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Preface

In this paper I prove the determinacy of Blackwell games over a Gδσ set. Black-
well games are infinite games of imperfect information, where both players si-
multaneously make their moves and then are informed of each other’s move,
and where payoff is determined by a Borel measurable function f on the set of
possible resulting sequences of moves. Since the approach is very elementary,
any reader with a basic knowledge of set theory should be able to grasp the
definitions and proofs in this paper.

In Chapter 1, I informally introduce the concepts behind Blackwell Games,
for those that are unfamiliar with Blackwell Games or Game Theory in general,
and those that simply want to know what this paper is about.

In Chapters 2 and 3, I formally define Blackwell Games and other concepts,
and prove several basic results that are used in the other chapters.

In Chapters 4 and 5, I give some new proofs of determinacy for Blackwell
Games whose payoff function is the indicator function of an open or Gδ set. I
show that open or Gδ games can be approximated with finite or open games.
Finally, I prove that Blackwell Games over Gδσ sets are determined as well.

The last chapter, Chapter 6, contains some odds and ends that I thought
might be of interest to people, and that did not fit in elsewhere.
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Chapter 1

Introduction

This paper is about games.

Specifically, about Blackwell games. But Blackwell games are not normal
games, like chess or poker. No, they are mathematical games. Abstract games.
Games that no one could ever really play, because if someone were to play them,
they would last for eternity.

This paper is about the ‘determinacy of infinite two-person zero-sum games
of incomplete information’.

In this chapter, I explain what that means. I start with simple, everyday
games, which everyone can play, and which are finite(i.e. if you play them then
you can predict, for some moment in time, that you will be finished then). Then I
consider abstractions, and introduce the concept of determinacy for those games.
Next, I examine ‘infinite games’, explain how they can be considered to be games
if it is not possible to play them, and review some results that have been proved
for those games. Then I jump back to finite games, but a different type of finite
game this time, namely finite games of incomplete information (like Scissors-
Paper-Stone, where one player does not know what the other player is doing at
that time). And finally, I combine ‘infinite’ and ‘incomplete information’, and
talk about Blackwell games, and about the specific results that I will prove in
this paper.

But if you already know what ‘determinacy of infinite two-person zero-sum
games of incomplete information’ means, skip this chapter. It’s not for you.

1.1 Playing Games. . .

Consider a very simple type of game. Two players are playing against each
other. One player (henceforth named player I) makes a move. Then the other
player (henceforth named player II) makes his move. Then player I again makes
a move. Then player II again makes a move. And they continue making moves,
until they have played the number of rounds they agreed upon beforehand.
Then they stop, and go to a giant Book, that contains every series of moves
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they could possibly have played during the game. And the players look up the
series of moves they have actually played, and the Book tells them if its a draw,
or if not, which one of them has won.

Sounds dull? Suppose that the moves the players can make, are writing
crosses or circles in a 3× 3 square, and that the Book lists as wins for player I
or player II exactly those series of moves in which three crosses or three circles,
respectively, are made on the same line. Then the game you’re playing is actually
a lot like Tic-Tac-Toe 1, isn’t it? Or suppose that the moves the players can
make, are coded chess moves on a chess board, and that the Book lists as wins
for player I or II or draws, those series of 6350 moves in which black or white is
mated or the game is drawn by the rules of chess, respectively. 2 Then you are
really playing a kind of disguised, abstract chess game.

There are a number of games, for which you can write a Book of the type
mentioned above, and then play a mathematical game that is really the same
game in a different guise. Tic-Tac-Toe and Chess, for example. But also
Connect-Four3, or Checkers, or the Japanese game Go. And all these games
have certain properties in common:

• Two players make moves, in turn

• There is no element of chance

• There is no element of physical skill; a player essentially selects a move,
and then communicates it

• There is no hidden information; both players know all the moves made so
far, and everything is on the table

• It is a zero-sum game: if one player loses, the other player wins

• There is a maximum number of rounds the game can last

There are also a lot of interesting games that do not fall in the class of games
described above. A game like Monopoly contains an element of chance. Stratego
contains hidden information. Poker contains both. In war, nobody wins, every-
body loses. And eye-staring contests can go on forever. However, for now we
will only deal with the class of games described above, the ‘Finite Two-Person
Zero-Sum Games of Perfect Information’. For each one of those games, we can
write a Book, and then play the simple, abstract game I described above. So
anything we prove about this ‘Book-game’ is true for all the other games in this
class.

Anyone who’s ever played Tic-Tac-Toe knows that it almost always ends in a
draw. Figure 1.1 is a schematic of a good strategy for the first player in Tic-Tac-
Toe. From every Tic-Tac-Toe-position in Figure 1.1, the first player can either

1also called Noughts-and-Crosses, or Boter-Kaas-en-Eieren in the Netherlands
2If you play using the rule that a game is drawn if 50 turns have passed without a piece

having been captured or a pawn having moved, a game can last at most 6350 turns.
3called Vier-op-een-Rij in the Netherlands



Blackwell Games 9

draw or win. If from a position there is an arrow to another position, then one
of the players can make a move to get to that other position. If it’s the first
player’s turn to move, then there is one thick arrow, corresponding to a good
move for the first player. If it’s the second player’s turn to move, then there are
thin arrows for every move he can make, except those that are really stupid (i.e.
lose immediately and unnecessarily), and those that are reflections or rotations
of other moves. As a child, I made such a table, and if I played according to my
table, I couldn’t lose. There are similar tables for the second player, and if my
opponent had such table, written down or in his mind, he couldn’t lose either.
So the game usually was a draw, and after a while we didn’t play it anymore.
The game was ‘analyzed and found to be a draw’.

Something that is not as well-known, is the fact that the game Connect-Four
was analyzed a few years ago [1], and was found to be a first-player win. That
is to say, computer analysis found a strategy, a table like the one I made but
much bigger and more complex, such that if a player plays according to that
strategy, and that player has the first move, she can win. Fortunately, few people
know this, and I read that the strategy was complex enough that you needed
a computer to play the strategy correctly. But, mathematically speaking, the
game is a win for the first player, and if the second player manages to draw or
win, it is due to human fallibility.

A game like Chess or Go is a lot more complex than Connect-Four. If we
tried to analyze it using the techniques and hardware now available, it would
probably take more time than the universe has left to complete the calculations.
However, in principle it is possible to analyze it. And then we would find either
that White or Black has a winning strategy, or that both players have a drawing
strategy [19].

In fact it is mathematically provable, that for any game that is in our class
of games, either one of the players has a winning strategy, or both players have
a drawing strategy [4]. We call this: ‘the game is determined’. The reasoning is
as follows:
Suppose that it is player I’s turn to move, and suppose we already know that
for every position that results after one move, the game from that position is
determined. Then there are three possibilities:

• Player I can make a move to get to a position from which she can win.
Then player I can win from this position by making that move.

• Player I can’t make a move to get to a position from which she can win,
but she can make a move to get to a position from which she can draw.
Then player I can at least draw from this position by making that move,
and player II can draw or win from this position by waiting until player I
has made her move, and then playing a drawing or winning strategy from
the position he is in now (which exists, since player I cannot win from
that position).

• Player I can’t make a move to get to a position from which she can win
or draw.
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Figure 1.1: A reasonably good strategy for Tic-Tac-Toe
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Then player II can win from this position, by waiting until player I has
made her move, and then playing a winning strategy from the position
he is now in (which exists, since player I cannot win or draw from that
position).

Figure 1.1 is an example of how to use this method to find the values (win, draw
or lose) of positions in Tic-Tac-Toe, and good moves to make in those positions.

There is, however, a snag. In order to prove that the game is determined
if you start from the starting position, I use the supposition that the game is
determined from any position where you have already made one move. This
seems to be circular reasoning. But it is not circular. . . quite. Remember, the
games we were talking about all lasted a maximum number of rounds. And
the game we get after you make one move, can last one round less from that
position. So, in order to prove determinacy of all games that last at most, say,
100 rounds, we need determinacy of all games that last at most 99 rounds. And
in order to prove determinacy of all games that last at most 99 rounds, we need
determinacy of all games that last at most 98 rounds. Etcetera, etcetera, all
the way to: and in order to prove determinacy of all games that last at most
1 round, we need determinacy of all games that last at most 0 rounds. But
what is a game that last at most 0 rounds? That is a game, in which one of
the players has already won, or a game that is already tied. The positions at
the bottom of Figure 1.1 are examples of such ‘games’. Such a game is trivially
determined. So all the games that last at most 1 round are also determined,
and so are the games that last at most 2 rounds , 3 rounds, . . . , 100 rounds.
And as in Figure 1.1, we can calculate our values ‘from the ground up’.

This is called a ‘proof by induction’. And we can use it to prove that every
game is determined if there is a maximum number of rounds the game can last,
no matter how big that maximum number of rounds is. Game Theory usually
deals only with such finite games. But Logicians like to play with infinities. So
what happens if there is no such number? What if it were possible for the game
to go on forever?

1.2 . . . unto Infinity

What do we mean by an infinite game? Well, take for example Chess with
the 50-turn rule taken out, as well as the rule that it’s a draw if you make the
same move in the same position three times. Then a game can potentially go
on forever. We can say that, if the game lasts an infinite number of rounds,
then the result is a draw. Let’s call this version ‘Infinite Chess’. In the abstract
version, the Book of results now becomes an infinitely big Book that lists which
player wins, loses or draws, for every possible sequences of moves that can be
played, including sequences that are infinitely long. But how can you play such
an infinite game?

Suppose that player I plays according to a strategy. Remember, we can
visualize a strategy as a giant table, that has an entry for every position that
can occur, and in which player I can look up the move she should make in that
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position (if she wants to keep to her strategy). Now visualize a strategy for
player I, and another strategy for player II. Then we can construct the sequence
of moves that they are going to play, look it up in the Book of Game Results,
and see whether it is a win for player I, a win for player II, or a draw. This can
be done even in the case of infinite games. So we can still play the game, but
now by having the players pick the strategies they are going to use beforehand,
combining them, and looking up the result.

Back to Chess. Let us suppose, for the sake of argument, that White can
win in a normal game of Chess. Then, by using the same strategy, White can
win in a game of Infinite Chess. That is, no matter what strategy Black uses,
the resulting sequence is a win for White. So we can use terms like winning
strategy, losing strategy, and determinacy, just as with finite games.

However, our proof using induction is only valid for finite games. If the
game can last infinitely many rounds, and we make a single move, then the
game can still last infinitely many rounds more, and the reasoning we used
before truly is circular now. It is imaginable, that for every strategy that one
player can come up with, the other player has a strategy that it, and vice
versa. Then both players would only have losing strategies, and the game would
not be determined. So ‘are infinite games determined?’ is a valid question.
Unfortunately, the answer is not a simple ‘yes’ or ‘no’.

1.3 Borel Wins!

Consider, again, the game of Chess, in the abstract Book version. Now consider
the Book of Infinite Chess II, that has as entries sequences of infinitely many
chess moves, and for each infinite sequence lists whatever the old Book of Chess
lists for the subsequence consisting of the first 6350 moves, i.e. the Book of
Infinite Chess II lists that a given sequence of infinitely many moves is a win
for player I if and only if the old, finite Book of Chess lists that the sequence
of the first 6350 moves is a win for player I, which is only if, interpreting the
moves as ordinary chess moves, white wins somewhere in the first 6350 turns.
Technically this Book is the Book of an infinite game. But all the moves played
after round 6350 don’t matter. And since Chess is determined, so is this game.

Of course, this game is infinite only in the technical sense of the word: the
‘idea’ behind this game is finite. But consider, for example, an infinite game
whose Book was created using the following method:

1. We gather together ‘countably infinitely’ many different Books of infinite
games, I.e.it is possible to number the Books, in such a way that each
Book has a different (whole) number. There exist collections of Books
that are so huge that it is impossible to number them like that, because
there are ‘more’ Books than there are whole numbers. Such collections
are called ‘uncountably infinite’, and we do not use them here.

2. We write a new Book. To simplify things, assume that all the old Books
are without draws, i.e. all the sequences of moves are either wins for player
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I or wins for player II. Then, for each possible sequence of moves, we write
in the new Book that the sequence is a win for player I, if and only if it
is a win for player I in at least one of the old Books. Otherwise we write
that it is a win for player II.

If the Books we start with are all of games that are essentially finite, i.e. infinite
only in a technical sense, then the resulting Book is of a type that is called ‘open’.
Generally, open games are really infinite, in more than the techical sense of the
word. However, it is still possible to prove that this game is determined [6],
although it is slightly more difficult than in the case of essentially finite Books.

The method for creating new Books, described above, is called ‘taking the
countable union’. There is also another method, called ‘taking the countable
intersection’, where a sequence of moves is a win for player I in the new Book
if and only if it is a win for player I in all of the original Books.

