order of the associated topology: vE = vτ.

Since any family E0 ⊆ P(X) generates a topology, topo-e-models are just another pre-
sentation of (uniform) evidence models. We use this special terminology to stress our
focus on the topology, and to avoid ambiguities (since our definition of belief in topo-e-
models will be different from the definition of belief in evidence models in [21]).

A topo-e-model is said to be Alexandroff iff the underlying topology is Alexandroff.
So they can be understood as relational (plausibility) models, in terms of a preorder ≤
(“plausibility relation”). A special case is the one of Grove-Lewis (topological) evidence
models: this is the case when the basic pieces of evidence are nested (i.e. for all e, e′ ∈
E0 we have either e ⊆ e′ or e′ ⊆ e). It is easy to see that in this case all the opens of the
generated topology are also nested, so the topology is that of a sphere space.

Proposition 1 Given a topo-e-modelM = (X, E0, τ,V), the following are equivalent:

1. M is Alexandroff;

2. The family E of (combined) evidence is closed under arbitrary non-empty intersec-
tions (i.e. if F ⊆ E and

⋂
F , ∅, then

⋂
F ∈ E);

3. Every consistent body of evidence is equivalent to a finite body of evidence (i.e.
∀F ∈ F (

⋂
F , ∅ ⇒ ∃F′ ∈ F f inite s. t.

⋂
F =
⋂

F′)).

9 A preorder on X is a reflexive-transitive relation on X.
10 A subset A ⊆ X is said to be upward-closed wrt ≤ if ∀x, y ∈ X (x ∈ A ∧ x ≤ y ⇒ y ∈ A).
11 These families generate the same topology. We denote it by τE only because the family E of

combined evidence forms a basis of this topology.



Arguments and Justifications. We can use this setting to formalize a “coherentist”
view on justification. An argument for P is a disjunction U =

⋃
i∈I ei of (some non-

empty family of) (combined) evidences ei ∈ E that all support P (i.e. ei ⊆ P for all
i ∈ I). Thus, an argument may provide multiple evidential paths ei to support a common
conclusion P. Topologically, an argument for P is the same as a non-empty open subset
of P (U ∈ τE s.t. U ⊆ P). Also, the interior IntP is the weakest (most general) argument
for P.

A justification for P is an argument U for P that is consistent with every (combined)
evidence (i.e. U ∩ e , ∅ for all e ∈ E, which in fact implies that U ∩ U′ , ∅ for all
U′ ∈ τE \ {∅}). So justifications are arguments that are not defeated by any available
evidence. Topologically, we can see that a justification for P is just an (everywhere)
dense open subset of P (i.e. U ∈ τE s.t. U ⊆ P and ClτE (U) = X). As for evidence,
an argument or a justification for P is said to be factive (or “correct”) if it is true in the
actual world. The fact that arguments are open in the generated topology encodes the
principle that any argument should be evidence-based: whenever an argument is cor-
rect, then it is supported by some factive evidence. To anticipate further: in our setting,
justifications will form the basis of belief, while correct justifications will form the basis
of (defeasible) knowledge. But for now we’ll introduce a stronger form of “knowledge”:
the absolutely-certain and irrevocable kind.

Infallible Knowledge: possessing hard information. We use ∀ for the so-called global
modality, which associates to every proposition P ⊆ X, some other proposition ∀P,
given by putting: (∀P) := X iff P = X, and (∀P) := ∅ otherwise. In other words: (∀P)
holds (at any state) iff P holds at all states. In this setting, ∀ is interpreted as “absolutely
certain, infallible knowledge”, defined as truth in all the worlds that are consistent with
the agent’s information.12 This is not a realistic concept of knowledge, but just a limit
notion, encompassing all epistemic possibilities.

Having Basic Evidence for a Proposition. van Benthem and Pacuit define, for every
proposition P ⊆ X, another proposition13 E0P given by putting: E0P := X if ∃e ∈
E0 (e ⊆ P), and E0P := ∅ otherwise. Essentially, E0P means that “the agent has basic
evidence for P”, i.e. P is supported by some available piece of evidence. One can also
introduce a factive version of this proposition: �0P, read as “the agent has factive basic
evidence for P”, is given by putting

�0P := {x ∈ X : ∃e ∈ E0 (x ∈ e ⊆ P)}.

Having (Combined) Evidence for a Proposition. If in the above definitions of E0P
and �0P we replace basic pieces of evidence by combined evidence, we obtain two
other operators EP, meaning that “the agent has (combined) evidence for P”, and �P,

12 In a multi-agent model, some worlds might be consistent with one agent’s information, while
being ruled out by another agent’s information. So, in a multi-agent setting, ∀i will only quan-
tify over all the states in agent i’s current information cell (according to a partition Πi of the
state space reflecting agent i’s hard information).

13 They denote this by EP, but we use E0P for this notion, since we reserve the notation EP for
having combined evidence for P.



meaning that “the agent has factive (combined) evidence for P”. More precisely:

EP := X if ∃e ∈ E (e ⊆ P), and EP := ∅ otherwise;

�P := {x ∈ X : ∃e ∈ E (x ∈ e ⊆ P)}.

Observation 1. Note that the agent has evidence for a proposition P iff she has an
argument for P. So EP can also be interpreted as “having an argument for P”. Similarly,
�P can be interpreted as “having a correct (i.e. factive) argument for P”.

Observation 2. Note that the agent has factive evidence for P at x iff x is in the interior
of P. So our modality � coincides with the interior operator: �P = IntP.

