MATHEMATICAL STRUCTURES IN LOGIC 2018 HOMEWORK 2

- Deadline: February 20 - at the beginning of the tutorial class.
- In exceptional cases homework can be submitted electronically (in a single pdf-file!) to Saul Fernandez (saul.fdez.glez@gmail.com).
- Grading is from 0 to 100 points.
- Discussion of problems is allowed, but each student should submit a homework they themselves have written.
- Good luck!
(1) (40pt) Do the following equations hold in any Heyting algebra? If yes, give a proof, if not, provide a counter-example.
(a) $(a \vee b) \rightarrow c=(a \rightarrow c) \wedge(b \rightarrow c)$,
(b) $\neg \neg a \vee \neg a=1$,
(c) $\neg \neg \neg a=\neg a$,
(d) $(a \rightarrow b) \vee(b \rightarrow a)=1$.

Here $\neg a=a \rightarrow 0$.
(2) (20pt)
(a) Let B be a finite Boolean algebra and $A t(B)=\{x \in B: x$ is an atom $\}$. Show that the map defined by

$$
\eta(a)=\{x \in A t(B): x \leq a\}
$$

is a lattice morphism from B to $\mathcal{P}(A t(B))$. That is, show that the following holds for every $a, b \in B$:
(i) $\eta(a \wedge b)=\eta(a) \cap \eta(b)$,
(ii) $\eta(a \vee b)=\eta(a) \cup \eta(b)$.
(b) Let X be an infinite set. Show that every finite Boolean algebra B is isomorphic to a subalgebra of $\mathcal{P}(X)$. That is, show that there is an injective Boolean algebra homomorphism $h: B \rightarrow \mathcal{P}(X)$. (A bit tricky. Hint: Use the representation of finite Boolean algebras.)
(3) (20pt) Let L be a lattice. We say that a non-zero element $a \in L$ is join prime if $a \leq b \vee c$ implies $a \leq b$ or $a \leq c$. (Check exercise sheet 1 for the definition of join irreducible elements.)
(a) Show that in a distributive lattice the join irreducible elements coincide with the join prime elements.
(b) Give an example of a lattice having a join irreducible element which is not a join prime element.
(4) (20pt)
(a) Draw the Heyting algebra of all up-sets of the poset drawn below.

(b) Let A be the Heyting algebra drawn below.

Find an embedding (injective HA homomorphism) $\iota: A \hookrightarrow \prod_{i \in I} A_{i}$ of HAs such that for each $i \in I$ the algebra A_{i} is a linear HA and $\pi_{i} \circ \iota: A \rightarrow A_{i}$ is surjective, where π_{i} is the i 'th projection.

You can think of a finite (also infinite) product of Heyting algebras A_{1}, \ldots, A_{n} as follows. Take $A=A_{1} \times \cdots \times A_{n}$ and define \leq on A as follows:

$$
\left(a_{1}, \ldots a_{n}\right) \leq\left(b_{1}, \ldots, b_{n}\right) \text { iff } a_{i} \leq_{i} b_{i} \text { for each } i=1, \ldots, n .
$$

Then A is a HA and it is $\prod_{i=1}^{n} A_{i}$.