We can start with other Books than those of essentially finite games. If we
start with Books that are all of open games, and take the countable intersection,
we get a Book of a type that is called ‘Gδ’. If we start with Books of Gδ-
games, and take the countable union, we get a Book of a type that is called
‘Gδσ’. If we start with Books of Gδσ-games, and take the countable intersection
again, we get a Book of a type that is called ‘Gδσδ’. Et cetera, et cetera,
ad infinitum. All the Books that can be obtained using countable union and
countable intersection, including the finite Books we began with, are collectively
known as ‘Borel’ Books. And for all ‘Borel’ Books, the games played with those
Books are determined. This was first proven for Gδ games [18], then for Gδσ

games [5] and Gδσδ games [16], and finally for all Borel games [7] [10] [11].
So all infinite games that are Borel are determined. Non-Borel games may

be determined, but we will never be able to prove it. If we assume the Axiom
of Choice (a mathematical assumption that cannot be proven or disproved, and
that most mathematicians treat as a given), then we can construct a game that
is not determined [13]. On the other hand, if we do not assume the Axiom of
Choice, then we can assume instead that all games of this type are determined
(the Axiom of Determinacy), without fear that we will run into an inconsistency4

[12] [14]. In short, without assuming something else we cannot prove anything
one way or the other.

1.4 Scissors, Paper, Stone

We will now consider another game, namely the game of ‘Scissors, Paper, Stone’.
This game is played by two persons. The players count to three together, and on
three, they both put their hand forward, balled in a fist (‘Stone’), flat with the
palm down (‘Paper’), or with middle- and forefinger pointing forwards, spread,
and the thumb and other fingers curled inwards (‘Scissors’). If both players
throw the same, it is a draw. If one player throws Paper and the other player
throws Scissors, then Scissors wins (‘Scissors cut Paper’). If one player throws

4assuming the existence of a certain very large cardinal
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Scissors and the other player throws Stone, then Stone wins (‘Stone blunts
Scissors’). And finally, if one player throws Paper and the other player throws
Stone, then Paper wins (‘Paper wraps Stone’).

This game is not of the type we were talking about before. The players do
not make a move in turn, but simultaneously. Or to put it another way, neither
of the players know what move the other is playing while they are making theirs.
This is an example of a game with ‘Imperfect Information’. But what, exactly,
are the consequences of this difference?

Well, for one thing, strategies are no longer simple instructions of the type
‘in this position, make that move’. For suppose that one player uses the strategy
‘throw Stone’. Then the other player simply uses the strategy ‘throw Paper’,
and wins. But that strategy, even though it wins here, is in general not a
particularly good strategy, since it loses from the strategy ‘throw Scissors’. All
strategies of the type ‘throw this ’ are losing strategies.

But consider the strategy ‘throw Scissors 1/3 of the time, throw Paper 1/3
of the time, and throw Stone the remaining 1/3 of the time’. Against any
other strategy, this strategy loses, draws and wins 1/3 of the time each, for an
average result of 0. Clearly, this strategy is better than a losing strategy. What
is more, there exists no better strategy (in terms of worst-case behavior), since
against this same strategy played by the opponent any strategy will result in
(on average) a draw, and therefore no strategy can have value greater than 0.

This kind of strategy is called a ‘mixed strategy’. We can visualize it as
a giant table which lists, for every position in the game, and every move that
can be made in that position, what the chance should be that the player makes
that move. If we play this strategy against an opposing strategy, and we assign
values to winning and losing (‘the loser pays the winner one dollar’), then we can
calculate the average profit/loss one player can expect to make from the other,
playing those strategies. This means that strategies are no longer winning,
losing or drawing: they now have a value, the profit/loss they can expect to
make (on average) against the best counterstrategy of the opponent. And a
game is called determined if, for some value v, one of the players has a strategy
with which she can always expect to make (on average) at least v$, no matter
what the other plays, while the other player has a strategy with which he can
always expect to lose (on average) at most v$, no matter what the other plays.

One more example to show how a mixed strategy works. Suppose that player
I has, in her hand, not visible to player II, either a nickel or a quarter. Player
II tries to guess which coin player I has in her hand. If he guesses right, then he
gets the coin. If he guesses wrong, then he owes player I the average, 15 cents.
This is a game of the same type as Scissors-Paper-Stone, since for all practical
purposes it does not matter whether player I picks her coin before, or at the
same time that player II makes his guess. The payoff of this game, the amount
player II can win, is:

Player II guesses
a nickel a quarter

Player I has A nickel 5 c -15 c
A quarter -15 c 25 c
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A good strategy for player I is to put the nickel in her hand two-thirds of
the time, and the quarter one-third of the time. Then, no matter what guess
her opponent makes, she will win, on average, 1 23 cent. Coincidentally, a good
strategy for player II is to guess the nickel two-thirds of the time, and the quar-
ter one-third of the time, because then, no matter what player I has in her hand,
at least he will lose no more than, on average, 1 23 cent. Of course, in this case
the best strategy for player II is not to play at all, but that’s another matter
entirely.

1.5 Anyone for Blackwell Games?

Consider the abstract version of this game. Both players, simultaneously, make
a move. They each take note of the other’s move. Then again they make a
move. Then again they make a move. And they continue making moves, until
they have played a number of rounds they agreed upon beforehand. Then they
stop, go to a giant Book, look up the sequence of moves they have played, and
one player pays the other the indicated amount.

It is known that each 1-round game of this type is determined, as long as
the number of different possible moves each player can select in that round is
finite [15]. If the number of possible moves is not finite, then we can construct
a game that is not determined, so we will only bother with the case of finitely
many possible moves. And using a ‘proof by induction’ (again), we can prove
that any game of this type is determined, as long as there is a maximum number
of rounds the game can last.

Note that the first restriction, that the number of different possible moves
each player can select is finite, is necessary. Take, for instance, the game where
two persons simultaneously yell a number, and the one with the higher number
wins. Then, no matter what one player’s strategy, whether it is picking a num-
ber, or some kind of ‘probability distribution’ on the numbers, his opponent can
devise a counterstrategy that wins from this strategy 99% of the time, or more
often if necessary. This is true for both players. So any strategy in this game,
for any player, is a losing strategy, and this game is not determined.

But what about the second restriction? Again we ask ourselves, what hap-
pens if we allow games to last forever? Then we get Blackwell Games, named af-
ter David Blackwell, the first one to describe and study these games [2]. ‘Infinite
Games of Perfect Information’ usually fall under Mathematical Logic. ‘Finite
Games of Imperfect Information’ usually fall under Game Theory. Blackwell
Games are ‘Infinite Games of Imperfect Information’, and as such lie at the
crossing of Mathematical Logic and Game Theory.

As before, playing such a game is a matter of picking strategies (indepen-
dently) and calculating the (average expected) result of the combination. Also
as before, the Books involved can be essentially finite sets, open sets, Gδ sets,
Gδσ sets, Borel sets, or something completely different. And in the case of an
open or Gδ set, determinacy has been proven [2] [3]. But in the case of general
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Borel sets, the problem is still open.
In this paper, I try to give an overview of what is known so far about

Blackwell Games. But more importantly, I move to the next step of the hierarchy
of Borel sets, i.e. I prove:

Theorem Let S be a Gδσ set. Then the Blackwell game Γ(S) is determined.

And that, finally, is what this paper is about.
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Chapter 2

Definitions and

Terminology

In this chapter we define the concepts we use. Most of the definitions in the
first and second section are fairly standard, and similar to the usual game the-
oretic definitions for games of perfect information (except that strategies give
probability distributions on moves instead of choices of moves). The definitions
in the third section formalize the concept of ‘stopping and paying the current
value of the game’.

2.1 Blackwell Games

Let X and Y be two finite, nonempty sets, and put Z = X × Y .

Definition 2.1 A position or finite play (of length k) is a finite sequence p (of
length k) of pairs (x, y) ∈ Z. An (infinite) play is a countably infinite sequence
w of pairs (x, y) ∈ Z. A move made in a play w or p is an element of the
sequence w, p respectively.

Notation e denotes the position of length 0, i.e. the empty sequence.
w usually denotes an infinite play, p denotes a finite play or position.
p|n, w|n denote the sequences consisting of the first n moves made in p, w
respectively.
p̂p′, p̂w denote the sequences consisting of the finite sequence p followed by
the finite sequence p′ or the infinite sequence w, respectively.
We will sometimes write a sequence ((x1, y1), (x2, y2), . . .) as (x1, y1, x2, y2, . . .).

Notation W denotes the set of all plays, i.e. W = ZIN

P denotes the set of all positions, i.e. P = Z<ω.
Wn denotes the set of all finite plays of length n, i.e. Wn = Zn, for n ∈ IN .
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We give W the usual topology by letting the basic open sets be the sets of the
form {w ∈W | w|n ∈ H} for some n ∈ IN and some set H ⊆Wn of finite plays
of length n.

Definition 2.2 A basic open subset of W is a set B ⊆ W such that for some
n ∈ IN , for all w ∈ B, for all w′ ∈W , if w|n = w′|n, then w′ ∈ B.
An open subset of W is a countable union of basic open subsets of W .
A closed subset of W is a countable intersection of basic open subsets of W .
A Fσ subset of W is a countable union of closed subsets of W .
A Gδ subset of W is a countable intersection of open subsets of W .
A Gδσ subset of W is a countable union of Gδ subsets of W .
A Fσδ subset of W is a countable intersection of Fσ subsets of W .
A Borel subset of W is a subset that belongs to every collection of subsets of
W that contains every basic open subset of W and is closed under countable
union and countable intersection.

Remark 2.3 This topology on W is equivalent to the product topology on ZIN

(taking the discrete topology on Z). Since Z is finite, it is a compact space, and
it follows by Tychonoff’s Theorem that W is a compact space as well.

Definition 2.4 A play w hits or passes through a position p if w|n = p, where
n is the length of p. A position p′ follows p, and p precedes p′, if p′|n = p and

p′ 6= p. Consequently, p precedes or is equal to p′ if p′|n = p. We denote this by

p ⊂ w, p ⊂ p′, and p ⊆ p′, respectively.

Remark 2.5 The basic open subsets of W are exactly those of the form {w ∈
W | w hits a position in H} for some finite set H of positions. The open subsets
of W are exactly those of the form {w ∈ W | w hits a position in H} for some
countable set H of positions. The Gδ subsets of W are exactly those of the form
{w ∈W | #{p ∈ H | w hits p} =∞} for some countable set H of positions.

Definition 2.6 Let f : W → IR be a bounded Borel (measurable) function (i.e.
a bounded function such that f−1[O] is a Borel set for every open set O ⊆ IR).
The Blackwell game Γ(f) with payoff function f is the two-person zero-sum
infinite game of imperfect information played as follows: Player I chooses an
element x1 ∈ X (makes the move x1) and, simultaneously, player II chooses an
element y1 ∈ Y . Then both players are told z1 = (x1, y1), and the game is at or
has reached position (z1). Then player I chooses x2 ∈ X and, simultaneously,
player II chooses y2 ∈ Y . Then both players are told z2 = (x2, y2), and the
game is at position (z1, z2). Then both players simultaneously choose x3 ∈ X
and y3 ∈ Y , etc. Thus they produce a play w = (z1, z2, . . .). Then player II
pays player I the amount f(w), ending the game.

Definition 2.7 Let f : W → IR be a bounded Borel function, and p =
((x1, y1), (x2, y2), . . . , (xn, yn)) a position. The subgame Γ(f, p) starting from
position p is played like Γ(f), except that the players start at round n+ 1, and
the first n moves are supposed to have been x1, y1, x2, y2, . . . , xn, yn.
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Remark 2.8 The game Γ(f, p) is played exactly the same as the game Γ(g),
where g is the payoff function defined by g(w) = f(p̂w).

Notation If S is a Borel subset of W , then Γ(S) stands for the game Γ(IS),
where IS is the indicator function of S, defined by IS(w) := 1 if w ∈ H,
IS(w) := 0 if w 6∈ H.

2.2 Strategies and Values

Definition 2.9 A strategy for player I in a Blackwell game Γ(f) is a function
σ assigning to each position p a probability distribution on X. More formally,
σ is a function P → [0, 1]X satisfying ∀p ∈ P :

∑
x∈X σ(p)(x) = 1.

Analogously, a strategy for player II is a function τ assigning to each position p
a probability distribution on Y .
Player I plays according to σ if, in any position p, the chance that player I will
play x ∈ X is equal to σ(p)(x). Similarly, player II plays according to τ if, in
any position p, the chance that player II will play y ∈ Y is equal to τ(p)(x).

Remark 2.10 If player I plays according to a strategy σ, and player II plays
according to a strategy τ , then we can calculate the payoff player I can expect to
win on average. For a finite game, we could simply calculate, for each possible
sequence of moves, the probability that that sequence is actually played, multi-
ply it by the associated payoff, and then add together the results for all possible
sequences. For Blackwell games, which are usually infinite, we use probability
measures and integrals of the payoff function instead. The requirement in Defi-
nition 2.6 that payoff functions are bounded and Borel measurable, is to insure
that these integrals exist and are finite. In Chapter 6 we will look at a way
of extending the definitions to games with non-measurable (but still bounded)
payoff functions.