2.2 Belief

Belief à la van Benthem-Pacuit [21]. The notion of belief proposed by van Benthem
and Pacuit, which we will denote by Bel, is that P is believed iff every maximal body
of evidence supports P: BelP holds (at any state of X) iff we have

⋂
F ⊆ P for every

F ∈ Max⊆F . As already noticed in [21], this is equivalent to treating evidence models
as special cases of plausibility models [3, 4, 19], with the plausibility relation given by
vE (or equivalently, as Grove-Lewis “sphere models” [9] where the spheres are the sets
that are upward closed wrt vE), and applying the standard definition (due to Grove) of
belief as “truth in all the most plausible worlds”.14 Grove’s definition works well when
the plausibility relation is well-founded (and also in the somewhat more general case
given by the Grove-Lewis Limit Assumption), but it yields inconsistent beliefs in the
case that there are no most plausible worlds. But note that in evidence models vE may
be non-wellfounded. Indeed, belief à la van Benthem-Pacuit can be inconsistent:

Example 1 Consider the evidence modelM = (N, E0,V), where the state space is the
set N of natural numbers, V(p) = ∅, and the basic evidence family E0 = {e ⊆ N :
N \ e finite } consists of all co-finite sets. The only maximal body of evidence in E0 is E0
itself. However,

⋂
E0 = ∅. So Bel⊥ holds inM.

This phenomenon only happens in (some cases of) infinite models, so it is not due to the
inherent mutual inconsistency of the available evidence. The “good” examples in [21]
are the ones in which (possibly inconsistent) evidence is processed to yield consistent
beliefs. So it seems to us that the intended goal (only partially fulfilled) in [21] was to
ensure that the agents are able to form consistent beliefs based on the available evidence.
We think this to be a natural requirement for idealized “rational” agents, and so we
consider doxastic inconsistency to be “a bug, not a feature”, of the van Benthem-Pacuit
framework. Hence, we now propose a notion that agrees with the one in [21] in all the
“good” cases, but also produces in a natural way only consistent beliefs.

14 Note that all the notions of belief we consider are global: they do not depend on the state of
the world, i.e. we have either BelP = X or BelP = ∅ (similar to the sets ∀P, E0P, EP). This
expresses the assumption that belief is a purely internal notion, thus transparent and hence
absolutely introspective. This is standard in logic and accepted by most philosophers.



Our Notion of Belief. The intuition is that P is believed iff it is entailed by all the
“sufficiently strong” (combined) evidence. Formally, BP holds iff every finite body of
evidence can be strengthened to some finite body of evidence which supports P:

BP holds (at any state) iff ∀F ∈ F f inite∃F′ ∈ F f inite(F ⊆ F′ ∧
⋂

F′ ⊆ P).

Our notion of belief B coincides with Bel in the finite case, or, more generally, in evi-
dence models in which every maximal body of evidence is consistent. But, unlike Bel,
our notion of belief B is always consistent (i.e. B⊥ = B∅ = ∅), and moreover it satisfies
the axioms of the standard doxastic logic KD45. Another nice feature is that our belief
B is a purely topological notion, as can be seen from the following:

Proposition 2 In every evidence model (X, E0,V), the following are equivalent, for any
proposition P ⊆ X:

1. BP holds (at any state);

2. every (combined) evidence can be strengthened to some evidence supporting P
(∀e ∈ E∃e′ ∈ E s.t e′ ⊆ e ∩ P);

3. every argument (for anything) can be strengthened to an argument for P (∀U ∈
τE \ {∅}∃U′ ∈ τE \ {∅} s.t. U′ ⊆ U ∩ P);

4. there is a justification for P: i.e. some argument for P which is consistent with any
available evidence (∃U ∈ τE s.t. U ⊆ P and U ∩ e , ∅ for all e ∈ E);

5. P includes some dense open set;

6. IntP is dense in τE (i.e. Cl(IntP) = X), or equivalently X \ P is nowhere dense;

7. ∀^�P holds (at any state: i.e. ∀^�P , ∅, or equivalently ∀^�P = X), where
^P := ¬�¬P is the dual of the � operator.

Proposition 2 part (4) can be interpreted as saying that our notion of belief B is the same
as “justified belief”: a proposition P is believed iff the agent has a justification for P. In
this case, there exists a weakest (most general) justification for P, namely IntP. More-
over, part (6) shows that our proposal is very natural from a topological perspective: it is
equivalent to saying that P is believed iff the complement of P is nowhere dense. Since
nowhere dense sets are one of the topological concepts of “small” or “negligible sets”,
this amounts to believing propositions if they are true in “almost all” epistemically-
possible worlds (where ‘almost all’ is interpreted topologically). Finally, part (7) tells
us that belief is definable in terms of the operators ∀ and �.

Our notion of belief can be viewed as a formalization of a “coherentist” epistemology of
belief. The requirement that a belief’s justification must be open in the evidential topol-
ogy simply means that the justification is ultimately based on the available evidence;
while the requirement that the justification is dense (in the same topology) means that
all the agent’s beliefs must be coherent with all her evidence.15

15 Lehrer uses the metaphor of a Subjective Justification Game [13]: rational beliefs are based on
justifications that survive a game between the Believer and an inner Critic, who tries to defeat
them using the Believer’s own “acceptance system”.



Conditional Belief. For sets Q,Q′ ⊆ X, we say that Q′ is Q-consistent iff Q ∩ Q′ , ∅.
A body of evidence F is Q-consistent iff

⋂
F ∩ Q , ∅. We say that P is believed given

Q, and write BQP, iff every finite Q-consistent body of evidence can be strengthened
to some finite Q-consistent body of evidence supporting Q → P (i.e. ¬Q ∪ P). Sim-
ilarly to Proposition 2, BQP is equivalent to any of the following: every Q-consistent
evidence can be strengthened to some Q-consistent evidence supporting Q → P; every
Q-consistent argument can be strengthened to a Q-consistent argument for Q → P;
there is a Q-consistent argument for Q → P which is consistent with any Q-consistent
evidence; Q → P includes some Q-consistent open set which is dense in Q; ∀(Q →
^(Q ∧ �(Q→ P))) = X; etc.

