MATHEMATICAL STRUCTURES IN LOGIC 2018 HOMEWORK 3

- Deadline: February 27 at the **beginning** of the tutorial class.
- In exceptional cases homework can be submitted electronically (in a single pdf-file!) to Saul Fernandez (saul.fdez.glez@gmail.com).
- Grading is from 0 to 100 points.
- Discussion of problems is allowed, but each student should submit a homework they themselves have written.
- Good luck!
- (1) (20pt) Let (X, \leq) be a pre-ordered set (i.e., \leq is reflexive and transitive). Let (X, τ) be the corresponding Alexandroff topology (where τ is the set of all up-sets of X).
 - (a) Define \leq on X by $x \leq y$ iff $(x \in U \text{ implies } y \in U \text{ for each } U \in \tau)$. Show that $x \leq y$ iff $x \leq y$.
 - (b) Recall that a topological space is called T_0 if for each $x \neq y$ there exists an open set U such that $(x \in U \text{ and } y \notin U)$ or $(y \in U \text{ and } x \notin U)$. What is a necessary and sufficient condition on \leq so that (X, τ) is a T_0 -space. Justify your solution.
- (2) (20pt) Let A be a Heyting algebra and $\operatorname{Rg}(A) = \{\neg \neg a : a \in A\}$. Then $\operatorname{Rg}(A)$ is a Boolean algebra, where $a \lor b = \neg \neg (a \lor b)$. Show that
 - (a) $\operatorname{Rg}(A) = \{a = \neg \neg a : a \in A\}.$
 - (b) Show that $\neg \neg : A \to \operatorname{Rg}(A)$ is a \lor -homomorphism. (In fact, it also a \to and \land -homomorphism, but you do not have to show that.)
- (3) (20pt) Let L be a lattice and $A \subseteq L$ a non-empty set. Show that

$$[A] = \uparrow \{a_1 \land \ldots \land a_n : n \in \mathbb{N}, a_1, \ldots, a_n \in A\}$$

is a filter, and moreover it is contained in any filter F of L which contains A.

- (4) (20pt) Let A be a Boolean algebra. A filter F of the form $\uparrow a$ for some $a \in A$ is called a *principal filter*. Let FinCofin(\mathbb{N}) be the Boolean algebra of all finite and cofinite subsets of \mathbb{N} .
 - (a) Characterize all principal ultrafilters in $FinCofin(\mathbb{N})$.
 - (b) Show that there is a unique (!) non-principle ultrafilter in $FinCofin(\mathbb{N})$.

(5) (20pt) Let A be a finite Boolean algebra. We order the set of all filters of A by inclusion. Show that A has a least non-unital filter iff A is isomorphic to a twoelement Boolean algebra. Note that a least non-unital filter is a filter $F \subseteq A$ such that $F \neq \{1\}$ and for each filter $F' \neq \{1\}$ we have $F \subseteq F'$.