Definition 2.11 Let σ and τ be strategies for players I, II in a Blackwell game
Γ(f). σ and τ determine a probability measure µσ,τ on W , induced by

µσ,τ{w | w ⊃ p} =
n∏

i=1

(
σ(p|(i−1))(xi) • τ(p|(i−1))(yi)

)
(2.1)

for any position p = (x1, y1, . . . , xn, yn) ∈ P .
The expected income of player I, if she plays according to σ and player II plays
according to τ , is the expectation of f(w) under this probability distribution:

E(σ vs τ in Γ(f)) =

∫
f(w)dµσ,τ (w) (2.2)

Remark 2.12 Similarly, strategies σ and τ in a subgame Γ(f, p) starting at
position p define a conditional probability measure on the set of all sequences
that hit p, i.e. such that µ{w | w ⊃ p} = 1. The expected income of player I in
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Γ(f, p) is the expectation of f(w) under this conditional probability distribution.
By the strict definition of strategies, a strategy in the subgame has to be defined
on all positions, including those positions that are outside the subgame (those
positions that are neither equal to p nor following p). Since the probability
distributions given by the strategies at positions outside the subgame do not
affect the expectation of the outcome, we will only require strategies to be
defined on positions in the subgame. In fact we occasionally assume that a
strategy is not defined on positions outside the subgame, for instance when we
combine strategies for subgames starting from different positions.

Definition 2.13 Let Γ(f) be a Blackwell game, let p be a position in Γ(f), and
let σ be a strategy for player I in Γ(f). The restriction of σ to the positions of
Γ(f, p) is the strategy σ′, defined only on positions q at or after p, and satisfying
σ′(q) = σ(q) on those positions. In this case, σ is called an extension of σ′.

Definition 2.14 Let Γ(f) be a Blackwell game. The value of a strategy σ
for player I in Γ(f) is the expected income player I can guarantee if she plays
according to σ, i.e.

val(σ in Γ(f)) = inf
τ
E(σ vs τ in Γ(f)) (2.3)

Similarly, the value of a strategy τ for player I in Γ(f) is the amount to which
player II can restrict player I’s income if he plays according to τ , i.e.

val(τ in Γ(f)) = sup
σ
E(σ vs τ in Γ(f)) (2.4)

Definition 2.15 Let Γ(f) be a Blackwell game. The lower value of Γ(f) is the
smallest upper bound on the income that player I can guarantee, i.e.

val↓(Γ(f)) = sup
σ

inf
τ
E(σ vs τ in Γ(f)) (2.5)

Similarly, the upper value of Γ(f) is the largest lower bound on the restrictions
player II can put on player I’s income, i.e.

val↑(Γ(f)) = inf
τ

sup
σ
E(σ vs τ in Γ(f)) (2.6)

If val↑(Γ(f)) = val↓(Γ(f)), then Γ(f) is called determined, and we will denote
val(Γ(f)) = val↑(Γ(f)) = val↓(Γ(f)).

Remark 2.16 For any ε > 0, player I has a strategy σ such that for any
strategy τ for player II, E(σ vs τ in Γ(f)) ≥ val↓(Γ(f))− ε. On the other hand,
for any ε > 0, for any strategy σ for player I, player II has a strategy τ such
that E(σ vs τ in Γ(f)) ≤ val↓(Γ(f)) + ε. The lower value of Γ(f) is the unique
number with both these properties, and can be thought of as the value of the
game Γ(f) for player I.
Analogously for the upper value. Clearly, for all games Γ(f), val↓(Γ(f)) ≤
val↑(Γ(f)).
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Definition 2.17 Let Γ(f) be a Blackwell game, and let ε > 0.
A strategy σ for player I in Γ(f) is optimal if val(σ in Γ(f)) = val↓(Γ(f)). A
strategy σ for player I in Γ(f) is ε-optimal if val(σ in Γ(f)) > val↓(Γ(f)) − ε.
Similarly, a strategy τ for player II in Γ(f) is optimal if val(τ in Γ(f)) =
val↑(Γ(f)), and ε-optimal if val(τ in Γ(f)) < val↑(Γ(f)) + ε.

Remark 2.18 Note that a strategy σ for player I is ε-optimal if there exists
a value u > v − ε such that for all τ , E(σ vs τ in Γ(f)) ≥ u. This is strictly
stronger than the condition that for all τ , E(σ vs τ in Γ(f)) > v − ε.

2.3 Stopping and Truncating

Definition 2.19 A stopping position in a Blackwell game Γ(f) is a position p,
such that for all plays w,w′ that hit p, f(w) = f(w′). We will denote this value
by f(p). A stopset in a Blackwell game Γ(f) is a set H of stopping positions,
such that no stopping position p ∈ H precedes another stopping position p′ ∈ H.

Remark 2.20 Any position after a stopping position is, of course, itself a stop-
ping position. Usually we don’t bother with these positions. This is reflected in
our definition of stopsets.

Remark 2.21 If p is a stopping position, any moves made at or after p will
not affect the outcome of the game. It is often convenient to assume that
both players will stop playing if a stopping position is reached. If Γ(f) is a
Blackwell game, and H is a stopset, we will write ΓH(f) to explicitly denote
that players stop playing at the positions in H. The probability distributions
given by strategies at stopping positions do not affect the outcome of the game,
and similarly to Remark 2.12, we will only require a strategy to be defined on
nonstopping positions. In fact we will occasionally assume that a strategy is not
defined on stopping positions, for instance when we combine strategies that are
consistent on all nonstopping positions.

Definition 2.22 Let Γ(f) be a Blackwell game. If, for some n, all positions in
Wn are stopping positions, then Γ(f) is called finite (of length n). If Γ(f) is
finite, we can stop after playing n rounds, and we will denote this by writing
Γn(f).

Remark 2.23 We will often define a payoff function f using the following for-
mat:

f(p) = formula1 for p ∈ H

f(w) = formula2 if w does not hit any position in H

where H is a stopset-to-be, i.e. a set of positions such that no position p ∈ H
precedes another position p′ ∈ H.
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Definition 2.24 Let f , g be two payoff functions, and H a stopset in Γ(g).
ΓH(g) is an equivalent truncated subgame of Γ(f) (truncated at H), if for any
play w ∈ W that does not hit a stopping position in H, f(w) = g(w), and for
any p ∈ H, g(p) = val(Γ(f, p)).
ΓH(g) is a truncated subgame, equivalent for player I [player II], if for any play
w ∈ W that does not hit a stopping position in H, f(w) = g(w), and for any
p ∈ H, g(p) = val↓(Γ(f, p)) [g(p) = val↑(Γ(f, p))]. In all three cases, Γ(f) is
called an extension of ΓH(g).

Remark 2.25 ΓH(g) is an equivalent truncated subgame of Γ(f) iff it is a
truncated subgame equivalent for both player I and player II.

Remark 2.26 If ΓH(g) is a truncated subgame of Γ(f) equivalent for player I
and/or II, then any stopping position p in Γ(f), is a stopping position in ΓH(g).
For if p is preceded by a position in H, then p is preceded by a stopping position
and hence is a stopping position itself, and if p is not preceded by a position in
H, then we observe that any play w ⊃ p that does not hit any position in H
has payoff f(p), and any game starting at any position q ∈ H, q ⊇ p has value
f(p) as well.

Definition 2.27 Let, for n ∈ IN , fn be a payoff function, and Hn a set of
stopping positions in Γ(fn). If for all n ∈ IN , ΓHn

(fn) is a truncated subgame
of ΓHn+1

(fn+1), and equivalent to ΓHn+1
(fn+1) [for player I, II], , then the

series of games (ΓHn
(fn))n∈IN is called a nested series of equivalent truncated

subgames [equivalent for player I, II].

Definition 2.28 Let Γ(f) be a Blackwell game, let ΓH(g) be a truncated sub-
game of Γ(f) (truncated at H, and equivalent for player I or II), and let σ be
a strategy for player I in Γ(f). The restriction of σ to the positions of ΓH(g)
is the strategy σ′, defined only on those positions q that are not at or after any
position p ∈ H, and satisfying σ′(q) = σ(q) on those positions. In this case σ is
called an extension of σ′.

2.4 Notational Conventions

• I, II: the two players

• X, Y : the two sets out of which I and II choose their moves

• Z: X × Y

• w,w′: plays

• W : the set of all plays

• Wn: the set of all finite plays of length n

• S: a subset of W
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• O: an open subset of W

• D: a Gδ subset of W

• p, p′: finite plays or positions

• e: the starting position

• P : the set of all positions

• H,H ′: sets of positions, usually stopsets or stopsets-to-be

• w ⊃ p: the play w hits position p

• p′ ⊃ p: the position p′ follows p

• p′ ⊇ p: the position p′ follows or is equal to p

• p̂p′, p̂w: the plays obtained by concatenating sequences p and p′ or w

• p|n, w|n, the plays consisting of the first n moves in p or w

• f, g, h: payoff functions

• f(w): the payoff player I gets from player II for the play w

• f(p): if p is a stopping position, the payoff player I gets from player II for
any play w that passes through p

• Γ(f): the game with payoff function f

• ΓH(f): the game with payoff function f and stopset H

• Γn(f): the finite game with payoff function f and stopset Wn

• Γ(S): the game with payoff function IS

• Γ(f, p): the game with payoff function f , starting from position p

• σ: a strategy for player I

• τ : a strategy for player II

• E(σ vs τ in Γ(f)): the expected payoff when playing σ against τ in the
game Γ(f)

• val(σ in Γ(f)): the value of σ in the game Γ(f)

• val(Γ(f)): the value of the game Γ(f)

• val↓(Γ(f)): the lower value of the game Γ(f)

• val↑(Γ(f)): the upper value of the game Γ(f)

• u, v: values
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Chapter 3

The Tools We Use

In this chapter we lay the groundwork for the results of the next chapters. Most
of the lemma’s and theorems in this chapter are intuitively fairly obvious. The
general idea is be to approximate complex games with simpler games. In the
first section, we prove lemma’s that deal with expectations, and approximating
complex payoff functions with simpler payoff functions. In the second section,
we prove determinacy of the simplest games, namely finite games. In the third
section, we show how to construct strategies and values of complex games from
strategies and values of truncated subgames.

3.1 Payoff Time

We start with some basic notions, such as comparing a game with another game
whose payoff function is everywhere higher, or adding a constant amount to the
payoff.

Lemma 3.1 Let f , g be two payoff functions such that for all w ∈ W ,
f(w) ≤ g(w). Then val↓(Γ(f)) ≤ val↓(Γ(g)) and val↑(Γ(f)) ≤ val↑(Γ(g)).

Proof:

∀w ∈W : f(w) ≤ g(w) (3.1)
⇒ ∀µ :

∫
w∈W

f(w)dµ(w) ≤
∫
w∈W

g(w)dµ(w) (3.2)
⇒ ∀σ, τ : E(σ vs τ in Γ(f)) ≤ E(σ vs τ in Γ(g)) (3.3)
⇒ ∀σ : infτ E(σ vs τ in Γ(f)) ≤ infτ E(σ vs τ in Γ(g)) (3.4)
⇒ supσ infτ E(σ vs τ in Γ(f)) ≤ supσ infτ E(σ vs τ in Γ(g)) (3.5)

⇒ val↓(Γ(f)) ≤ val↓(Γ(g)) (3.6)

Similarly for the upper value.
2

Lemma 3.2 Let f be a payoff function, and let c ∈ IR. Then val↓(Γ(f + c)) =
val↓(Γ(f)) + c and val↑(Γ(f + c)) = val↑(Γ(f)) + c.
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Proof:

∀w ∈W : (f + c)(w) = f(w) + c (3.7)
⇒ ∀µ :

∫
w∈W

(f + c)(w)dµ(w) =
∫
w∈W

f(w)dµ(w) + c (3.8)
⇒ ∀σ, τ : E(σ vs τ in Γ(f + c)) = E(σ vs τ in Γ(f)) + c (3.9)
⇒ ∀σ : infτ E(σ vs τ in Γ(f + c)) = infτ E(σ vs τ in Γ(f)) + c (3.10)
⇒ supσ infτ E(σ vs τ in Γ(f + c)) = supσ infτ E(σ vs τ in Γ(f)) + c (3.11)

⇒ val↓(Γ(f + c)) = val↓(Γ(f)) + c (3.12)

Similarly for the upper value.
2

Remark 3.3 Similarly, it can be proven that if a ≥ 0, then val↓(Γ(af)) =
aval↓(Γ(f)). It is not always true, however, that val↓(Γ(−f)) = −val↓(Γ(f)),
or that val↓(Γ(−f)) = −val↑(Γ(f)) (see also Example 3.18). However, if we
reverse the position of the players and inverse the payoff function, then the
equation holds. I.e. if f is a payoff function, then if we define frev to be
the payoff function defined on sequences of pairs (y, x) ∈ Y × X by setting
frev(wrev) = f(w) iff wrev is obtained from w by reversing all pairs (x, y), and
if we define Γrev(−frev) to be the Blackwell game with payoff function −frev in
which player I chooses moves from Y and player II chooses moves from X, then
val↓(Γrev(−frev)) = −val↑(Γ(f)). Among other things, this implies together
with Lemma 3.2 that if we have proven determinacy for all Blackwell games
on open, Gδ, Gδσ sets, then we also have determinacy of Blackwell games on
closed, Fσ, Fσδ sets.