2.3 Knowledge

We now define a “softer” notion of knowledge, that is closer to the common usage of
the word than “infallible” knowledge. Formally, we put KP := {x ∈ X : ∃U ∈ τ (x ∈
U ⊆ P ∧ Cl(U) = X)}. So KP holds at x iff P includes a dense open neighborhood of
x; equivalently, iff x ∈ IntP and IntP is dense. Essentially, this says that knowledge is
“correctly justified belief”: KP holds at world x iff there exists some justification U ∈ τ
for P such that x ∈ U. In other words, P is known iff there exists some correct (i.e.
factive) argument for P that is consistent with all the available evidence.

Note that K satisfies Stalnaker’s Strong Belief Principle BP = BKP: from a subjective
point of view, belief is indistinguishable from knowledge [18].16

Example 2 Consider the model X = ([0, 1], E0,V), where E0 = {(a, b) ∩ [0, 1] : a, b ∈
R, a < b} and V(p) = ∅. The generated topology τE is the standard topology on [0, 1].
Let P = [0, 1] \ { 1n : n ∈ N} be the proposition stating that the actual state is not of the
form 1

n , for any n ∈ N. Since the complement ¬P = { 1n : n ∈ N} is nowhere dense, the
agent believes P, and e.g. U =

⋃
n≥1( 1

n+1 ,
1
n ) is a (dense, open) justification for P. This

belief is true at world 0 ∈ P. But this true belief is not knowledge at 0: no justification
for P is true at 0, since P doesn’t include any open neighborhood of 0, so 0 < IntP
and hence 0 < KP. (However, P is known at all the other worlds x ∈ P \ {0}, since
∀x ∈ P \ {0}∃ε > 0 s.t. x ∈ (x − ε, x + ε) ⊆ P, hence x ∈ IntP.)

1
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Fig. 1. ([0, 1], τE)

16 As we’ll see, K and B satisfy all the Stalnaker axioms for knowledge and belief [1, 2, 16] and
further generalizes our previous work on a topological interpretation of Stalnaker’s doxastic-
epistemic axioms, which was based on extremally disconnected spaces.



This ‘soft’ type of knowledge is defeasible. In contrast, the usual assumption in Logic
is that knowledge acquisition is monotonic. As a result, logicians typically assume that
knowledge is “irrevocable”: once acquired, it cannot be defeated by any further evi-
dence. In our setting, the only irrevocable knowledge is the infallible one, captured by
the operator ∀. Clearly, K is not irrevocable.

Epistemologists have made various other proposals on how a realistic concept of knowl-
edge should be defined. A conception that is very close to (though subtly different from)
our notion is the one held by the proponents of the so-called Defeasibility Theory of
Knowledge, e.g. Lehrer and Paxson [14], Lehrer [13], Klein [11, 12]: “in-defeasible
knowledge” cannot be defeated by any factive evidence that might be gathered later
(though it may be defeated by false “evidence”). In its simplest version, this says that
“an agent knows that P if and only if P is true, she believes that P, and she continues
to believe P if any true information is received” (Stalnaker [18]). In our formalism,
this would require P to be believed conditional on every true “new evidence”: i.e. P is
known in world x iff BQP holds for every Q ⊆ X with x ∈ Q. This simple version is
what Rott calls “the Stability Theory of Knowledge” [17]. In contrast, the full-fledged
version of the Defeasibility Theory, as held by Lehrer and others, insists that, in order
to know P, not only the belief in P has to stay undefeated, but also its justification (i.e.
what we call here “an argument for P”). In other words, there must exist an argument
for P that is believed conditional on every true evidence. Clearly, this implies that the
belief in P is stable; but the converse is not at all obvious. Indeed, Lehrer claims that
the converse is false. The problem is that, when confronted with various new pieces of
evidence, the agent might keep switching between different justifications (for believing
P); thus, she may keep believing in P conditional on any such new true evidence, with-
out actually having any “good” justification (i.e. one that remains itself undefeated by
all true evidence). To have ‘knowledge’, we thus need a stable justification.17

However, many authors attacked the above interpretation (of both the stability and the
defeasibility theory) as being too strong: if we allow as potential defeaters all factive
propositions (i.e. all sets of worlds P containing the actual world), then there are intu-
itive examples showing that knowledge KP can be defeated. Here is such an example,
discussed by a leading proponent of the defeasibility theory (Klein [12]). Loretta filled
in her federal taxes, following very carefully all the required procedures on the forms,
doing all the calculations and double checking everything. Based on this evidence, she
correctly believes that she owes $500, and she seems perfectly justified to believe this.
So it seems obvious that she knows this. But suppose now that, being aware of her own
fallibility, she asks her accountant to check her return. The accountant finds no errors,
and so he sends her his reply reading “Your return contains no errors”; but he inadver-
tently leaves out the word “no”. If Loretta would learn the true fact that the accountant’s
letter actually reads “Your return contains errors”, she would lose her belief that she
owed $500! So it seems that there exist defeaters that are true but “misleading”.

17 Lehrer uses the metaphor of an ‘Ultra-Justification Game’ [13], according to which ‘knowl-
edge’ is based on arguments that survive a game between the Believer and an omniscient
truth-telling Critic, who tries to defeat the argument by using both the Believer’s current “jus-
tification system” and any new true evidence.



We can formalize this counterexample as follows.

