MATHEMATICAL STRUCTURES IN LOGIC 2018 HOMEWORK 1

- Deadline: February 13 at the **beginning** of the tutorial class.
- In exceptional cases homework can be submitted electronically (in a single pdf-file!) to Saul Fernandez (saul.fdez.glez@gmail.com).
- Grading is from 0 to 100 points.
- Discussion of problems is allowed, but each student should submit a homework they themselves have written.
- Good luck!
- (1) (30pt) Let (P, \leq) be a poset. Show that if $\sup(A)$ exists for each $A \subseteq P$, then $\inf(B)$ also exists for each $B \subseteq P$, and therefore (P, \leq) is a complete lattice.
- (2) (20pt) Give an example of a poset (P, \leq) in which there are three elements x, y, z such that
 - (a) $\{x, y, z\}$ is an antichain (a set $A \subseteq P$ is an *antichain* if $a \not\leq b$ for distinct $a, b \in A$),
 - (b) $x \lor y, y \lor z$ and $z \lor x$ fail to exist,
 - (c) $\bigvee \{x, y, z\}$ exists.

It is sufficient to just provide the Hasse diagram for this lattice. (Hint: P will have more than three elements.)

- (3) (20pt) Let L be a lattice. We say that a non-zero element $a \in L$ is join irreducible if $a = b \lor c$ implies a = b or a = c. Let (P, \leq) be a poset. $A \subseteq P$ is an up-set if $x \in A$ and $x \leq y$ imply $y \in A$. Let Up(P) be the set of all up-sets of P.
 - (a) Show that $(\operatorname{Up}(P), \subseteq)$ is a distributive lattice
 - (b) Characterize join irreducible elements of $(Up(P), \subseteq)$ for a finite P.
- (4) (30pt)
 - (a) Show that the lattice $(\operatorname{FinCofin}(\mathbb{N}), \subseteq)$ of finite and cofinite subsets of \mathbb{N} , forms a Boolean algebra, which is not complete.
 - (b) Show that the lattice $(Fin(\mathbb{N}) \cup \{\mathbb{N}\}, \subseteq)$ of finite subsets of \mathbb{N} (together with \mathbb{N}) forms a complete bounded distributive lattice.