A payoff function can often be written as the limit of a series of ‘simpler’
payoff functions. If this convergence is uniform, then we can draw conclusions
about the values.

Lemma 3.4 Let (fi)i be a sequence of functions fi : W → [a, b] such that (fi)i
converges uniformly to a function f : W → [a, b]. Then

lim
i→∞

val↓(Γ(fi)) = val↓(Γ(f)) (3.13)

and
lim
i→∞

val↑(Γ(fi)) = val↑(Γ(f)) (3.14)

Proof:
Let ε > 0. Uniform convergence means that there exists an i0 ∈ IN , such that
for all i > i0: fi − ε ≤ f ≤ fi + ε. Then by applying Lemmas 3.1 and 3.2, we
have that for all i > i0: val↓(Γ(fi)) − ε ≤ val↓(Γ(f)) ≤ val↓(Γ(fi)) + ε. Hence,
limi→∞ val↓(Γ(fi)) = val↓(Γ(f)).
Similarly for the upper value.

2
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Corollary 3.5 Let n ∈ IN . Let (fi)i be a sequence of functions fi : Wn → [a, b]
such that (fi)i converges pointwise to a function f : Wn → [a, b]. Then
val(Γn(f)) = limi→∞ val(Γn(fi)).

Proof:
This follows from the last Lemma, since Wn is finite, and hence pointwise con-
vergence implies uniform convergence.

2

If we have pointwise convergence without uniform convergence, we cannot
say anything about the values of games. However, we can say something about
expectations, once the strategies involved are known.

Lemma 3.6 Let (fi)i be a sequence of functions fi : W → [a, b] such that (fi)i
converges pointwise to a function f : W → [a, b]. Then for any two strategies
σ, τ , limi→∞E(σ vs τ in Γ(fi)) = E(σ vs τ in Γ(f))

Proof:
This follows from the Majorized Convergence Theorem of Lebesgue.

2

3.2 Finite Games

To say something about complex games, we have to know about simple games.
So we will start with the simplest variant of our game: the game that lasts only
one round. But first, we need a lemma.

Lemma 3.7 Let C be a closed convex set in IRn, and let b ∈ IRn − C. Then
there exists a hyperplane separating b and C, i.e. a vector y ∈ IRn − {0} and
d ∈ IR such that

yT b > d (3.15)

yT z < d for each z ∈ C (3.16)

Proof:
Since the theorem is trivial if C = ∅, we assume C 6= ∅. As C is closed, there
exists a vector c in C that is nearest to b, i.e. that minimizes ‖z − b‖. And
because b 6∈ C, ‖c− b‖ > 0. We define

y = b− c (3.17)

d =
1

2
(yT b+ yT c) (3.18)

Then yT b − d = yT (b − 1
2 (b + c)) = 1

2 (b − c)T (b − c) > 0, proving that (3.15)
holds.
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Now suppose that (3.16) does not hold. Then for some z ∈ C, yT z ≥ d. Since,
yT c − d = yT (c− 1

2 (b+ c)) = − 1
2 (b− c)T (b− c) < 0, this implies yT (z− c) > 0.

Hence there exists a λ with 0 < λ ≤ 1 and

λ <
2yT (z − c)

‖z − c‖2
(3.19)

Then c+ λ(z − c) belongs to C. Moreover,

‖(c+ λ(z − c))− b‖2 = ‖λ(z − c)− y‖2 (3.20)

= λ2‖z − c‖2 − 2λyT (z − c) + ‖y‖2 (3.21)

< ‖y‖2 = ‖c− b‖2 (3.22)

contradicting the fact that c is a point in C nearest to b. Therefore, for all
z ∈ C, yT z < d, and (3.16) holds.

Theorem 3.8 (Von Neumann’s Minimax Theorem) Let Γ1(f) be a finite
one-round Blackwell game (i.e. of length 1). Then Γ1(f) is determined, and
both players have optimal strategies. [15]

Proof:
f is (or can be interpreted as) a function X×Y → IR. Without loss of generality
we may assume that X = {1, . . . , n}, Y = {1, . . . ,m}. A strategy σ for player I
in Γ1(f) is (or can be interpreted as) a nonnegative vector (x1, . . . , xn) such that∑n

i=1 xi = 1, and similarly, a strategy τ for player II is (or can be interpreted
as) a nonnegative vector (y1, . . . , ym) such that

∑m
j=1 yj = 1. It is easily seen

that

E(σ vs τ in Γ1(f)) =

n∑

i=1

m∑

j=1

xiyjf(i, j) (3.23)

val(σ in Γ1(f)) = min
1≤j≤m

n∑

i=1

xif(i, j) (3.24)

val(τ in Γ1(f)) = max
1≤i≤n

m∑

j=1

yjf(i, j) (3.25)

Let C ⊂ IRm be the convex hull of the vectors (f(i, 1), . . . , f(i,m)), i = 1, . . . , n.
Then each point z ∈ C corresponds to (at least) one strategy σ for player I,
and the lowest coordinate of z equals the value of σ. Let C− = {z ∈ IRm |
∃z′ ∈ C : z ≤ z′}. Then player I has a strategy of value u ∈ IR iff the vector
(u, . . . , u) ∈ C−. It is obvious that C and C− are both closed convex sets.

Now let v = val↓(Γ1(f)), ε > 0. Then there exists no strategy σ for player I
of value v + ε, i.e. b = (v + ε, . . . , v + ε) 6∈ C−. By Lemma 3.7 this implies that
there exist a vector y ∈ IRm−{0} and d ∈ IR, such that yT b > d while yT z < d
for any z ∈ C−. For any j ≤ m, any z ∈ C−, and any r > 0, yT z − yjr =
yT (z1, . . . , zj−1, zj − r, zj+1, . . . , zm) < d, i.e. yj > (yT z − d)/r. It follows that
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for any j ≤ m, yj ≥ 0. Since y 6= 0, we may also assume, without loss of
generality, that

∑m
j=1 yj = 1. Then for any z ∈ C−, yT z < d < yT b = v + ε.

In particular, for i = 1, . . . , n,
∑m

j=1 yjf(i, j) < v + ε. Thus, y corresponds to a
strategy τ of value lower than v + ε. Since we can do this construction for any
ε > 0, it follows that val↑(Γ1(f)) = v = val↓(Γ1(f)).

The existence of an optimal strategy for player I follows from the observation
that C is a closed and bounded subset of IRm (and hence compact), and that
the function min : IRm → IR taking the minimum coordinate is continuous. A
similar argument yields the existence of an optimal strategy for player II.

2

Remark 3.9 We will use this result, the determinacy of one-round games, to
derive the determinacy of finite, open, Gδ and Gδσ games. Interestingly, the
proof of Theorem 3.8 is conceptually quite different from the proofs of determi-
nacy of complex games we will give later; the only connection seems to be that
the result of the one proof is used in the other proofs. Basically, Game Theory
got us this far, now Mathematical Logic will take us farther.

If a game lasts longer than one round, but we know it always stops in a
finite number of rounds, and we know that there exists an upper bound on that
number of rounds, then we can use induction on the natural numbers to prove
determinacy.

Theorem 3.10 Let Γn(f) be a finite Blackwell game of length n. Then Γn(f)
is determined, and both players have optimal strategies.

Proof:
We use induction on n, applying Theorem 3.8 for the induction step.
The case n = 0 is trivial: if Γ0(f) is a Blackwell game of length 0, then play
stops immediately with payoff f(e), and the empty strategies σ = τ = ∅ are
optimal.
So let n ≥ 1, and suppose that all finite Blackwell games of length n − 1 are
determined. Let Γn(f) be a finite Blackwell game of length n. For any position
p of length 1, Γn(f, p) is played as a finite Blackwell game of length n − 1, by
Remark 2.8, and hence determined, by the induction hypothesis. Now let Γ1(g)
be the finite one-round Blackwell game defined by g(p) = val(Γn(f, p)). By the
Minimax Theorem, this game is also determined, and it has a value v.
Let σ0 be an optimal strategy for player I in Γ1(g), and let σp be an optimal
strategy for player I in Γn(f, p), for all positions p of length 1. We can assume
that σ0 is only defined on e, and that σp is only defined on p and those positions
that follow p. Then σ =

⋃
p∈W1

σp ∪ σ0 is a strategy for player I defined on all
the positions of the game Γn(f).
Let τ be a strategy for player II in the game Γn(f). Then
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E(σ vs τ in Γn(f))

=

∫

w

f(w)dµσ,τ (w) (3.26)

=
∑

p′∈Wn

f(p′)µσ,τ{w | w ⊃ p′} (3.27)

=
∑

p∈W1


 ∑

p′∈Wn,p′⊇p

f(p′)
µσ,τ{w | w ⊃ p′}

µσ,τ{w | w ⊃ p}


µσ,τ{w | w ⊃ p} (3.28)

=
∑

p∈W1


 ∑

p′∈Wn,p′⊇p

f(p′)µσ,τ in Γn(f,p){w | w ⊃ p′}


µσ,τ{w | w ⊃ p}(3.29)

=
∑

p∈W1

E(σ vs τ in Γn(f, p))µσ,τ{w | w ⊃ p} (3.30)

=
∑

p∈W1

E(σp vs τ in Γn(f, p))µσ0,τ (p) (3.31)

≥
∑

p∈W1

g(p)µσ0,τ (p) (3.32)

≥ v (3.33)

So σ has value at least v in Γn(f). Similarly we can construct a strategy τ for
player II in Γn(f) such that τ has value at most v. It follows that Γn(f) has
value v, and that σ, τ are optimal strategies for players I, II.

2

3.3 The Relativity of Values

In the previous section, we showed that finite games are determined. We did this
by combining a strategy for the game up to certain points, with strategies for the
games starting from those points. The points in question were the positions of
length 1. In this section we generalize this to all sets of stopping positions, using
truncated games. The essence of Lemma 3.11 is, that the value of the game for
one player is not changed if we decide that at certain points, we will stop the
game and pay out the value of the game for that player at that point. The
remainder of the section consists of corollaries to this observation. Lemma 3.14
and Corollary 3.15 enable us to link together infinitely many nested truncated
subgames, and form the heart of the proofs in the later chapters.

Lemma 3.11 Let Γ(f) be a Blackwell game, and let ΓH(g) be a truncated sub-
game of Γ(f), truncated at a set of positions H, equivalent for player I [for
player II]. Then val↓(Γ(f)) = val↓(ΓH(g)) [val↑(Γ(f)) = val↑(ΓH(g))]. Further-
more, for any ε > 0, any ε-optimal strategy for player I [player II] in ΓH(g) (if
it is undefined on all positions at or after positions in H) can be extended to an
ε-optimal strategy for player I [player II] in Γ(f).
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Proof concept:
The proof is similar to the induction step of the proof of Theorem 3.10. Basically,
we find ε-optimal strategies, tie them together, and then calculate how well the
combination strategy performs against opposing strategies.
Proof:
Let Γ(f) be a Blackwell game, and let ΓH(g) be a truncated subgame ofΓ(f),
truncated at a set of positions H, equivalent for player I. This means that for
any p ∈ H, g(p) = val↓(Γ(f, p)), and for any w ∈ W that does not hit any
position in H, g(w) = f(w).
Let ε > 0, and let σ0 be an ε-optimal strategy for player I in the game ΓH(g).
If v = val↓(ΓH(g)), and u = val(σ0 in ΓH(g)), then 0 ≤ v − u < ε. So pick
δ > 0 such that δ < ε − (v − u), and pick for each p ∈ H a δ-optimal strategy
σp for player I in Γ(f, p). We can assume that for any p ∈ H, σp is defined
exactly on p and those positions that are after p, and that σ0 is defined exactly
on those positions that are not at or after any position in H. It follows that
σ =

⋃
p∈H σp ∪ σ0 is a well-defined strategy for player I in the game Γ(f).

