MATHEMATICAL STRUCTURES IN LOGIC 2018 HOMEWORK 3

- Deadline: February 27 - at the beginning of the tutorial class.
- In exceptional cases homework can be submitted electronically (in a single pdf-file!) to Saul Fernandez (saul.fdez.glez@gmail.com).
- Grading is from 0 to 100 points.
- Discussion of problems is allowed, but each student should submit a homework they themselves have written.
- Good luck!
(1) (20pt) Let (X, \leq) be a pre-ordered set (i.e., \leq is reflexive and transitive). Let (X, τ) be the corresponding Alexandroff topology (where τ is the set of all up-sets of X).
(a) Define \preceq on X by $x \preceq y$ iff $(x \in U$ implies $y \in U$ for each $U \in \tau)$. Show that $x \leq y$ iff $x \preceq y$.
(b) Recall that a topological space is called T_{0} if for each $x \neq y$ there exists an open set U such that $(x \in U$ and $y \notin U)$ or ($y \in U$ and $x \notin U$). What is a necessary and sufficient condition on \leq so that (X, τ) is a T_{0}-space. Justify your solution.
(2) (20pt) Let A be a Heyting algebra and $\operatorname{Rg}(A)=\{\neg \neg a: a \in A\}$. Then $\operatorname{Rg}(A)$ is a Boolean algebra, where $a \dot{\vee} b=\neg \neg(a \vee b)$. Show that
(a) $\operatorname{Rg}(A)=\{a=\neg \neg a: a \in A\}$.
(b) Show that $\neg \neg: A \rightarrow \operatorname{Rg}(A)$ is a \vee-homomorphism. (In fact, it also a \rightarrow and \wedge-homomorphism, but you do not have to show that.)
(3) (20pt) Let L be a lattice and $A \subseteq L$ a non-empty set. Show that

$$
[A)=\uparrow\left\{a_{1} \wedge \ldots \wedge a_{n}: n \in \mathbb{N}, a_{1}, \ldots, a_{n} \in A\right\}
$$

is a filter, and moreover it is contained in any filter F of L which contains A.
(4) (20pt) Let A be a Boolean algebra. A filter F of the form $\uparrow a$ for some $a \in A$ is called a principal filter. Let $\operatorname{FinCofin}(\mathbb{N})$ be the Boolean algebra of all finite and cofinite subsets of \mathbb{N}.
(a) Characterize all principal ultrafilters in $\operatorname{FinCofin}(\mathbb{N})$.
(b) Show that there is a unique (!) non-principle ultrafilter in $\operatorname{FinCofin}(\mathbb{N})$.
(5) (20pt) Let A be a finite Boolean algebra. We order the set of all filters of A by inclusion. Show that A has a least non-unital filter iff A is isomorphic to a twoelement Boolean algebra. Note that a least non-unital filter is a filter $F \subseteq A$ such that $F \neq\{1\}$ and for each filter $F^{\prime} \neq\{1\}$ we have $F \subseteq F^{\prime}$.

