
Towards High Speed Grammar Induction on

Large Text Corpora

Pieter Adriaans12, Marten Trautwein1, and Marco Vervoort2

1 Perot Systems Nederland BV, P.O.Box 2729, NL-3800 GG Amersfoort, The
Netherlands

fPieter.Adriaans,Marten.Trautweing@ps.net
2 University of Amsterdam, FdNWI, Plantage Muidergracht 24, NL-1018 TV

Amsterdam, The Netherlands
vervoort@wins.uva.nl

Abstract. In this paper we describe an e�cient and scalable implemen-
tation for grammar induction based on the EMILE approach ([2], [3],[4],
[5], [6]). The current EMILE 4.1 implementation ([11]) is one of the �rst
e�cient grammar induction algorithms that work on free text. Although
EMILE 4.1 is far from perfect, it enables researchers to do empirical
grammar induction research on various types of corpora.

The EMILE approach is based on notions from categorial grammar (cf.
[10]), which is known to generate the class of context-free languages.
EMILE learns from positive examples only (cf. [1], [7], [9]). We describe
the algorithms underlying the approach and some interesting practical
results on small and large text collections. As shown in the articles men-
tioned above, in the limit EMILE learns the correct grammatical struc-
ture of a language from sentences of that language. The conducted exper-
iments show that, put into practice, EMILE 4.1 is e�cient and scalable.
This current implementation learns a subclass of the shallow context-free
languages. This subclass seems su�ciently rich to be of practical interest.
Especially Emile seems to be a valuable tool in the context of syntactic
and semantic analysis of large text corpora.

1 Introduction

The current EMILE 4.1 implementation ([11]) is one of the �rst e�cient and
scalable grammar induction algorithms that work on free text. EMILE 4.1 is not
perfect, but enables researchers to conduct empirical grammar induction research
on di�erent types of corpora. EMILE 4.1 attempts to learn the grammatical
structure of such a language from sentences of that language, without any prior
knowledge of the grammar apart from the fact that the grammar is categorial
(i.e., equivalent to context-free) and shallow ([2], [3], [4]). Theoretically, EMILE
learns the correct grammatical structure of a language from sentences of that
language in the limit. This and other theoretical concepts used in EMILE 4.1 are
elaborated on in Pieter Adriaans' articles on EMILE 1.0/2.0 ([2]) and EMILE
3.0 ([3], [5], [6]).

In a shallow language every syntactical construction has an example sentence
of a length that is logarithmic in the complexity of the grammar as a whole. We
believe that natural languages are shallow in this sense. Categorial grammars
are based on the assignment of syntactic types to words of the lexicon. A de�n-
ing characteristic of categorial languages is that expressions of the same type
can be substituted for each other in all contexts. This feature forms the basis
for the inductive approach of EMILE. For any type in any valid grammar for
the language, we can expect context/expression combinations to show up in a
su�ciently large sample of sentences of the language. EMILE searches for such
clusters of expressions and contexts in the sample, and interprets them as gram-
matical types. It then tries to �nd characteristic contexts and expressions, and
uses them to extend the types. Finally, it formulates derivation rules based on
the types found, in the manner of the rules of a context-free grammar.

In this paper we will focus on the practical aspects of EMILE 4.1 (cf. [11]).
With EMILE 4.1 grammar induction experiments can be applied to di�erent
types of corpora. Especially Emile seems to be a valuable tool for syntactic and
semantic analysis of large text corpora. The experiments show that put into
practice EMILE 4.1 is e�cient and scalable. The current EMILE 4.1 implemen-
tation learns a subclass of the shallow context-free languages that is su�ciently
rich to be of practical interest in the context of syntactic and semantic analysis
of large corpora.

In comparison to its precursors EMILE 4.1 is better able to handle incomplete
samples and uses positive examples only. More information on the precursors of
EMILE 4.1 may be found in the above mentioned articles, as well as in the E.
D�ornenburg's Master's Thesis ([8]).