Now let τ be a strategy for player II in Γ(f). Then for each p ∈ H,
∫

w⊃p

f(w)dµσ,τ (w) =

(∫
w⊃p

f(w)dµσ,τ (w)

µσ,τ{w | w ⊃ p}

)
µσ,τ{w | w ⊃ p} (3.34)

=

(∫

w⊃p

f(w)dµσ,τ in Γ(f,p)(w)

)
µσ,τ{w | w ⊃ p}(3.35)

= E(σ vs τ in Γ(f, p))µσ,τ{w | w ⊃ p} (3.36)

= E(σp vs τ in Γ(f, p))µσ0,τ{w | w ⊃ p} (3.37)

≥
(
val↓(Γ(f, p))− δ

)
µσ0,τ{w | w ⊃ p} (3.38)

= (g(p)− δ)µσ0,τ{w | w ⊃ p} (3.39)

and consequently,

E(σ vs τ in Γ(f))

=

∫

w

f(w)dµσ,τ (w) (3.40)

=
∑

p∈H

(∫

w⊃p

f(w)dµσ,τ (w)

)
+

∫

w avoids H

f(w)dµσ,τ (w) (3.41)

≥
∑

p∈H

(g(p)− δ)µσ0,τ{w | w ⊃ p}+

∫

w avoids H

g(w)dµσ0,τ (w) (3.42)

≥


∑

p∈H

g(p)µσ0,τ{w | w ⊃ p}+

∫

w avoids H

g(w)dµσ0,τ (w)


− δ (3.43)

=

∫

w

g(w)dµσ0,τ (w)− δ (3.44)

= u− δ (3.45)

> v − ε (3.46)
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So σ is an extension of σ0 of value greater than v − ε. Since this can be done
for any ε > 0, and any ε-optimal strategy σ0, this implies that val↓(Γ(f)) ≥ v.
Similarly, let ε > 0, and let σ be a strategy for player I in Γ(f). Then we can find
counterstrategies τ0, τp for p ∈ H for player II in ΓH(g), Γ(f, p) respectively,

such that E(σ vs τ0 in ΓH(g)) < val↓(ΓH(g))+ε/2, and E(σ vs τp in Γ(f, p)) <

val↓(Γ(f, p)) + ε/2 for any p ∈ H. We can assume that for any p ∈ H, τp is
defined exactly on those positions that are at or after p, and that τ0 is defined
exactly on those positions that are not at or after any any position in H. It
follows that τ =

⋃
p∈H τp∪ τ0 is a well-defined strategy for player II in the game

Γ(f). Then for each p ∈ H,

∫

w⊃p

f(w)dµσ,τ (w) =

(∫
w⊃p

f(w)dµσ,τ (w)

µσ,τ{w | w ⊃ p}

)
µσ,τ{w | w ⊃ p} (3.47)

=

(∫

w⊃p

f(w)dµσ,τ in Γ(f,p)(w)

)
µσ,τ{w | w ⊃ p}(3.48)

= E(σ vs τ in Γ(f, p))µσ,τ{w | w ⊃ p} (3.49)

= E(σ vs τp in Γ(f, p))µσ,τ0{w | w ⊃ p} (3.50)

≤
(
val↓(Γ(f, p)) + ε/2

)
µσ,τ0{w ⊃ p} (3.51)

= (g(p) + ε/2)µσ,τ0{w | w ⊃ p} (3.52)

and consequently,

E(σ vs τ in Γ(f))

=

∫

w

f(w)dµσ,τ (w) (3.53)

=
∑

p∈H

(∫

w⊃p

f(w)dµσ,τ (w)

)
+

∫

w avoids H

f(w)dµσ,τ (w) (3.54)

≤
∑

p∈H

(g(p) + ε/2)µσ,τ0{w | w ⊃ p}+

∫

w avoids H

g(w)dµσ,τ0(w) (3.55)

≤
∑

p∈H

g(p)µσ,τ0{w | w ⊃ p}+

∫

w avoids H

g(w)dµσ,τ0(w) + ε/2 (3.56)

=

∫

w

g(p)dµσ,τ0(w) + ε/2 (3.57)

< v + ε/2 + ε/2 (3.58)

= v + ε (3.59)

Since this can be done for any strategy σ and any ε > 0, it follows that
val↓(Γ(f)) ≤ v. Hence

val↓(Γ(f)) = v = val↓(ΓH(g)) (3.60)

An ε-optimal strategy for player I in ΓH(g) can be extended to an ε-optimal
strategy for player I in Γ(f) as in the first part of the proof.
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The proof for the upper value is analogous.
2

Corollary 3.12 Let Γ(f) be a Blackwell game, and let ΓH(g) be a equivalent
truncated subgame of Γ(f) (truncated at H). If ΓH(g) is determined, then Γ(f)
is determined, and val(Γ(f)) = val(ΓH(g)). Furthermore, any ε-optimal strategy
for player I or player II in ΓH(g) can be extended to an ε-optimal strategy for
player I or player II in Γ(f).

Proof:
ΓH(g) is a truncated subgame of Γ(f), equivalent for player I and for player II.
Applying Lemma 3.11 yields that val↓(Γ(f)) = val↓(ΓH(g)) and val↑(Γ(f)) =
val↑(ΓH(g)), and that ε-optimal strategies for player I or player II in ΓH(g) can
be extended to ε-optimal strategies for player I or player II in Γ(f). If ΓH(g) is
also determined, then val↓(ΓH(g)) = val↑(ΓH(g)), which concludes the proof.

2

Corollary 3.13 Let Γ(f),ΓH(g) be Blackwell games. If for any p ∈ H,
g(p) ≤ val↓(Γ(f, p)), and for any w ∈ W that does not hit any position in H,
g(w) ≤ f(w), then val↓(ΓH(g)) ≤ val↓(Γ(f)).
Similarly for the value and the upper value, and for ≥ instead of ≤.

Proof:
Define the payoff function h by

h(p) = val↓(Γ(f, p)) for p ∈ H (3.61)

h(w) = f(w) if w does not hit any position in H (3.62)

Then by Lemma’s 3.1 and 3.11, val↓(Γ(g)) ≤ val↓(Γ(h)) = val↓(Γ(f)). The
other proofs are completely similar.

2

Lemma 3.14 Let (ΓHi
(gi))i∈IN be a nested series of truncated games equivalent

for player I [player II]. Then all the games have the same lower value [upper
value]. Furthermore, we can find a strategy for player I [player II] that is ε-
optimal in all the games ΓHi

(gi).

Proof concept:
Basically, we apply Lemma 3.11 a number of times and use induction.
Proof:
For all i ∈ IN , ΓHi

(gi) is a truncated subgame of ΓHi+1
(gi+1), equivalent for

player I. By Lemma 3.11, this means that for all i ∈ IN , val↓(ΓHi
(gi)) =

val↓(ΓHi+1
(gi+1)). It follows that for all i ∈ IN , val↓(ΓHi

(gi)) = val↓(ΓH0
(g0)).

Now let ε > 0, and let σ0 be an ε-optimal strategy for player I in ΓH0
(g0).
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Assume that σ0 is only defined on non-stopping positions of ΓH0
(g0). We can

inductively define ε-optimal strategies σi in the games ΓHi
(gi) such that for all

i ∈ IN , σi+1 is an extension of σi. For suppose we have extended σ0 to an
ε-optimal strategy σi in ΓHi

(gi), defined only on non-stopping positions. Then
σi is undefined on positions at or after positions in H, and thus by Lemma 3.11
we can extend σi to an ε-optimal strategy σ′i+1 in ΓHi+1

(gi+1). By Remark 2.26,
any stopping position in ΓHi+1

(gi+1) is also a stopping position in ΓHi
(gi). So

the restriction σi+1 of σ′i+1 to non-stopping positions in ΓHi+1
(gi+1) is also an

extension of σi. Now, if p is a position, and σi(p), σj(p) are defined, i < j, then
σi(p) = σi+1(p) = . . . = σj(p). Therefore we can define σ by

σ(p) = σi(p) if σi is defined on p (3.63)

Then for any i ∈ IN , for any non-stopping position p of ΓHi
(gi), σ(p) is defined

and σ(p) = σi(p). Hence, σ is ε-optimal in all the games. σ is defined on all the
non-stopping positions of all the games ΓHi

(gi), but if necessary we can extend
σ to a strategy σ′ defined on all positions, by choosing a default probability
distribution for those positions on which σ is not defined.

2

Corollary 3.15 Let (ΓHi
(gi))i∈IN be a nested series of equivalent truncated

subgames. If ΓH0
(g0) is determined, then all the games are determined, and all

the games have the same value. Furthermore, we can find strategies for player
I and player II that are ε-optimal in all the games ΓHi

(gi).

Proof:
If (ΓHi

(gi))i∈IN is a nested series of equivalent truncated subgames, then the
series is equivalent for player I and for player II. Applying Lemma 3.14 twice
yields that all the games have the same lower value and all the games have
the same upper value, and that there exist strategies for player I and player
II, defined on all the non-stopping positions of all the games ΓHi

(gi), that
are ε-optimal in all the games ΓHi

(gi). If ΓH0
(g0) is also determined, then

val↓(ΓH0
(g0)) = val↑(ΓH0

(g0)), which concludes the proof.
2

Remark 3.16 If all games involved are finite, then we can extend optimal
strategies with optimal strategies to optimal strategies, i.e. drop the ε in
Lemma’s 3.11 and 3.14. The proofs are almost exactly the same, and are left as
an exercise for the reader.

Remark 3.17 A consequence of Lemma 3.11 is, that the lower value of a game
at a position p can be calculated from the lower values of the game starting
from the positions directly following p, as the value of the one-round game with
those lower values as payoffs. In addition to a value, Von Neumann’s Minimax
Theorem produces, for any position p, a probability distribution on the possible
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moves that is an optimal strategy for player I in the aforementioned one-round
game, i.e. for any position p, Von Neumann’s Minimax Theorem produces the
answer to the question ‘what should I do right now’. Consider the strategy
assigning this probability distribution to each position. The principle behind
this strategy can be expressed as ‘at any moment, do what seems best at that
moment’. In the case of a finite Blackwell game, this strategy is optimal (and
in fact, this strategy is the one produced by our proof of Theorem 3.10). The
same is true in the case of an open game (i.e. a Blackwell game where the payoff
function is the indicator function of an open set), but only for the second player.
In general, however, this does not hold. Even though any single probability
distribution is optimal in the corresponding one-round game, it is not necessarily
optimal in the whole game, only if the part of the strategy following that round,
is optimal as a whole. See also Example 4.3.

Example 3.18 The following example shows, that there is no algorithm to find
optimal or ε-optimal strategies that uses as input only the values a game has
at each of its positions. Consider the following two Blackwell games. Player
II generates a sequence of 0’s and 1’s. In the game Γ(S1), player II wins if he
generates infinitely many 1’s. In the game Γ(S2), player II wins if he generates
only finitely many 1’s. Player I has no influence over the outcome of the game.
Payoff is 1 if player I wins, 0 if player II wins.

It is clear that player II can win from any position, in both games. Hence
both games have lower and upper value 0, starting from all positions. But any
strategy for player II that is good in Γ(S1), will be bad in Γ(S2), and vice versa,
since the two sets of winning positions are complimentary. Hence there cannot
be any method of finding optimal or good strategies that merely uses the values
of a game.

Another interesting aspect is, that here we have two sets of winning positions
S1 and S2, such that Γ(S1), Γ(S2) have value 0 (in all positions), and Γ(S1∪S2)
has value 1 (in all positions).
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Chapter 4

Open Games

In the first section of this chapter we prove determinacy of the game Γ(O), where
O ⊆ W is an open set. This game can be described as ‘There are positions in
which player I has won (payoff 1), and player II wins (payoff 0) if no such po-
sition is ever reached’. As any payoff other than 0 is made at a finite time and
ends the game, open games are nearly as simple as finite games. The proof
given is mainly a translation of the standard proof in terms of my definitions,
meant as an illustration of the techniques involved in the other proofs.
In the second section we look at a generalization of open games, where the payoff
is the supremum of the payoffs at the positions hit. In addition to determinacy,
we derive a result for these and open games comparable to the compactness of
W .

4.1 Open Games Part The First

Theorem 4.1 Let O be an open set. Then Γ(O) is determined.