Example 3 Consider the modelM = (X, E0,V), where X = {x1, x2, x3, x4, x5}, V(p) =

∅, E0 = {X,O1,O2}, O1 = {x1, x2, x3}, O2 = {x3, x4, x5}. The resulting set of combined
evidence is E = {X,O1,O2, {x3}}. Assume the actual world is x1. Then O1 is known,
since x1 ∈ Int(O1) = O1 and Cl(O1) = X. Now consider the modelM+O3 = (X, E+O3

0 ,V)
obtained by adding the new evidence O3 = {x1, x5}. We have E+O3

0 = {X,O1,O2,O3},
so E+O3 = {X,O1,O2,O3, {x1}, {x3}, {x5}}. Note that the new evidence is true (x1 ∈ O3).
But O1 is not even believed inM+O3 anymore (since O1 ∩ {x5} = ∅, so O1 is no longer
dense in τE+O3 ), thus O1 is no longer known after the true evidence O3 was added!

x1 x2 x3

x4

x5

O1

O2

=⇒
O3

x1 x2 x3

x4

x5

O1

O2

O3

Fig. 2. FromM toM+O3

Klein’s story corresponds to taking O1 to represent Loretta’s direct evidence (based on
careful calculations) that she owes $500, O2 to represent her prior evidence (based on
past experience) that the accountant doesn’t make mistakes in his replies to her, and O3
the potential new evidence provided by the letter. In conclusion, our notion of knowl-
edge is incompatible with the above-mentioned strong interpretations of both stability
and defeasibility theory, thus confirming the objections raised against them.

Klein’s solution is that one should exclude such ‘misleading’ defeaters, which may
“unfairly” defeat a good justification. But how can we distinguish them from genuine
defeaters? Klein’s diagnosis, in Foley’s more succinct formulation [6], is that “a defeater
is misleading if it justifies a falsehood in the process of defeating the justification for
the target belief”. In the example, the falsehood is that the accountant had discovered
errors in Loretta’s tax return. It seems that the new evidence O3 (the existence of the
letter as actually written) supports this falsehood, but how? According to us, it is the
combination O2∩O3 of the new (true) evidence O3 with the old (false) evidence O2 that
supports the new falsehood: the true fact (about the letter saying what it says) entails a
falsehood only if it is taken in conjunction with Loretta’s prior evidence (or blind trust)
that the accountant cannot make mistakes. So intuitively, misleading defeaters are the
ones which may lead to new false conclusions when combined with some of the old
evidence.



We proceed now to formalize this distinction. Given a topo-e-modelM, a proposition
Q ⊆ X is misleading at x ∈ X wrt E if evidence-addition with Q produces some false
new evidence; i.e. if there is some e′ ∈ E+Q \ E s.t. x < e′; equivalently, there is some
e ∈ E s.t. x < (e∩Q) < E∪{∅}. It is easy to see that: old evidence in E is by definition non-
misleading wrt E (i.e. if e ∈ E then e is non-misleading wrt E), and new non-misleading
evidence must be true (i.e. if Q < E is non-misleading at x then x ∈ Q).

We are now in the position to formulate precisely the “weakened” versions of both
stability and defeasibility theory that we are looking for. The Weak Stability Theory
will stipulate that P is known if it is undefeated by every non-misleading proposition:
i.e. BQP holds for every non-misleading Q ⊆ X. The Weak Defeasibility Theory will
require that there exists some justification (argument) for P that is undefeated by every
non-misleading proposition. Finally, there is a third formulation, which one might call
Epistemic Coherence theory, saying that P is known iff there exists some justification
(argument) for P which is consistent with every non-misleading proposition.

The following counterexample shows that weak stability is (only a necessary, but) not
a sufficient condition for knowledge:

Example 4 Consider the modelM = (X, E0,V), where X = {x0, x1, x2}, V(p) = ∅, E0 =

{X,O1,O2}, O1 = {x1}, O2 = {x1, x2}. The resulting set of combined evidence is E = E0.
Assume the actual world is x0, and let P = {x0, x1}. Then P is believed (since its interior
IntP = {x1} is dense) but it is not known (since x0 < IntP = {x1}). However, we can show
that P is believed conditional on any non-misleading proposition. For this, note that the
family of non-misleading propositions (at x0) is E ∪ {P, {x0}} = {X,O1,O2, P, {x0}}. It is
easy to see that for each set Q in this family, we have BQP.

x2x1x0
O1

O2P

Fig. 3. M = (X, E0,V): The continuous ellipses represent the currently available pieces of evi-
dence, while the dashed ones represent the other non-misleading propositions.

One should stress that our counterexample agrees with the position taken by most pro-
ponents of Defeasibility Theory: stability of (justified) belief is not enough for knowl-
edge. Intuitively, what happens in the above example is that, although the agent contin-
ues to believe P given any non-misleading evidence, her justification keeps changing:
there is no uniform justification for P that works for every non-misleading evidence
Q.

The next result shows that our notion of knowledge exactly matches the weakened ver-
sion of Defeasibility Theory, as well as the Epistemic Coherence formulation:



Proposition 3 Let M be a topo-e-model, and assume x ∈ X is the actual world. The
following are equivalent for all P ⊆ X:

1. P is known (x ∈ KP).

2. there is an argument for P that cannot be defeated by any non-misleading proposi-
tion; i.e. ∃U ∈ τE \ {∅} s.t. U ⊆ P and BQU for all non-misleading Q ⊆ X.

3. there is an argument for P that is consistent with every non-misleading proposition;
i.e. ∃U ∈ τE \ {∅} s.t. U ⊆ P and U ∩ Q , ∅ for all non-misleading Q ⊆ X.

3 Logics for evidence, belief and knowledge

In this section, we present formal languages for evidence, belief and knowledge, and
provide sound, complete and decidable proof systems for the resulting logics.

The topological language L is given by the following grammar

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Bϕ | Kϕ | ∀ϕ | Bϕϕ | �ϕ | Eϕ

where p ∈ Prop. We employ the usual abbreviations for propositional connectives >, ⊥,
∨,→,↔, and for the dual modalities 〈B〉, 〈K〉, 〈E〉 etc, except that some of them have
special abbreviations: ∃ϕ := 〈∀〉ϕ and ^ϕ := 〈�〉ϕ.

Several fragments of L have special importance: LB is the fragment having the belief
B as the only modality; LK has only the knowledge operator K; LKB has only operators
K and B; L∀K has only operators ∀ and K; L∀� has only operators ∀ and �.