2 The Algorithms of EMILE

This section gives insight into the reasoning underlying the algorithms. Details
on the algorithms (like pseudo-code) can be found in [11]. Below, we track the
development stages of EMILE, and explain the purpose of each change.

2.1 1-Dimensional Clustering

Semantic types have the property that wherever some expression is used as an
expression of a particular type, other expressions of that particular type can
be substituted without making the sentence ungrammatical. EMILE uses this
property to identify grammatical types. As such, a grammatical type in EMILE
is characterized by the expressions that belong to that type, and the contexts in
which expressions of that type can appear. The context/expression pair is the
principle concept in EMILE. Basically, a context/expression pair is a sentence
split into three pairs, for instance,

John (makes) tea .

We say that the expression `makes' appears in the context `John (.) tea', or
in terms of formal categorial grammar rules ([10]):

makes) Johnn�=tea :

A simple clustering technique extracts all possible context/expression combi-
nations from a given sample of sentences, and groups together expressions that
appear in the same context. For instance, if we take the sample sentences `John
makes tea' and `John likes tea', we get the context/expression matrix in Tab. 1
from which we can obtain the clusters given in Tab. 2.

Table 1. Context/expression matrix for 1-dimensional clustering

(.) John John (.) John (.) (.) John
makes (.) makes tea (.) likes likes
tea tea (.) tea (.)

John x x

makes x

tea x x

John makes x

makes tea x

John makes tea x

likes x

John likes x

likes tea x

John likes tea x

Table 2. Clusters derived from context/expression matrix

[f`makes', `likes'g, `John (.) tea']
[f`John makes', `John likes'g, `(.) tea']
[f`makes tea', `likes tea'g, `John (.)']

[f`John makes tea', `John likes tea'g, `(.)']

Next, we can group contexts together if they appear with exactly the same
expressions. For instance, if we add the sentences `John makes co�ee', `John likes
co�ee' to the sample, the relevant part of the context/expression matrix will look
like the matrix given in Tab. 3, which will yield the clusters given in Tab. 4.

As stated before, a grammatical type can be characterized by the expressions
that are of that type, and the contexts in which expressions of that type appear.

Table 3. Extended context/expression matrix for 1-dimensional clustering

John John John John
(.) (.) makes likes
tea co�ee (.) (.)

makes x x

likes x x

tea x x

co�ee x x

Table 4. Clusters derived from extended context/expression matrix

[f`makes', `likes'g, f`John (.) tea', `John (.) co�ee'g]
[f`tea', `co�ee'g, f`John makes (.)', `John likes (.)'g]

Hence the clusters we �nd here can be interpreted as grammatical types. For
instance, the clusters in Tab. 4 correspond to the grammatical types of `verbs'
and `nouns', respectively.

2.2 2-Dimensional Clustering

The 1-dimensional clustering technique fails to properly handle contexts whose
type is ambiguous. For instance, if we add the sentences `John likes eating' and
`John is eating', the relevant part of the context/expression matrix is given in
Tab. 5.

Table 5. Context/expression matrix for 2-dimensional clustering

John John John John John John
(.) (.) (.) makes likes is
tea co�ee eating (.) (.) (.)

makes x x

likes x x x

is x

tea x x

co�ee x x

eating x x

Table 5 shows four distinct grammatical types: noun-phrases (`tea', `co�ee'),
verb-phrases (`makes',`'likes'), `ing'-phrases (`eating'), and auxiliary verbs (`is')
that appear with `ing'-phrases. The context `John likes (.)' is ambiguous, since

both noun-phrases and `ing'-phrases can appear in this context. The ambiguity
is naturally represented as the context belong to two di�erent types, i.e., we
would like to obtain the clustering given in Tab. 6. However, if we proceed as
before with the 1-dimensional clustering technique, we get the clusters given in
Tab. 7.

In Tab. 7 the ambiguous context `John likes (.)' is assigned a separate type,
which results in a less natural representation. Moreover the separate type pre-
vents us from correctly identifying the so-called characteristic expressions, i.e.,
the expressions that belong to exactly one type. The expected and more natural
representation given in Tab. 6 would allow ambiguous contexts and expressions
to belong to multiple types.

