MATHEMATICAL STRUCTURES IN LOGIC 2018 HOMEWORK 2

- Deadline: February 20 at the **beginning** of the tutorial class.
- In exceptional cases homework can be submitted electronically (in a single pdf-file!) to Saul Fernandez (saul.fdez.glez@gmail.com).
- Grading is from 0 to 100 points.
- Discussion of problems is allowed, but each student should submit a homework they themselves have written.
- Good luck!
- (1) (40pt) Do the following equations hold in any Heyting algebra? If yes, give a proof, if not, provide a counter-example.

(a)
$$(a \lor b) \to c = (a \to c) \land (b \to c),$$

(b)
$$\neg \neg a \lor \neg a = 1$$
,

(c)
$$\neg \neg \neg a = \neg a$$
,

(d)
$$(a \rightarrow b) \lor (b \rightarrow a) = 1.$$

Here
$$\neg a = a \rightarrow 0$$
.

- (2) (20pt)
 - (a) Let B be a finite Boolean algebra and $At(B) = \{x \in B : x \text{ is an atom}\}$. Show that the map defined by

$$\eta(a) = \{x \in At(B) : x \le a\}$$

is a lattice morphism from B to $\mathcal{P}(At(B))$. That is, show that the following holds for every $a, b \in B$:

(i)
$$\eta(a \wedge b) = \eta(a) \cap \eta(b)$$
,

- (ii) $\eta(a \lor b) = \eta(a) \cup \eta(b)$.
- (b) Let X be an infinite set. Show that every finite Boolean algebra B is isomorphic to a subalgebra of $\mathcal{P}(X)$. That is, show that there is an injective Boolean algebra homomorphism $h: B \to \mathcal{P}(X)$. (A bit tricky. Hint: Use the representation of finite Boolean algebras.)
- (3) (20pt) Let L be a lattice. We say that a non-zero element $a \in L$ is join prime if $a \leq b \lor c$ implies $a \leq b$ or $a \leq c$. (Check exercise sheet 1 for the definition of join irreducible elements.)

- (a) Show that in a distributive lattice the join irreducible elements coincide with the join prime elements.
- (b) Give an example of a lattice having a join irreducible element which is not a join prime element.
- (4) (20pt)
 - (a) Draw the Heyting algebra of all up-sets of the poset drawn below.

(b) Let A be the Heyting algebra drawn below.

Find an embedding (injective HA homomorphism) $\iota: A \hookrightarrow \prod_{i \in I} A_i$ of HAs such that for each $i \in I$ the algebra A_i is a linear HA and $\pi_i \circ \iota: A \to A_i$ is surjective, where π_i is the *i*'th projection.

You can think of a finite (also infinite) product of Heyting algebras A_1, \ldots, A_n as follows. Take $A = A_1 \times \cdots \times A_n$ and define \leq on A as follows: $(a_1, \ldots, a_n) \leq (b_1, \ldots, b_n)$ iff $a_i \leq_i b_i$ for each $i = 1, \ldots, n$.

Then A is a HA and it is $\prod_{i=1}^{n} A_i$.