We also consider an extensionLE0�0 ofL, called the evidence language: this is obtained
by extending L with two new operators E0 and �0. The expressivity of LE0�0 goes
beyond purely topological properties: the meaning of E0 and �0 does not depend only
on the topology, but also on the basic evidence family E0. Finally, we will consider one
very important fragment ofLE0�0 , namely the languageL∀��0 having only the operators
∀, � and �0. Its importance comes from that L∀��0 is co-expressive with LE0�0 .

The semantics for these languages is obvious: given a topo-e-modelM = (X, E0, τ,V),
we recursively extend the valuation map V to an interpretation map ||ϕ|| for all formulas
ϕ, by interpreting the Boolean connectives and the modalities using the corresponding
semantic operators: e.g. ||∀ϕ|| = ∀||ϕ||, ||�ϕ|| = �||ϕ|| etc.

Proposition 4 The following equivalences are valid in all topo-e-models:

1. Bϕ↔ 〈K〉Kϕ↔ ∃Kϕ↔ ∀^�ϕ 4. Kϕ↔ �ϕ ∧ Bϕ↔ �ϕ ∧ ∀^�ϕ
2. Eϕ↔ ∃�ϕ 5. Bθϕ↔ ∀(θ → ^(θ ∧ �(θ → ϕ)))
3. E0ϕ↔ ∃�0ϕ 6. ∀ϕ↔ B¬ϕ⊥

So, all the other modalities of LE0�0 can be defined in L∀��0 .

Theorem 1 The system KD45 (for the B operator) is sound and complete for LB.



Theorem 2 The system S 4.2 (for the K operator) is sound and complete for LK .

Theorem 3 A sound and complete axiomatization for LKB is given by Stalnaker’s sys-
tem 18 KB in [18], consisting of the following:

1. the S 4 axioms and rules for Knowledge K

2. Consistency of Belief: Bφ→ ¬B¬φ;

3. Knowledge implies Belief: Kφ→ Bφ;

4. Strong Positive and Negative Introspection for Belief: Bφ→ KBφ; ¬Bφ→ K¬Bφ;

5. the “Strong Belief” axiom: Bφ→ BKφ.

Theorem 4 ([8]) The following system is sound and complete for L∀�:

1. the S5 axioms and rules for ∀

2. the S4 axioms and rules for �

3. ∀ϕ→ �ϕ

By Proposition 4, L∀� can define all the other operators of L. So a complete system for
L is obtained by adding the relevant axiom-definitions to the above system.

Theorem 5 The following system is sound and complete for L∀K:

1. the S 5 axioms and rules for ∀ 3. ∀ϕ→ Kϕ
2. the S 4 axioms and rules for K 4. ∃Kϕ→ ∀〈K〉ϕ

Since belief is definable inL∀K , a complete system for the language with this additional
belief operator is obtained by adding the axiom-definition Bϕ ↔ ∃Kϕ to the above
system for L∀K .

Theorem 6 (Soundness, Completeness, Finite Model Property and Decidability) The
logic L∀��0 is completely axiomatizable and has the finite model property, and hence
it is decidable. A complete axiomatization is given by the following system L∀��0 :

1. the S5 axioms and rules for ∀

2. the S4 axioms and rules for �

3. �0ϕ→ �0�0ϕ

4. the Monotonicity Rule for �0: from ϕ→ ψ, infer �0ϕ→ �0ψ

5. ∀ϕ→ �0ϕ

6. �0ϕ→ �ϕ

7. the Pullout Axiom19: (�0ϕ ∧ ∀ψ)→ �0(ϕ ∧ ∀ψ)
18 This shows that the semantics in this paper correctly generalizes the one in [1, 2, 16] for the

system KB.
19 This axiom originates from [20], where it is stated as an equivalence rather than an implication.

But the converse is provable in our system.



The proof of Theorem 6 is the most difficult result of the paper, and we present it in
full in the Appendix. The key difficulty of the proof consists in guaranteeing that the
natural topology for which � acts as interior operator is exactly the topology generated
by the neighborhood family associated to �0. Though the main steps of the proof in-
volve known methods (a canonical quasi-model construction, a filtration argument, and
then making multiple copies of the worlds), addressing the above-mentioned difficulty
requires an innovative use of these methods, and a careful treatment of each of the steps.
The proofs of the other results are standard, and so are left for the extended version of
this paper, available at http://www.illc.uva.nl/Research/Publications/Reports/.

4 Further Developments and Future Work

The above-mentioned extended version contains an investigation of several types of
evidential dynamics (building on the work in [21]), as well as complete axiomatizations
of the corresponding dynamic-epistemic logics.

One line of further inquiry involves adding to the semantic structure a larger set E^0 ⊇
E0 of potential evidence, meant to encompass all the evidence that might be learnt in
the future. This would connect well with the topological program in Inductive Episte-
mology [10], based on a learning-theoretic investigation of convergence of beliefs to
the truth in the limit, when the agent observes a stream of incoming evidence.

We also plan to extend our framework to notions of group knowledge for a group G.
There are at least two different natural options for common knowledge: the Aumann
concept (the infinite conjunction of “everybody knows that everybody knows etc”), and
Lewis’ concept, based on shared evidence (the intersection

⋂
a∈G Ea

0 of the evidence
families Ea

0 of all agents a ∈ G). Similarly, there are now two different models for a
group’s epistemic potential: the standard concept of distributed knowledge, versus the
one obtained by sharing the evidence (i.e. taking the union EG

0 =
⋃

a∈G Ea
0 of all the

evidence families Ea
0).
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Appendix: Proof of Theorem 6

A quasi-model is a tuple M = (X, E0,≤,V), where: E0 ⊆ P(X) satisfies the same
constraints as a topo-e-model, V is a valuation, ≤ is a preorder s.t. every e ∈ E0 is
upward-closed wrt ≤. The semantics is the same as on topo-e-models, except that �
gets a Kripke semantics: ‖�φ‖ := {x ∈ X | ∀y ∈ X(x ≤ y⇒ y ∈ ‖φ‖)}.