Table 6. Expected clusters in context/expression matrix

[f`makes', `likes'g, f`John (.) tea', `John (.) co�ee'g]
[f`likes', `is'g, f`John (.) eating'g]

[f`tea', `co�ee'g, f`John makes (.)', `John likes (.)'g]
[f`eating'g, f`John is (.)', `John likes (.)'g]

Table 7. Derived clusters in context/expression matrix

[f`makes', `likes'g, f`John (.) tea', `John (.) co�ee'g]
[f`likes', `is'g, f`John (.) eating'g]

[f`tea', `co�ee'g, f`John makes (.)'g]
[f`tea', `co�ee', `eating'g, f`John likes (.)'g]

[f`eating'g, f`John is (.)'g]

In order to �nd the desired result, we need a di�erent type of clustering.
EMILE 4.1 does a type of 2-dimensional clustering, namely, it searches for
maximum-sized blocks in the matrix. Table 8 shows the matrix of the exam-
ple, with the maximum-sized blocks indicated by rectangles for visualization
purposes. The matrix ks

Table 8. Context/expression matrix for 2-dimensional clustering

John John John John John John
(.) (.) (.) makes likes is
tea co�ee eating (.) (.) (.)

makes x x

likes x x x
is x
eating x x

tea x x

co�ee x x

adding contexts and expressions until the block can no longer be enlarged. This
is done for each context/expression pair that is not already contained in some
block. Some of the resulting blocks may be completely covered by other blocks
(such as the two 1� 3 blocks in Tab. 8): once all context/expression pairs have
been covered, these super
uous blocks are eliminated.

The total 2-dimensional clustering is e�cient (i.e., takes polynomial time in
the size of the grammar) as is proven in [11].

2.3 Allowing for Imperfect Data: Using Characteristic Expressions

and Contexts

In the previous section, a block entirely had to be contained within the matrix.
That is, the clustering algorithm did not �nd a type unless every possible com-
bination of contexts and expressions of that type had actually been encountered
and stored in the matrix. This approach only works if a perfect sample is pro-
vided. (With a perfect sample we mean a sample that consists of all and only all
sentences of the language that the to be learned grammar generates.) In practical
use, we need to allow for imperfect samples. There are many context/expression
combinations, which are grammatical but nevertheless will appear infrequently
or never: for instance, `John likes evaporating'.

To allow EMILE to be used with imperfect samples, two modi�cations have
been made to the algorithm. First, the requirement that the block is completely
contained in the matrix, is weakened to a requirement that the block is mostly

contained in the matrix, i.e., exceeds some user-de�ned tresholds. Speci�cally,
the percentage of context/expression pairs of the block that are contained in the
matrix should exceed a treshold, and for each individual row or column of the
block, the percentage for that row or column should also exceed a treshold. (The
latter treshold should be lower than the former treshold.)

Secondly, the shallowness constraint on languages says that short expres-
sions and contexts contain all grammatical information about a language. Thus
initially we can restrict ourselves to short expressions and contexts. The short
expressions and contexts that belong to exactly one type are considered to be
characteristic for that type. EMILE uses these characteristic expressions and

contexts to �nd the long expressions and contexts that also belong to that type.
EMILE assumes that any context or expression that appears with a character-
istic expression or context, must be itself a context or expression for that type,
regardless of length. Thus any (long) context or expression that appears with
a known characteristic expression or context of a type, is a context or expres-
sion for that type. In the EMILE program, the (long) contexts and expressions
identi�ed by the characteristic expressions and contexts are called secondary

contexts and expressions for that type, as opposed to the primary contexts and
expressions that are found by the clustering algorithm.