Proof concept:
In an open game, there are certain positions in which player I has won. Player
II wins if he can successfully avoid those positions. Suppose for a moment,
that we were dealing with a game of Perfect Information, in which both players
waited their turn to move. And suppose player I has no winning strategy from
the current position. Then, if it is player I’s turn to move, there is no move she
can make to get to a position from which she has a winning strategy, and if it
is player II’s turn to move, there is a move he can make to get to a position
from which player I has no winning strategy. Otherwise, player I would have
a winning strategy from this position, contradicting our hypothesis. Now, if
player II keeps playing those moves, then player I never gets to a position from
which she can win, and hence she never gets to a position in which she has won.
Thus, this is a winning strategy for player II.
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Going back to our original Blackwell games and translating this proof in
terms of values and probability distributions, a good strategy for player II seems
to be to play, in each position, to minimize the expectation of the lower value
in the next position. In order to tie all these local strategies together, we de-
fine a collection of finite truncated subgames Γn(gn), n ∈ IN , each of which is
equivalent for player I to Γ(O). Each of these subgames is finite, and hence de-
termined, and a good strategy for player II in each of these subgames minimizes
the expectation of the lower value of Γ(O) in each of the stopping positions. We
then show that these subgames form a nested series of equivalent finite trun-
cated subgames. This allows us to find a strategy for player II that is optimal
in each of the truncated subgames. This strategy is produced by Corollary 3.15,
and consists of optimal strategies in the truncated subgames, all glued together.
It also functions as a strategy in the game Γ(O), and has a value in Γ(O) equal
to the lower value of Γ(O), proving the determinacy of Γ(O).
Proof:
Put v = val↓(Γ(O)).
Define for any n ∈ IN , the payoff functions gn : Wn → [0, 1] by

gn(p) = val↓(Γ(O, p)) (4.1)

Now the games Γn(gn) are truncated subgames of Γ(O), and are equivalent to
Γ(O) for player I, by Definition 2.24. Thus, by Lemma 3.11, for any n ∈ IN and
any position p of length ≤ n,

val↓(Γn(gn, p)) = val↓(Γ(O, p)) (4.2)

Furthermore, the games Γn(gn, p) are finite, and hence determined, by Theorem
3.10. It follows that, for any n ∈ IN and any position p,

val(Γn(gn, p)) = val↓(Γ(O, p)) (4.3)

Combining (4.1), (4.2), (4.3) yields that for any n,m ∈ IN, n ≤ m, and any
position p ∈Wn,

gn(p) = val(Γm(gm, p)) (4.4)

Hence the games Γn(gn) form a nested series of equivalent truncated subgames.
Consequently, by Corollary 3.15, all the games have the same value. Since
Γ0(g0) is the trivial game that stops immediately, this value is equal to the
payoff g0(e) = val↓(Γ(O)) = v. Also, we can find a strategy for player II that
is ε-optimal in all the games Γn(gn), and since all the games Γn(gn) are finite,
by Remark 3.16 we can even find a strategy that is optimal in all the games
Γn(gn). So let τ be such a strategy. It follows that for any n ∈ IN , and any
strategy σ for player I in Γn(gn),

E(σ vs τ in Γn(gn)) ≤ v (4.5)

We now apply the result obtained to the game Γ(O). As with any open set
there is associated with O a set H of positions, such that

O = {w ∈W | ∃n ∈ IN : w|n ∈ H} (4.6)
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Define for n ∈ IN the payoff functions fn : Wn → [0, 1] by

fn(p) = 1 if ∃p′ ∈ H : p′ ⊆ p (4.7)

= 0 if ¬∃p′ ∈ H : p′ ⊆ p (4.8)

The functions fn are well-defined, and are easily seen to satisfy

∀n ∈ IN : fn ≤ gn (4.9)
∀w ∈W : IO(w) = limn→∞ fn(w) (4.10)

Now let σ be any strategy for player I in Γ(f). Then

E(σ vs τ in Γ(O))

= lim
n→∞

E(σ vs τ in Γn(fn)) (4.11)

≤ lim
n→∞

E(σ vs τ in Γn(gn)) (4.12)

≤ v (4.13)

So
val↑(Γ(f)) ≤ val(τ for player II in Γ(f)) ≤ v (4.14)

Therefore,
val↑(Γ(f)) = val↓(Γ(f)) = v (4.15)

2

Example 4.2 Let r be a real number, 0 ≤ r ≤ 1. We will construct an open
Blackwell game of value r. Set X = Y = {0, 1}, and define φ : W → [0, 1] by

φ((x1, y1, x2, y2, . . .)) =
∞∑

i=1

2−i(xi ⊕ yi) (4.16)

where 0 ⊕ 0 = 1 ⊕ 1 = 0, 0 ⊕ 1 = 1 ⊕ 0 = 1. Now, it is easy to see that for
w = (x1, y1, x2, y2, . . .) ∈W ,

φ(w) = lim
n→∞

(

n∑

i=1

2−i(xi ⊕ yi) + 2−n) (4.17)

and hence,

φ(w) < r⇔∃n :

n∑

i=1

2−i(xi ⊕ yi) + 2−n < r (4.18)

So O = {w ∈W | 0 ≤ φ(w) < r} is an open subset of W .
Now, let σ, τ be two strategies, and suppose that one of those strategies is the

strategy that assigns the 1
2 -
1
2 probability distribution on X or Y , respectively.

Then for any i ∈ IN , xi ⊕ yi has equal chances of being 0 or 1. It follows that
the distribution of φ(w) on [0, 1] is the uniform distribution on [0, 1]. Hence
µσ,τ (O) = µLebesgue([0, r〉) = r. So both players have a strategy of value r, and
the value of this open game is r.
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Example 4.3 Consider the following Blackwell game. Each round, both play-
ers say either ‘Now’ or ‘Not yet’. If both players say ‘Not yet’, then play
continues. Otherwise, the game halts: player II wins (payoff 0) if both players
said ‘Now’, while player I wins (payoff 1) if only one of the players said ‘Now’.
If play continues indefinitely, and neither player ever says ‘Now’, then payoff is
0, i.e. player II wins.

This is clearly an open game. An interpretation of this game is, that player
II tries to guess on which round player I will say ‘Now’, and tries to match her.
If player II guesses wrong, i.e. says ‘Now’ too soon or not soon enough, then
player I wins, if player II guesses right, then he wins.

A strategy of value 1 − 1
n

for player I is, to pick randomly a number i
between 1 and n, and say ‘Now’ on round i. Translated to the standard format
for strategies, this becomes:

say ‘Now’ 1
n
of the time on round 1,

otherwise say ‘Now’ 1
n−1 of the time on round 2,

otherwise say ‘Now’ 1
n−2 of the time on round 3,

...
otherwise say ‘Now’ 100% of the time on round n.

Hence, the value of this game is 1. In fact, the value of this game at any position
in which game has not yet ended is 1. But there exists no optimal strategy of
value 1. For suppose there exists such a strategy, of value 1. Then on any round
(in which play has not yet ended), the chance that player I will say ‘Now’ in
that round is 0%. For otherwise, the strategy would not score 100% against
the counterstrategy that player II says ‘Now’ on that round. But then, player
I will never say ‘Now’, and this strategy will lose against the counterstrategy
that player II never says ‘Now’. So any strategy for player I has value strictly
less than 1, although there are strategies with values arbitrarily close to 1.

The ‘locally optimal strategy’ of Remark 3.17 is also the strategy of never
saying ‘Now’. Hence, this game also serves as an example of a game where the
‘locally optimal strategy’ performs very badly.

4.2 Generalizing Open Games

Theorem 4.4 Let u : P → IR be a bounded function, and let f : W → IR be
the payoff function defined by f(w) = supj∈IN u(w|j). Then Γ(f) is determined,
and

val(Γ(f)) = lim
n→∞

val(Γn(fn)) (4.19)

where fn(w) = supj≤n u(w|j).

Proof concept:
Showing that limn→∞ val(Γn(fn)) exists and is no greater than the lower value
of Γ(f) is not difficult. To show that it is no less than the upper value, we
approximate Γ(f) with a collection of finite auxiliary games Γn(gn) such that
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the payoff at the stopping positions is an estimate of the value of the game at
that point. We then show that these auxiliary games form a nested series of
equivalent finite truncated subgames. This allows us to find a strategy that is
optimal in each of the truncated subgames. This strategy is also a strategy in
the game Γ(f), and has a value in Γ(f) equal to limn→∞ val(Γn(fn)).
Proof:
Without loss of generality we may assume that the function u has range [0, 1].
For any p ∈ P , and any n ∈ IN , the game Γn(fn, p) is finite (of length ≤ n),
and thus determined. It is easily seen that f0 ≤ f1 ≤ f2 ≤ . . . ≤ f ≤ 1.
Consequently, for any p ∈ P ,

val(Γ0(f0)) ≤ val(Γ1(f1, p)) ≤ val(Γ2(f2, p)) ≤ . . . ≤ val↓(Γ(f, p)) ≤ 1 (4.20)

limk→∞ val(Γk(fk, p)) exists for all p ∈ P , since all monotone non-descending
bounded sequences converge. Furthermore, for all p ∈ P ,

lim
n→∞

val(Γn(fn, p)) ≤ val↓(Γ(f, p)) (4.21)

Define for any n ∈ IN the payoff function gn : Wn → [0, 1] by

gn(p) = lim
k→∞

val(Γk(fk, p)) for p ∈Wn (4.22)

Then for all p ∈Wn, gn(p) ≥ val(Γn(fn, p)) = fn(p).
Furthermore, the games Γn(gn) form a nested series of equivalent truncated
subgames. For fix n ∈ IN , p ∈ Wn. Define for k ∈ IN , hn+1,k : Wn+1 → IR
by hn+1,k(p

′) = val(Γk(fk, p
′)) for p′ ∈ Wn+1. Now, Wn+1 is finite, and for

p′ ∈Wn+1, limk→∞ hn+1,k(p
′) = gn+1(p

′). Hence by Corollary 3.5,

lim
k→∞

val(Γn+1(hn+1,k, p)) = val(Γn+1( lim
k→∞

hn+1,k, p)) = val(Γn+1(gn+1, p))

(4.23)
Now, by Corollary 3.12, for all k ∈ IN , val(Γk(fk, p)) = val(Γn+1(hn+1,k, p)). It
follows that

gn(p) = lim
k→∞

val(Γk(fk, p)) = val(Γn+1(gn+1, p)) (4.24)

Since (Γn(gn))n∈IN is a nested series of equivalent truncated subgames, by Corol-
lary 3.15 the games Γn(gn) all have the same value, say v. Also, we can find
a strategy for player II that is ε-optimal in all the games Γn(gn), and since all
the games Γn(gn) are finite, by Remark 3.16 we can even find a strategy that
is optimal in all the games Γn(gn). So let τ be such a strategy. Then for any
strategy σ, and any n ∈ IN ,

E(σ vs τ in Γn(gn)) ≤ val(Γn(gn)) = v (4.25)

Now let σ be any strategy for player I in Γ(f). Then

E(σ vs τ in Γ(f))
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= lim
n→∞

E(σ vs τ in Γn(fn)) (4.26)

≤ lim
n→∞

E(σ vs τ in Γn(gn)) (4.27)

≤ lim
k→∞

val(Γk(fk)) (4.28)

= v (4.29)

So
val↑(Γ(f)) ≤ val(τ for player II in Γ(f)) ≤ v (4.30)

But also
v = lim

k→∞
val(Γk(fk)) ≤ val↓(Γ(f)) (4.31)

Therefore,
val↑(Γ(f)) = val↓(Γ(f)) = lim

k→∞
val(Γk(fk)) (4.32)

2

Remark 4.5 Applying Theorem 4.4 to the indicator function of an open set,
we obtain a proof of the determinacy of open Blackwell games that is slightly
different from the proof given in Theorem 4.1. This was done on purpose. The
proof of Theorem 4.1 is mainly an illustration of techniques. Theorem 4.4 is
somewhat stronger, allowing us to derive an additional result.

Corollary 4.6 Let O =
⋃
iOi be the union of open sets. Then val(Γ(O)) =

limn→∞ val(Γ(
⋃
i≤nOi)).

Proof:
Define the set of positions H, and the compact sets O′j ⊆ O, by

H = {p ∈ P | ∀w′ ∈W : w′ ⊂ p⇒ w′ ∈ O} (4.33)

O′j = {w ∈W | w|j ∈ H} (4.34)

Then

O = {w ∈W | ∃p ∈ H : p ⊂ w} (4.35)

O′j = {w ∈W | ∃p ∈ H : p ⊂ w ∧ len(p) ≤ j} (4.36)

and hence for all w ∈W ,

IO(w) = sup
j∈IN

IH(w|j) (4.37)

IO′
j
(w) = sup

j≤n
IH(w|j) (4.38)

so applying Theorem 4.4, we find that

val(Γ(O)) = lim
j→∞

val(Γj(O
′
j)) (4.39)
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For each j ∈ IN , O′j is a closed and compact set covered by the open sets
(Oi)i∈IN . So by compactness there is for each j ∈ IN a nj ∈ IN such that
O′j ⊆

⋃nj

i=1Oi. Then for all n ≥ nj ,

val(O′j) ≤ val(

n⋃

i=1

Oi) ≤ val(O) (4.40)

The corollary follows immediately.
2

Remark 4.7 In the case of open and generalized open games, there is an opti-
mal strategy for player II. This strategy can be described as ‘at every position
player II plays the optimal one-round strategy, looking at the values the game
has for player I from all positions directly following that one’, as can be seen
for open games in the proof of Theorem 4.1. This optimal strategy is equal to
the ‘locally optimal strategy’ described in Remark 3.17. However, for player I
there does not always exist an optimal strategy, as Example 4.3 shows.
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Chapter 5

Gδ- and Gδσ-Games

In this chapter, we extend the results of the last chapter to the next two Borel
levels, proving determinacy of the game Γ(f) in the cases where f is the indicator
function of a Gδ or Gδσ set. Structurally, this proof is similar to a proof by Davis
for Gδσ games of perfect information [5], although the main lemma is proved in
an entirely different manner.

Davis’ proof of determinacy is based upon the idea of ‘imposing restrictions’
on the range of moves players II can make (i.e. declaring a loss if that player
makes one of the ‘forbidden’ moves), in such a way that (a) if player I did not
have a win before, she does not get a win now, and (b) a particular Gδ set is
now certain to be avoided. By applying this to all the Gδ subsets of a Gδσ

set, and using compactness, he shows that if player I cannot force the resulting
sequence to be in one of the Gδ sets, player II can force the resulting sequence
to be outside all of them.

The union of all the sequences in which one of the ‘forbidden’ moves is
played, is an open set that contains the Gδ set in question. One way of looking
at Davis’ proof is, that he enlarges each of the Gδ sets to an open set without
increasing the (lower) value of the game, in order to apply determinacy of open
games.