A quasi-modelM = (X, E0,≤,V) is called Alexandroff if the topology τE is Alexandroff

and ≤=vE is the specialization preorder. There is a natural bijection B between Alexan-
droff quasi-models and Alexandroff topo-e-models, given by putting, for any Alexan-
droff quasi-modelM = (X, E0,≤,V), B(M) := (X, E0, τE ,V). Moreover,M and B(M)
satisfy the same formulas of L∀��0 at the same points. So Alexandroff quasi-models are
just another presentation of Alexandroff models.

Proposition 5 LetM = (X, E0,≤,V) be a quasi-model. The following are equivalent:

1. M is Alexandroff (hence, equivalent to an Alexandroff topo-e-model);

2. τE coincides with the family of all upward-closed sets (with respect to ≤);

3. for every x ∈ X, ↑x is in τE .

Proof. (1 ⇒ 3) SupposeM is Alexandroff, i.e., τE is Alexandroff and ≤=vE . Let
x ∈ X. Then we have: ↑x = {y | x ≤ y} = {y | x vE y} = {y | ∀U ∈ τE(x ∈
U ⇒ y ∈ U)} =

⋂
{U ∈ τE | x ∈ U}. Since τE is an Alexandroff space, we have⋂

{U ∈ τE | x ∈ U} ∈ τE , and hence ↑x =
⋂
{U ∈ τE | x ∈ U} ∈ τE .

(3 ⇒ 2) Let U p(X) be the set of all upward-closed subsets of X. It is easy to see
that τE ⊆ U p(X) (since τE is generated by E0 and every element of E0 is upward-
closed). Now let A ∈ U p(X). Since A is upward-closed, we have A =

⋃
{↑x | x ∈ A}.

Then, by (3) (and τE being closed under arbitrary unions), we obtain A ∈ τE .

(2⇒ 1) Suppose (2) and letA ⊆ τE . By (2), every U ∈ A is upward-closed; hence,⋂
A is upward-closed, so by (2)

⋂
A ∈ τE . This proves that τE is Alexandroff. (2)

also implies that ↑x is the least open neighbourhood of x in τE , i.e., ↑x ⊆ U, for all
U such that x ∈ U ∈ τE . Therefore, ≤⊆vE . For the other direction, suppose x vE y.
This implies, in particular, y ∈ ↑x (since x ∈ ↑x ∈ τE), i.e., x ≤ y.

The proof of Theorem 6 goes through three steps: (1) strong completeness for quasi-
models; (2) finite quasi-model property; (3) every finite quasi-model is modally equiv-
alent to a finite Alexandroff quasi-model (hence, to a topo-e-model).

Proposition 6 (STEP 1) L∀��0 is sound and strongly complete for quasi-models.

PROOF Soundness is easy. Completeness goes via a canonical quasi-model:

Lemma 1 (Lindenbaum Lemma) Every consistent set of sentences in L∀��0 can be
extended to a maximally consistent one.

Proof. Standard.



Let us now fix a consistent set of sentence Φ0. Our goal is to construct a quasi-model
for Φ0. By Lemma 1, there exists a maximally consistent theory T0 s. t, Φ0 ⊆ T0. For
any two maximally consistent theories T and S , we put: T ∼ S iff for all φ ∈ L∀��0 :
((∀φ) ∈ T ⇒ φ ∈ S ); and T ≤ S iff for all φ ∈ L∀��0 : ((�φ) ∈ T ⇒ φ ∈ S ).

Canonical Quasi-Model for T0. This is a structureM = (X, E0,≤,V), where: X := {T :
T maximally consistent theory with T ∼ T0}; E0 := {�̂0φ : φ ∈ L∀��0 with (∃�0φ) ∈
T0}, where we used notation θ̂ := {T ∈ X : θ ∈ T }; ≤ is the restriction of the above
preorder ≤ to X; and V(p) := p̂. In the following, variables T, S , . . . range over X.

Lemma 2 M is a quasi-model.

Proof. Easy verification.

Lemma 3 (Existence Lemma for ∀) ∃̂ϕ , ∅ iff ϕ̂ , ∅.

Proof. Easy (along standard lines of the so-called Diamond Lemma for ∃).

Lemma 4 (Existence Lemma for �) T ∈ ̂̂ϕ iff (∃) S ∈ ϕ̂ s. t. T ≤ S .

Proof. Standard again.

Lemma 5 (Existence Lemma for �0) T ∈ �̂0ϕ iff (∃) e ∈ E0 s. t. T ∈ e ⊆ ϕ̂.

Proof. Left-to-right: Assume T ∈ �̂0ϕ, i.e. (�0ϕ) ∈ T . From T ∈ X and T ∼ T0 we get
(∃�0ϕ) ∈ T0. Taking e := �̂0ϕ, we get e ∈ E0 and T ∈ e. To show that e ⊆ ϕ̂, we use the
theorem �0ϕ→ ϕ, which implies that �̂0ϕ ⊆ ϕ̂, i.e. e ⊆ ϕ̂.

Right-to-Left: Let T ∈ X and e ∈ E0, s.t. T ∈ e ⊆ ϕ̂. Then e = �̂0θ for some θ s.t.
(∃�0θ) ∈ T0. So T ∈ e = �̂0θ ⊆ ϕ̂. We now prove the following:

Claim: The set Γ := {�0θ} ∪ {∀ψ : ∀ψ ∈ T } ∪ {¬ϕ} is inconsistent.

Proof of Claim: Suppose that Γ 0 ⊥. By Lemma 1, there exists some S ∈ X s. t. Γ ⊆ S .
From (¬ϕ) ∈ S we get S < ϕ̂ (by the consistency of S ), and from (�0θ) ∈ S we get
S ∈ �̂0θ. So S ∈ �̂0θ \ ϕ̂, contradicting �̂0θ ⊆ ϕ̂.