2.4 Finding Rules

After the clustering EMILE transforms the grammatical types found into deriva-
tion rules. An expression e that belongs to type [T] yields the rule

[T]) e :

EMILE �nds more complex rules, by searching for characteristic expressions of
one type that appear in the secondary expressions of another (or the same) type.
For example, if the characteristic expressions of a type [T] are

fdog; cat; gerbilg

and the type [S] contains the secondary expressions

fI feed my dog; I feed my cat; I feed my gerbilg

EMILE will derive the rule

[S]) I feed my[T]

In certain cases, using characteristic and secondary expressions in this manner
allows EMILE to �nd recursive rules. For instance, a characteristic expression
of the type of sentences [S] might be

Mary drinks tea :

If the maximum length for primary expressions is set to 4 or 5, the sentence

John observes that Mary drinks tea

would be a secondary expression for [S], but not a primary or characteristic one.
So if there are no other expressions involved, EMILE would derive the recursive
rules

[S]) Mary drinks tea
[S]) John observes that [S]

which would allow the resulting grammar to generate the recursive sentence

John observes that John observes that Mary drinks tea :

The total rule generation step is e�cient (requires polynomial time in the size
of the grammar) as proven in [11].

3 Experiments

This section presents the results of experiments with the implemented EMILE
4.1 algorithms. The application runs on the Linux operating system (RedHat
version 2.2.12-20) with 128MB RAM. A typical series (with di�erent support
percentages) of 8 times 8 experiments on 2000 lines of text data (approximately
100KB) takes 15.5 hours. On average, we can say that a single run of EMILE
processes 100KB of text data in a quarter of an hour.

3.1 Experiments on a Small Data Set

We conducted several experiments with EMILE 4.1 on a small data set. The
underlying grammar for the experiments was equivalent to the following context-
free grammar (where the `j' symbol is used to separate alternatives).

S) I cannot V mail with N

V) read j write j open j send

N) MS-Mail j MS-Outlook j Mail j Outlook

The purpose of the experiments was to identify the verb (V) and noun (N)
categories. The experiments show (Tab. 9) that EMILE learns a correct grammar
for small data set under various conditions. When applying EMILE with the
default settings (support percentages 70, 70, 91) on the perfect sample of 16
sentences, EMILE induces a perfect grammar that identi�es exactly the verb and
noun categories. When EMILE is applied with more liberal settings on smaller
data sets, EMILE induces the underlying grammar for the intended language.

The �rst, third and sixth experiments produce a grammar equivalent to the
original. The six experiments show that the EMILE program also is able to gen-
eralize properly over a very small data sample. Even if only half of the intended
sentences are given, EMILE induces the intended grammar when settings are
chosen carefully.

3.2 Experiments on Large Data Sets

We experimented with three large data sets. The second series involves a data
set of abstracts from the bio-medical (the Medline archive) domain. The �nal
series of experiments is conducted on the Bible, King James version. The �rst
series is an excercise for students.

A 2000 Sentence Sample. We conducted an experiment with a group of
approximately 30 students. The purpose of the exercise was to reconstruct a
speci�c grammar from a 2000 sentence sample.

Table 9. Experiment results on a small data set

A B C D E F G H I J K

16 70 70 91 229 139 17 2 5 16 yes
12 70 70 91 185 119 53 8 8 12 no
12 30 30 50 185 119 17 2 0 16 yes
8 70 70 91 141 99 53 8 0 8 no
8 40 40 60 141 99 37 5 10 15 no
8 50 50 70 141 99 54 6 15 16 yes

Legend

A = Number of sentences read
B = Primary context support percentage
C = Primary expression support percentage
D = Total support percentage
E = Number of di�erent contexts identi�ed
F = Number of di�erent expressions identi�ed
G = Number of di�erent grammatical types identi�ed
H = Number of di�erent dictionary types identi�ed
I = Number of di�erent Chomsky rules identi�ed
J = Size of generated language
K = Equivalent grammar

The Exercise. The students were given a sample of 2000 sentences randomly
generated from the context-free grammar given in Tab. 10 (where the `j' symbol
is used to separate alternatives). Using EMILE, and experimenting with the
settings, the students were told to �nd a grammar for the sample.

The Results. On the negative side, the resulting grammars su�er from being
oversized (3000 to 4000 rules). Many types appear to be slight variations of one
another, all of which are used in the rules, where one variation would su�ce.
Clearly, the rules-�nding algorithm of EMILE would bene�t from being opti-
mized to use fewer types or as few types as possible.