In the first section we show that the game for a single Gδ set has a value,
and that this set can be ‘enlarged’ to an open set without increasing the value
of the game by more than an arbitrarily small amount. In the next section, this
is generalized to the case where there is a payoff function for those sequences
that are not in the Gδ set (although only the lower value is considered, not the
upper value). In the section after that, this is applied to the Gδ subsets of a
Gδσ set, using Corollary 4.6 on the value of the game for a countable union of
open sets instead of compactness, to arrive at the determinacy of Gδσ sets.
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5.1 Ye Olde Gδ Set

Theorem 5.1 Let D be a Gδ set, i.e. let D be the intersection of countably
many open sets D =

⋂
iOi. Then Γ(D) is determined, and

val(Γ(D)) = inf
O⊇D,O open

val(Γ(O)) (5.1)

Proof concept:
We define a collection of auxiliary games ΓHi

(gi) of the game Γ(D), in which
the amount player I gets at a stopping position p is the aforementioned estimate
for the value of Γ(D) at position p, namely infO⊇D,O open val(Γ(O, p)). We then
show that these auxiliary games form a nested series of equivalent finite trun-
cated subgames. This allows us to find a strategy that is ε-optimal in each of
the truncated subgames. This strategy is also a strategy in the game Γ(D), and
has the required value.

Proof:
Put v = infO⊇D,O open val(Γ(O)).
For any Gδ set D we can find a set of positions H, such that D = {w ∈ W |
#{p ∈ H | p ⊂ w} =∞}. We may assume that e ∈ H.
Define for any i ∈ IN ,

Hi := {p ∈ H | there are exactly i positions p′ in H strictly preceding p}
(5.2)

Define for any i ∈ IN the payoff functions gi, hi by

gi(p) = inf
O⊇D

val(Γ(O, p)) for p ∈ Hi (5.3)

gi(w) = 0 if w does not hit any position in Hi (5.4)

hi(p) = 1 for p ∈ Hi (5.5)

hi(w) = 0 if w does not hit any position in Hi (5.6)

The functions gi are well-defined, because by Theorem 4.1 the games Γ(O, p)
are determined for all open sets O and positions p.

First, the games ΓHi
(gi) form a nested series of equivalent truncated subgames.

For let i ∈ IN and fix p ∈ Hi. Let O ⊇ D, then for any p′ ∈ Hi+1 such that
p′ ⊇ p, val(Γ(O, p′)) ≥ gi+1(p

′), and for any w ⊃ p that does not hit any posi-
tion in Hi+1, IO(w) ≥ 0 = gi+1(w). Hence by Corollary 3.13, for any O ⊇ D,
val(Γ(O, p)) ≥ val↑(ΓHi+1

(gi+1, p)). Therefore,

gi(p) ≥ val↑(ΓHi+1
(gi+1, p)) (5.7)

On the other hand, for any ε > 0 we can find, for each p′ ∈ Hi+1, an open set
Op′ ⊇ D such that

val(Γ(Op′ , p
′)) ≤ gi+1(p

′) + ε (5.8)
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Setting O = {w | ∃p′ ∈ Hi+1 : p
′ ⊂ w∧w ∈ Op′}, we have that for all p

′ ∈ Hi+1,
val(Γ(O, p′)) = val(Γ(Op′ , p

′)) ≤ gi+1(p
′) + ε, and for any w ∈W that does not

hit any position in Hi+1, IO(w) = 0 = gi+1(w). Hence by Corollary 3.13,

gi(p) ≤ val(Γ(O, p)) ≤ val↓(ΓHi+1
(gi+1, p)) + ε (5.9)

This holds for any ε > 0, therefore

gi(p) = val(ΓHi+1
(gi+1, p)) (5.10)

Finally, for any i ∈ IN , and any play w that does not hit any positions in Hi, w
does not hit any positions in Hi+1 either, and gi(w) = 0 = gi+1(w).

Let ε > 0.
Since (ΓHi

(gi))i∈IN is a nested series of equivalent truncated subgames, by Corol-
lary 3.15 all the games are determined and all have the same value, namely
val(ΓH0

(g0)) = g0(e) = v, and there exists a strategy σ for player I that is
ε-optimal in all the games ΓHi

(gi), i.e. for any strategy τ , and any i ∈ IN ,

E(σ vs τ in ΓHi
(gi)) ≥ val(ΓHi

(gi))− ε = v − ε (5.11)

Now let τ be any strategy for player II in Γ(D). Then

E(σ vs τ in Γ(D))

= lim
i→∞

E(σ vs τ in ΓHi
(hi)) (5.12)

≥ lim
i→∞

E(σ vs τ in ΓHi
(gi)) (5.13)

≥ v − ε (5.14)

So σ is a strategy for player I of value at least v − ε. This implies that
val↓(Γ(D)) ≥ v − ε. This construction can be done for any ε > 0, hence

val↓(Γ(D)) ≥ v (5.15)

For any O ⊇ D, val↑(Γ(D)) ≤ val(Γ(O)), hence

val↑(Γ(D)) ≤ inf
O⊇D,O open

val(Γ(O)) = v (5.16)

Hence val(Γ(D)) = v.
2

5.2 Ye New and Improved Gδ-set

Theorem 5.2 Let f : W → [0, 1] be a measurable function and let D be a Gδ

set. Then

val↓(Γ(max(f, ID))) = inf
O⊇D,O open

val↓(Γ(max(f, IO))) (5.17)
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Proof concept:
Basically, this proof is the same as the proof of Theorem 5.1, except that values
are replaced by lower values, and the games Γ(O) are replaced by the games
Γ(max(f, IO)).
Proof:
Put v = infO⊇D,O open val

↓(Γ(max(f, IO)))
For any Gδ set D we can find a set of positions H, such that D = {w ∈ W |
#{p ∈ H | p ⊂ w} =∞}. We may assume that e ∈ H.
Define for any i ∈ IN ,

Hi := {p ∈ H | there are exactly i positions p′ in H strictly preceding p}
(5.18)

Define for any i ∈ IN the payoff functions gi, hi by

gi(p) = inf
O⊇D,O open

val↓(Γ(max(f, IO), p)) for p ∈ Hi (5.19)

gi(w) = f(w) if w does not hit any position in Hi (5.20)

hi(p) = 1 for p ∈ Hi (5.21)

hi(w) = f(w) if w does not hit any position in Hi (5.22)

First, the games ΓHi
(gi) form a nested series of truncated subgames equivalent

for player I.
For let i ∈ IN , and fix p ∈ Hi. Let O ⊇ D, then for any p′ ∈ HI+1 such that
p′ ⊇ p, val↓(Γ(max(f, IO), p

′)) ≥ gi+1(p
′), and for any w ⊃ p that does not hit

any position in Hi+1, max(f, IO)(w) ≥ f(w) = gi+1(w). Hence by Corollary
3.13, for any O ⊇ D, val↓(Γ(max(f, IO), p)) ≥ val↓(ΓHi+1

(gi+1, p)). Therefore,

gi(p) ≥ val↓(ΓHi+1
(gi+1, p)) (5.23)

On the other hand, for any ε > 0 we can find, for each p′ ∈ Hi+1, an open set
Op′ ⊇ D such that

val↓(Γ(max(f, IOp′
), p′)) ≤ gi+1(p

′) + ε (5.24)

Setting O = {w | ∃p′ ∈ Hi+1 : p
′ ⊂ w∧w ∈ Op′}, we have that for all p

′ ∈ Hi+1,

val↓(Γ(max(f, IO), p
′)) = val↓(Γ(max(f, IOp′

), p′)) ≤ gi+1(p
′) + ε, and for any

w ∈W that does not hit any position inHi+1, max(f, IO)(w) = f(w) = gi+1(w).
Hence by Corollary 3.13,

gi(p) ≤ val↓(Γ(max(f, IO), p)) ≤ val↓(ΓHi+1
(gi+1, p)) + ε (5.25)

This holds for any ε > 0, therefore

gi(p) = val↓(ΓHi+1
(gi+1, p)) (5.26)

Finally, for any i ∈ IN , and any play w that does not hit any positions in Hi, w
does not hit any positions in Hi+1 either, and gi(w) = f(w) = gi+1(w).
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Let ε > 0.
Since (ΓHi

(gi))i∈IN is a nested series of truncated subgames equivalent for
player I, by Lemma 3.14 all the games have the same lower value, namely
val↓(ΓH0

(g0)) = g0(e) = v, and there exists a strategy σ for player I that is
ε-optimal in all the games ΓHi

(gi), i.e. for any strategy τ , and any i ∈ IN ,

E(σ vs τ in ΓHi
(gi)) ≥ val↓(ΓHi

(gi))− ε = v − ε (5.27)

Now let τ be any strategy for player II in Γ(max(f, ID)). Then

E(σ vs τ in Γ(max(f, ID)))

= lim
i→∞

E(σ vs τ in ΓHi
(hi)) (5.28)

≥ lim
i→∞

E(σ vs τ in ΓHi
(gi)) (5.29)

≥ v − ε (5.30)

So σ is a strategy for player I of value at least v − ε. This implies that
val↓(Γ(max(f, ID))) ≥ v − ε. This construction can be done for any ε > 0,
hence

val↓(Γ(max(f, ID))) ≥ v (5.31)

For any O ⊇ D, val↓(Γ(max(f, ID))) ≤ val↓(Γ(max(f, IO))), hence

val↓(Γ(max(f, ID))) ≤ inf
O⊇D,O open

val↓(Γ(max(f, IO))) = v (5.32)

Hence val↓(Γ(max(f, ID))) = v.
2

Corollary 5.3 Let f : W → [0, 1] be a measurable function and let D be a Gδ

set. Suppose that Γ(max(f, ID)) has lower value v. Then for any ε > 0, there
exist an open set O, D ⊆ O, such that Γ(max(f, IO)) has lower value at most
v + ε.

Proof:
This is merely a reformulation of (the non-trivial part of) Theorem 5.2

2

Corollary 5.4 Let S be a measurable set, and let D be a Gδ set. Suppose that
Γ(S ∪ D) has lower value v. Then for any ε > 0, there exist an open set O,
D ⊆ O, such that Γ(S ∪O) has lower value at most v + ε.

Proof:
Take f = IS and apply Corollary 5.3.

2
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5.3 Gδσ-sets

Theorem 5.5 Let S =
⋃
iDi be a Gδσ set. Then Γ(S) is determined.

Proof concept:
As in the proof of Davis [5], each of the Gδ sets composing the Gδσ set is enlarged
to an open set using Corollary 5.4, in such a way that at all times the lower
value is not increased by more than ε (compared to the original game), where
ε is arbitrarily small. The resulting union of open sets is itself open, and hence
determined, and furthermore Corollary 4.6 allows us to conclude that the total
increase of the lower value is still not more than ε. This means that the upper
value of the original game is also only at most ε more than the lower value.
Note that, unlike the previous proofs, this proof does not produce a strategy of
the required value.
Proof:
Put v = val↓(Γ(S)). Let ε > 0. Using Corollary 5.4, we can find inductively
open sets Oi ⊇ Di such that for all j ∈ IN ,

val↓(Γ(S ∪
⋃

i≤j+1

Oi)) ≤ val↓(Γ(S ∪
⋃

i≤j

Oi)) + ε/2j (5.33)

Then for all j ∈ IN ,

val↓(Γ(S ∪
⋃

i≤j

Oi)) ≤ v + ε (5.34)

and hence, for all j ∈ IN ,

val(Γ(
⋃

i≤j

Oi)) ≤ v + ε (5.35)

Then by Corollary 4.6,

val(Γ(
⋃

i

Oi)) ≤ v + ε (5.36)

Since S =
⋃
iDi ⊆

⋃
iOi,

val↑(Γ(S)) ≤ val↑(Γ(
⋃

i

Oi)) = val(Γ(
⋃

i

Oi)) ≤ v + ε (5.37)

This is true for any ε, hence val↑(Γ(S)) = v.
2

Remark 5.6 Theorem 5.1 shows that any Gδ set can be enlarged to an open
set such that the value of the Blackwell game on that set is not increased by
more than an arbitrarily small amount. The proof of Theorem 5.5 shows the
same for Gδσ sets.

A viable proposition is, that this holds for any Borel-measurable set. This is
true in the case of games of Perfect Information. Such a game, on a Borel-set S,
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is determined and has value 0 or 1. If it has value 0 then player II has a winning
strategy. The set of plays that cannot occur if player II uses that strategy, is
open, and the game on that set has value 0 as well.

It is also true in the case of measures. For any measurable set S, there exist
open sets O ⊇ S whose measure is an arbitrarily small amount larger. The
proof for measures is by induction on Borel complexity. Unfortunately, it does
not go through for values of Blackwell games (or Borel games, for that matter),
because if S1 ⊆ O1, S2 ⊆ O2, and

val(O1) ≤ val(S1) + ε1, val(O2) ≤ val(S2) + ε2 (5.38)

then it does not always follow that

val(O1 ∪O2) ≤ val(S1 ∪ S2) + ε1 + ε2. (5.39)
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Chapter 6

Variations on a Theme

6.1 Payoff Variations

In the case of games of Perfect Information, games with multiple-valued payoff
functions are not more complicated to analyze than games with two-valued
payoff functions. For example, if f is a bounded Borel function, then the set
Sv = {w ∈ W | f(w) ≥ v} is a Borel set for each value v, and hence the game
(of Perfect Information) for that set is determined. A winning strategy in that
game is a strategy of value v in the game of Perfect Information with payoff
function f . Thus, for every value v, at least one player has a strategy of that
value. It follows that the game of Perfect Information with payoff function f is
determined.