Given the Claim, there exists a finite Γ0 ⊆ Γ with Γ0 ` ⊥. By the theorem (∀ψ1 ∧

. . .∀ψn) ↔ ∀(ψ1 ∧ . . . ψn), we can assume that Γ0 = {�0θ,∀ψ,¬ϕ}, for some ψ s. t.
(∀ψ) ∈ T . From Γ0 ` ⊥ we get the theorem (�0θ ∧ ∀ψ) → ϕ. Using the Monotonicity
Rule for �0, the formula �0(�0θ ∧ ∀ψ) → �0ϕ is also a theorem. From the axiom
�0θ → �0�0θ and the Pullout Axiom, we get the theorem (�0θ ∧ ∀ψ) → �0ϕ. Since
(�0θ) ∈ T and (∀ψ) ∈ T , it follows that (�0ϕ) ∈ T , i.e. T ∈ �̂0ϕ, as desired.

Lemma 6 (Truth Lemma) For every formula φ ∈ L∀��0 , we have: ‖φ‖M = φ̂.

Proof. Standard proof by induction on the complexity of φ.

Consequence: T0 |=M Φ0. This proves Step 1 (Proposition 6).

Theorem 7 (STEP 2) The logic L∀��0 has Strong Finite Quasi-Model Property.



PROOF OF THEOREM 7: Let φ0 be a consistent formula. By Step 1, take T0 a
maximal consistent theory s.t. φ0 ∈ T0, and let M = (X, E0,≤,V) be the canonical
quasi-model for T0. We will use two facts about this model:

1. ‖ϕ‖M = ϕ̂, for all ϕ ∈ L∀��0 ,

2. E0 = {�̂0ϕ : (∃�0ϕ) ∈ T0} = {‖�0ϕ‖M : (∃�0ϕ) ∈ T0}.

Let Σ be a finite set such that: (1) φ0 ∈ Σ; (2) Σ is closed under subformulas; (3) if
(�0ϕ) ∈ Σ then (��0ϕ) ∈ Σ; (4) Σ is closed under single negations; (5) (�0>) ∈ Σ. For
x, y ∈ X, put: x ≡Σ y iff ∀ψ ∈ Σ(x ∈ ‖ψ‖M ⇐⇒ y ∈ ‖ψ‖M), and denote by |x| := {y ∈
X : x ≡Σ y} the equivalence class of x modulo ≡Σ . Also, put X f := {|x| : x ∈ X}, and
more generally put e f := {|x| : x ∈ e} for every e ∈ E0.

We now define a “filtrated model”M f = (X f , E f
0 ,≤

f ,V f ), by taking: as set of worlds
the set X f (of equivalence classes) defined above; as for the rest, we put: |x| ≤ f |y| iff
for all (�ψ) ∈ Σ : (x ∈ ‖�ψ‖M ⇒ y ∈ ‖�ψ‖M); E f

0 := {e f : e = �̂0ψ = ‖�0ψ‖M ∈
E0 for some ψ s. t. (�0ψ) ∈ Σ}; V f (p) := {|x| : x ∈ V(p)}.

Lemma 7 M f is a finite quasi-model (of size bounded by a computable function of φ0).

Proof. X f is finite, since Σ is finite so there are only finitely many equivalence classes
modulo ≡Σ . In fact, the size is at most 2|Σ |. It’s obvious that ≤ f is a preorder, that X f ∈ E f

0

(since X = ‖�0>‖M and (�0>) ∈ Σ, so X f ∈ E f
0 ) and that every e f ∈ E f

0 is non-empty
(since it comes from some non-empty e ∈ E0). So we only have to prove that the
evidence sets are upward–closed: for this, let e f ∈ E f

0 , with e = �̂0ψ ∈ E0, (�0ψ) ∈ Σ
and let |x| ∈ e f and |y| ∈ X f s.t. |x| ≤ f |y|. We need to show that |y| ∈ e f .

Since |x| ∈ e f , there exists some x′ ≡Σ x s.t. x′ ∈ �̂0ψ = ‖�0ψ‖M. From (�0ψ) ∈ Σ and
x′ ≡Σ x, we get x ∈ ‖�0ψ‖M. By the theorem �0ψ → ��0ψ, we have x ∈ ‖��0ψ‖M.
But (��0ψ) ∈ Σ (by the closure assumptions on Σ), so |x| ≤ f |y| gives us y ∈ ‖��0ψ‖M.
By the T -axiom �φ→ φ, we get y ∈ ‖�0ψ‖M = �̂0ψ = e, hence |y| ∈ e f .

Lemma 8 (Filtration Lemma) For every formula φ ∈ Σ: ‖φ‖M f = {|x| : x ∈ ‖φ‖M}.

Proof. Proof by induction on φ ∈ Σ. The atomic case, inductive cases for propositional
connectives and modalities ∀φ and �φ are treated as usual (-in the last case using the
filtration property of ≤ f ). We only prove here the inductive case for the modality �0φ:

Left-to-right inclusion: Let |x| ∈ ‖�0φ‖M f . This means that there exists some e f ∈ E f
0

s.t. |x| ∈ e f ⊆ ‖φ‖M f . By the definition of E f
0 , there exists some ψ s.t.: (�0ψ) ∈ Σ and

e = �̂0ψ = ‖�0ψ‖M ∈ E0. From |x| ∈ e f , it follows that there is some x′ ≡Σ x s.t.
x′ ∈ e = ‖�0ψ‖M, and since (�0ψ) ∈ Σ, we have x ∈ ‖�0ψ‖M = e. It is easy to see that
we also have e ⊆ ‖φ‖M. (Indeed, let y ∈ e be any element of e; then |y| ∈ e f ⊆ ‖φ‖M f , so
|y| ∈ ‖φ‖M f , and by the induction hypothesis y ∈ ‖φ‖M.) So we have found an evidence
set e ∈ E0 s.t. x ∈ e ⊆ ‖φ‖M, i.e., shown that x ∈ ‖�0φ‖M.