On the positive side, the resulting grammars are as powerful as the original
grammar, i.e, generates the same constructions as the original grammar). In all
cases the resulting grammars manage to capture the recursion of the grammar.
In some cases, the grammars are actually stronger than the original grammar
(i.e., generated new constructions). Sometimes sentences such as `John likes the
man with the house near the city with the shop' are produced. This is indicative
of �nding rules such as

[NP]) [NP][P][NPp]

as can be induced from the rule for non-terminal [V Pa].

The Bio-medical Domain. The second series of experiments involved bio-
medical abstracts, an extremely complex sample. The bio-medical abstracts form

Table 10. Context-free grammar for 2000 sentence sample

[S]) [NP] [Vi] [ADV] j [NPa] [V Pa] j [NPa] [Vs] that [S]
[NP]) [NPa] j [NPp]
[V Pa]) [Vt] [NP] j [Vt] [NP] [P] [NPp]
[NPa]) John j Mary j the man j the child
[NPp]) the car j the city j the house j the shop

[P]) with j near j in j from
[Vi]) appears j is j seems j looks
[Vs]) thinks j hopes j tells j says
[Vt]) knows j likes j misses j sees

[ADV]) large j small j ugly j beautiful

a more heterogeneous data set than the Bible in the next section. The abstracts
form a total of approximately 150KB (3000 lines) of free text. The experiments
show that each new abstract introduces new words and new sentences (see Fig. 1).
The number of di�erent contexts and expressions identi�ed increases linearly
with the number of sentences read.

Although the data set is by far not large enough to converge, the experiments
already yield some interesting types. Grammatical type [16] in Tab. 11 shows a
group of academic institutes; type [94] a group of languages from which the
abstracts were translated; type [101] a group of journal issues and type [105]
denotes a group of observation-verbs.

Table 11. Clusters from the Medline data set

[16]) School of Medicine, University of Washington, Seattle 98195, USA
[16]) University of Kitasato Hospital, Sagamihara, Kanagawa,Japan
[16]) Heinrich-Heine-University, Dusseldorf, Germany
[16]) School of Medicine, Chiba University

[94]) Chinese
[94]) Japanese
[94]) Polish

[101]) 32 : Cancer Res 1996 Oct
[101]) 35 : Genomics 1996 Aug
[101]) 44 : Cancer Res 1995 Dec
[101]) 50 : Cancer Res 1995 Feb
[101]) 54 : Eur J Biochem 1994 Sep
[101]) 58 : Cancer Res 1994 Mar

[105]) identi�ed in 13 cases (72
[105]) detected in 9 of 87 informative cases (10
[105]) observed in 5 (55

Fig. 1. The Medline experiments

The Bible Experiments. The Bible experiments show that on large homo-
geneous data sets (approximately 6MB of free text) the number of di�erent
sentences and words encountered starts to converge. As a consequence, also the
number of di�erent contexts and expressions starts to converge at a higher level.
The experiments also identify signi�cant shifts in style. The graph in Fig. 2 de-
picts a steep increase in sentences and words at Bible book 19.

Fig. 2. The Bible experiments

The Bible experiment shows that the grammar induction starts to converge
at a practical data set. This experiment falsi�es the conjecture that learning
natural language grammars from positive examples only is infeasible.

Table 12 presents a few types for large semantic groups of names that EMILE
revealed in the Bible.

4 Future Developments

Although the initial results with EMILE 4.1 are interesting, there is still a lot
of room for improvement. In particular, there should be a better algorithm to
transform the grammatical types into a grammar of derivation rules. The current
algorithm is a brute-force search with a few basic `tricks' used to decrease the
size of the resulting grammars. The grammars still are larger than necessary,
often by a large factor. Additionally, currently the grammars constructed by
EMILE are context-free: it may be possible to adapt EMILE to produce more
sensible, context-sensitive, grammars.