Right-to-left inclusion: Let x ∈ ‖�0φ‖M, with (�0φ) ∈ Σ. It is easy to see that (∃�0φ) ∈ x
(by the theorem �0φ → ∃�0φ) and so also (∃�0φ) ∈ T0 (since x ∈ X so x ∼ T0). This



means that the set e := �̂0φ = ‖�0φ‖M ∈ E0 is an evidence set in the canonical model,
and since (�0φ) ∈ Σ, we conclude that e f ∈ E f

0 is an evidence set in the filtrated model.
We obviously have x ∈ e, and so |x| ∈ e f . By the (T ) axiom, e = ‖�0φ‖M ⊆ ‖φ‖M,
and hence e f ⊆ {|y| : y ∈ ‖φ‖M} = ‖φ‖M f (by the induction hypothesis). Thus, we have
found e f ∈ E f

0 s.t. |x| ∈ e f ⊆ ‖φ‖M f , i.e., shown that |x| ∈ ‖�0φ‖M f .

Theorem 8 (STEP 3) Every finite quasi-model is modally equivalent to a finite Alexan-
droff quasi-model (and so to a topo-e-model).

PROOF OF THEOREM 8: LetM = (X, E0,≤,V) be a finite quasi-model. We form
a new structure M̃ = (X̃, Ẽ0, ≤̃, Ṽ), by putting: X̃ := X × {0, 1}; Ṽ(p) := V(p) × {0, 1};
(x, i)≤̃(y, j) iff: x ≤ y and i = j; Ẽ0 := {ei : e ∈ E0, i ∈ {0, 1}} ∪ {e

y
i : y ∈ e ∈

E0, i ∈ {0, 1}} ∪ {X̃}, where we used notations ei := e × {i} = {(x, i) : x ∈ e} and
ey

i := ↑y × {i} ∪ e × {1 − i} = {(x, i) : y ≤ x} ∪ e1−i.

Lemma 9 M̃ is a (finite) quasi-model.

Proof. Easy verification.

Notation: For any set Ỹ ⊆ X̃, put ỸX := {y ∈ X : (y, i) ∈ Ỹ for some i ∈ {0, 1}} for the
set consisting of first components of all members of Ỹ . It is easy to see that we have:
(Ỹ ∪ Z̃)X = ỸX ∪ Z̃X , and X̃X = X.

Lemma 10 If y ∈ e ∈ E0, i ∈ {0, 1} and ẽ ∈ {ei, e
y
i }, then we have:

1. ẽX = e;

2. ey
i ∩ ei = ↑(y, i), where ↑(y, i) = {x̃ ∈ X̃ : (y, i)≤̃x̃} = {(x, i) : y ≤ x}.

Proof. 1. If ẽ = ei, then ẽX = (e× {i})X = e. If ẽ = ey
i , then ẽX = (↑y× {i})X ∪ (e× {1−

i})X = ↑y ∪ e = e (since e is upward-closed and y ∈ e, so ↑y ⊆ e).

2. ey
i ∩ ei = (↑y × {i} ∪ e × {1 − i})∩ (e × {i}) = (↑y∩ e)× {i} = ↑y× {i} = ↑(y, i) (since
↑y ⊆ e).

Lemma 11 M̃ is an Alexandroff quasi-model (and thus also a topo-e-model).

Proof. By Proposition 5, it is enough to show that, for every (y, i) ∈ X̃, the upward-
closed set ↑(y, i) is open in the topology τE generated by E0. But this follows directly
from part 2 of Lemma 10.

Lemma 12 (Modal-Equivalence Lemma) For all ϕ ∈ L∀��0 : ‖ϕ‖M̃ = ‖ϕ‖M × {0, 1}.

Proof. Induction on ϕ. The base case, and the inductive steps for Boolean connectives
and operators ∀ and �, are straightforward. We only prove the inductive step for �0:

Left-to-Right Inclusion: Suppose that (x, i) ∈ ‖�0ϕ‖M̃. Then there exists some ẽ ∈ Ẽ
such that (x, i) ∈ ẽ ⊆ ‖ϕ‖M̃ = ‖ϕ‖M × {0, 1} (where we used the induction hypothesis
for ϕ at the last step). From this, we obtain that x ∈ ẽX ⊆ (‖ϕ‖M × {0, 1})X = ‖ϕ‖M. But



by the construction of Ẽ, ẽ ∈ Ẽ means that either ẽ = X̃ or there exist e ∈ E0, y ∈ e and
j ∈ {0, 1} such that ẽ ∈ {e j, e

y
j}. If the former is the case, we have x ∈ ẽX = X ⊆ ‖ϕ‖M.

Since X ∈ E0, by the semantics of �0, we obtain x ∈ ‖�0ϕ‖M. If the latter is the case,
by part 1 of Lemma 10, we have ẽX = e, so we conclude that x ∈ ẽX = e ⊆ ‖ϕ‖M.
Therefore, again by the semantics of �0, we have x ∈ ‖�0ϕ‖M.

Right-to-Left Inclusion: Suppose that x ∈ ‖�0ϕ‖M. Then there exists some e ∈ E0 such
that x ∈ e ⊆ ‖ϕ‖M. Take now the set ei = e × {i} ∈ Ẽ. Clearly, we have (x, i) ∈ ei ⊆

‖ϕ‖M × {i} ⊆ ‖ϕ‖M × {0, 1} = ‖ϕ‖M̃ (where we used the induction hypothesis for ϕ at
the last step), i.e. we have (x, i) ∈ ‖�0ϕ‖M̃.

Theorem 8 follows immediately from the above Lemma: the same formulas are satisfied
at x inM as at (x, i) in M̃. Theorem 6 is an immediate corollary of Theorem 8.

References
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