Table 12. Clusters from the Bible data set

[76]) Esau j Isaac j Abraham j Rachel j Leah j Levi j Judah j Naphtali j
Asher j Benjamin j Eliphaz j Reuel j Anah j Shobal j Ezer j Dishan
j Pharez j Manasseh j Gershon j Kohath j Merari j Aaron j Amram j
Mushi j Shimei jMahli jJoel j Shemaiah j Shem j Ham j Salma j Laadan
j Zophah j Elpaal j Jehieli

[414]) Simeon j Judah j Dan j Naphtali j Gad j Asher j Issachar j Zebulun j
Benjamin j Gershom

[3086]) Egypt j Moab j Dumah j Tyre j Damascus

Furthermore, a better understanding of the potential application domains of
EMILE is desirable. The experiments showed that EMILE can be used to ex-
tract semantic data from a text. The world wide web is an obvious application
domain for EMILE, which has not yet been explored. Currently we are applying
EMILE to a large body of di�erent texts and messages: a textbook on Dutch
for foreigners, bio-medical data, vocational pro�les and archaeological inscrip-
tions. EMILE might be useful as the kernel of a tool that constructs thesauri or
knowledge bases from free text. EMILE can be applied to words instead of sen-
tences and learn morphological structures. EMILE might be of help to develop
mathematical models of �rst and second language acquisition.

5 Conclusions

Theoretically, EMILE learns the correct grammatical structure of a language
from sentences of that language in the limit. The current implementation (EMILE
4.1) is one of the �rst e�cient ([2], [11]) grammar induction algorithms that work
on free text. Although EMILE 4.1 is far from perfect, it enables researchers
to start empirical grammar induction research on various types of corpora. A
big drawback of the current implementation is the overgeneralisation of types.
EMILE almost never �nds the simple basic `sentence is noun-phrase + verb-
phrase' rule when applied to real life data. In most cases it �nds thousands of
small variants of this rule in a large body of text. This is obviously an issue that
has to be addressed.

The current EMILE 4.1 implementation learns a subclass of the shallow
context-free languages that is su�ciently rich to be of practical interest in the
context of syntactic and semantic analysis of large corpora. A very promising
observation is that EMILE already starts to converge on data sets of moderate
size like the Bible. A better understanding of the prospects of convergence on
various types of text is necessary.

References

1. N. Abe, Learnability and locality of formal grammars, in Proceedings of the 26th
Annual meeting of the Association of computational linguistics, 1988.

2. P.W. Adriaans, Language Learning from a Categorial Perspective, PhD thesis,
University of Amsterdam, 1992.

3. P.W. Adriaans, Bias in Inductive Language Learning , in Proceedings of the ML92
Workshop on Biases in Inductive Learning, Aberdeen, 1992.

4. P.W. Adriaans, Learning Shallow Context-Free Languages under Simple Distri-

butions, ILLC Research Report PP-1999-13, Institute for Logic, Language and
Computation, Amsterdam, 1999.

5. P.W. Adriaans, S. Janssen, E. Nomden, E�ective identi�cation of semantic cat-

egories in curriculum texts by means of cluster analysis, in workshop-notes on
Machine Learning Techniques for Text Analysis, Vienna, 1993.

6. P.W. Adriaans, A.K. Knobbe, EMILE: Learning Context-free Grammars from

Examples, in Proceedings of BENELEARN'96, 1996
7. W. Buszkowski, G. Penn, Categorial Grammars Determined from Linguistic Data

by Uni�cation, The University of Chicago, Technical Report 89-05, June 1989.
8. E. D�ornenburg, Extension of the EMILE algorithm for inductive learning of

context-free grammars for natural languages, Master's Thesis, University of Dort-
mund, 1997.

9. M. Kanazawa, Learnable Classes of Categorial Grammars, PhD thesis, University
of Stanford, 1994.

10. R. Oehrle, E. Bach, D. Wheeler (eds.), Categorial Grammars and Natural Lan-

guage Structures, D. Reidel Publishing Company, Dordrecht, 1988.
11. M.R. Vervoort, Games, Walks and Grammars: Problems I've Worked On, PhD

thesis, University of Amsterdam, 2000.