Unfortunately this reasoning does not hold in the case of Blackwell Games.
In games of Perfect Information, either one player wins, or the other wins. In
Blackwell games, there is no such dichotomy, and the probabilistic results we
get do not combine well. However, there are some specific results we can obtain.

Theorem 6.1 Let f be a continuous function. Then Γ(f) is determined.

Proof:
By Remark 2.3 W is compact. Since f is continuous, this implies that f [W ] is
compact, and hence bounded. Define u : P → IR by u(p) := infw⊃p f(w).
Then u is well-defined and bounded, and by the continuity of f , f(w) =
supn∈IN u(w|n) for all w ∈W . Applying Theorem 4.4 yields the corollary.

2

Theorem 6.2 Let H be a set of positions, such that no position in H precedes
another position in H. Let u : H → [0, 1] be a mapping, and let f : W → [0, 1]
be the payoff function defined by fn(w) = u(wj) iff wj ∈ H for some j ∈ IN ,
fn(w) = 0 otherwise. Then Γ(f) is determined, and

val(Γ(f)) = lim
n→∞

val(Γn(fn)) (6.1)
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where fn(w) = u(wj) iff wj ∈ H for some j ≤ n, 0 otherwise.

Proof:
Extend the domain of u to P by setting, for p 6∈ H, u(p) := 0, and apply Theo-
rem 4.4.

2

Remark 6.3 Theorem 6.2 holds if all positions in H are assigned a nonnegative
payoff (or if all positions in H are assigned a nonpositive payoff). If both
positive and negative payoffs are assigned, the equality no longer holds, and
while determinacy can still be proven, to my knowledge the only proof is as a
corollary to a much more general result.

Theorem 6.4 Let u : P → IR be a bounded function, and let f : W → IR be the
payoff function defined by f(w) = lim supn∈IN u(w|n). Then Γ(f) is determined.

Proof:
This follows from a result by Maitra and Sudderth [8] [9].

2

Corollary 6.5 Let H be a set of positions, such that no position in H precedes
another position in H. Let u : H → IR be a bounded function, and let f :
W → [0, 1] be the payoff function defined by fn(w) = u(wj) iff wj ∈ H for some
j ∈ IN , fn(w) = 0 otherwise. Then Γ(f) is determined.

Proof:
Extend the domain of u to P by setting, for p 6∈ H, u(p) := u(p′) if p′ ⊆ p, p′ ∈
H, u(p) = 0 otherwise. Then apply Theorem 6.4.

2

6.2 Pure Variations

We can view a pure strategy for player II, as a function assigning to each position
p ∈ P an element of Y . Let us denote the set of pure strategies for player II by
T . Then T = Y P . Given a probability distribution π on T , we can play a given
Blackwell game by using π to pick a pure strategy, and then play according to
that pure strategy. This ‘strategy’ corresponds to an ordinary mixed strategy,
and vice versa.

Theorem 6.6 For any probability distribution π on the set T of pure strategies
we can find a mixed strategy τ for player II, and conversely for any mixed
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strategy τ for player II we can find a probability distribution π on T , such that
in any Blackwell game Γ(f), playing against any strategy σ,

∫

τ ′∈T

E(σ vs τ ′ in Γ(f))dπ(τ ′) = E(σ vs τ in Γ(f)) (6.2)

Proof:
Given a probability distribution π on T , we can define the strategy τ by setting,
for p = (x1, y1, . . . , xn−1, yn−1) ∈ P , yn ∈ Y :

τ(p)(yn) =
π{τ ′ ∈ T | τ ′(p|(i−1)) = yi for i = 1, 2, . . . , n− 1}

π{τ ′ ∈ T | τ ′(p|(i−1)) = yi for i = 1, 2, . . . , n− 1, n}
(6.3)

Given a strategy τ for player II, we can define the probability distribution
π as the unique measure induced by setting, for different p1, p2, . . . , pn ∈ P ,
y1, y2, . . . , yn ∈ Y ,

π{τ ′ ∈ T | τ ′(pi) = yi for i = 1, 2, . . . , n} =
n∏

i=1

τ(pi)(yi) (6.4)

In both cases, τ and π now satisfy, for any position p = (x1, y1, . . . , xn, yn) ∈ P ,

n∏

i=1

τ(p|(i−1))(yi) = π{τ ′ ∈ T | τ ′(p|(i−1)) = yi for i = 1, 2, . . . , n} (6.5)

Now fix a strategy σ for player I. For any position p = (x1, y1, . . . , xn, yn) ∈ P ,

∫

τ ′∈T

µσ,τ ′{w | w ⊃ p}dπ(τ ′)

=

∫

τ ′∈T

(
n∏

i=1

σ(p|(i−1))(xi) • τ
′(p|(i−1))(yi)

)
dπ(τ ′) (6.6)

=

n∏

i=1

σ(p|(i−1))(xi) •

∫

τ ′∈T

n∏

i=1

τ ′(p|(i−1))(yi)dπ(τ
′) (6.7)

=

n∏

i=1

σ(p|(i−1))(xi) • π{τ
′ ∈ T | τ ′(p|(i−1)) = yi for i = 1, 2, . . . , n} (6.8)

=
n∏

i=1

σ(p|(i−1))(xi) •
n∏

i=1

τ(p|(i−1))(yi) (6.9)

= µσ,τ{w | w ⊃ p} (6.10)

2

Taking the integral over T commutes with countable (bounded) summation,
and since π is a probability distribution it commutes with subtraction from 1
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as well. Since the sets {w | w ⊃ p}, p ∈ P generate the Borel σ-algebra, by
Sierpinski’s Lemma it follows that for all Borel-sets S,

∫

τ ′∈T

µσ,τ ′(S)dπ(τ
′) = µσ,τ (S) (6.11)

and hence for any bounded measurable function f : W → IR,
∫

τ ′∈T

∫

w∈W

f(w)dµσ,τ ′(w)dπ(τ
′) =

∫

w∈W

f(w)dµσ,τ (w) (6.12)

which is equivalent to (6.2).
2

Corollary 6.7 Let Γ(f) be a Blackwell game, and let σ be a strategy for player
I. Then player II has pure ε-optimal counterstrategies τ ′ against σ.

Proof:
Let τ be an ε-optimal counterstrategy against σ, i.e. E(σ vs τ in Γ(f)) <
val(σ in Γ(f)) + ε. By Theorem 6.6, τ can be interpreted as a probability dis-
tribution π on the space of pure strategies, such that

∫

τ ′∈T

E(σ vs τ ′ in f)dπ(τ ′) = E(σ vs τ in Γ(f)) (6.13)

This implies that there exists a pure strategy τ ′ such that

E(σ vs τ ′ in f) ≤ E(σ vs τ in Γ(f)) (6.14)

2

6.3 Axiomatic Variations

For Games of Perfect Information, there exists the Axiom of Determinacy, which
states that any Game of Perfect Information with finite choice-of-moves and
payoff function f = IS is determined. AD has many interesting consequences,
such as the existence of an ultrafilter on ℵ1, the existence of a complete measure
on IR, the non-existence of a sequence of ℵ1 reals, and the negation of the Axiom
of Choice. We can formulate an analogue of AD with respect to Blackwell
Games, and look at the consequences of that axiom. But AD is an axiom
about games on all subsets of W , not just the Borel measurable subsets, and
indeed, AD with respect only to games on Borel measurable subsets is provable
from CAC [7], and hence not a very strong statement. In order to formulate
a proper analogue, we first need to redefine the expectations and values of
Blackwell Games, to include games with arbitrary, possibly non-measurable
bounded payoff functions.
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Definition 6.8 Let Γ(f) be a Blackwell Game, where f is bounded but not
necessarily Borel measurable. Let σ and τ be strategies for players I, II. σ and
τ determine a probability measure µσ,τ on W , induced by setting

µσ,τ{w | w ⊃ p} =
n∏

i=1

(
σ(p|(i−1))(xi) • τ(p|(i−1))(yi)

)
(6.15)

for any position p = (x1, y1, . . . , xn, yn) ∈ P .
Instead of the expected income of player I, if she plays according to σ and player
II plays according to τ , we now have the lower and upper expected income :

E−(σ vs τ in Γ(f)) = sup
g≤f,g measurable

∫
g(w)dµσ,τ (w) (6.16)

E+(σ vs τ in Γ(f)) = inf
g≥f,g measurable

∫
g(w)dµσ,τ (w) (6.17)

Lower value and upper value are redefined in the obvious way:

val↓(Γ(f)) = sup
σ

inf
τ
E−(σ vs τ in Γ(f)) (6.18)

val↑(Γ(f)) = inf
τ

sup
σ
E+(σ vs τ in Γ(f)) (6.19)

Remark 6.9 Note that in the case that f is measurable, these definitions re-
duce to the old definitions.

Now we can axiomatize the determinacy of Blackwell Games:

Definition 6.10 The Axiom of Determinacy of Blackwell Games (AD-Bl) is
the statement
for every pair of non-empty finite sets X,Y , and every bounded function f on
W = (X × Y )IN , the Blackwell Game Γ(f) is determined, i.e. val↓(Γ(f)) =
val↑(Γ(f)).

Some consequences of AD-Bl are:

Theorem 6.11 Assuming AD-Bl, it follows that there exists a complete mea-
sure on IR.

Proof:
It suffices to show that there exists a complete measure on R = {0, 1}IN . Set
X = Y = {0, 1}, and define φ : W → R by

φ(x1, y1, x2, y2, . . .) = (x1 ⊕ y1, x2 ⊕ y2, . . .) (6.20)

where 0 ⊕ 0 = 1 ⊕ 1 = 0, 0 ⊕ 1 = 1 ⊕ 0 = 1. Now, for any two strategies σ, τ ,
the function φ induces a measure φ(µσ,τ ) on R, by setting for S ⊆ R,

φ(µσ,τ )(S) = µσ,τ (φ
−1[S]) (6.21)
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If either σ or τ is the strategy which assigns to each position p the 1
2 -
1
2 probability

distribution on X or Y , respectively, then this induced measure is equal to the
usual Lebesgue measure µL on R.

Now let S be a subset of R = {0, 1}IN , and consider the Blackwell Game
Γ(f), where f = Iφ−1[S]. For any two strategies σ, τ , the upper and lower
expected income of player I are now equal to the inner and outer measure of
φ−1[S] under the measure µσ,τ , or the inner and outer measure of S under the
induced measure φ(µσ,τ ) For any strategy σ there exists a strategy τ such that
E−(σ vs τ in Γ(f)) ≤ µinnerL (S), namely the strategy assigning the 1

2 -
1
2 proba-

bility distribution to each position. This implies that val↓(Γ(f)) ≤ µinnerL (S).

Similarly, val↑(Γ(f)) ≥ µouterL (S). From the determinacy of Γ(f), it now follows
that, for any set S ⊆ R,

µinnerL (S) = µouterL (S) (6.22)

and hence, the Lebesgue measure can be extended to a complete measure on R.

2

Theorem 6.12 AD-Bl is not consistent with AC

Proof:
This follows from the previous Theorem, since AC implies the existence of a
non-measurable set.

2

Remark 6.13 The only places in this paper where we use Choice are the proofs
of Lemma’s 3.11 and 3.14 where we choose and combine countably many strate-
gies, and the proof of Theorem 5.5, where we inductively enlarge countably
many Gδ sets to open sets. For the first purpose, CAC, the Countable Axiom
of Choice, suffices, although the proof of Lemma 3.14 needs some rewriting. In
order to prove Theorem 5.5 without using a stronger axiom such as DC, the
Principle of Dependent Choice, we can adapt a proof given by Blackwell [3] to
prove Corollary 5.4 in a more constructive manner, i.e. given a Gδ set D and
associated set of positions H, we can use the adapted proof to construct an
open set O ⊇ D that is at most ε ‘better’ for player I, in a ‘canonical’ manner.
CAC suffices to find, for a given Gδσ set S, component sets Di and associated
sets of positions Hi, which then can be inductively enlarged without using more
Choice. Hence, CAC suffices to prove Borel-determinacy up to complexity Gδσ

at least.

Theorem 6.14 Assuming AD-Bl, it follows that ℵ1 is a real-valued measurable
cardinal, i.e. there exists a σ-complete nonatomic measure on ℵ1.

Proof:
This measure can be constructed in a manner similar to my own elementary
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construction of an ultrafilter using AD [17]. The complete proof, however, is
outside the scope of this paper.

2

Remark 6.15 An open problem is that of the relationship between AD and
AD-Bl, whether AD follows from AD-Bl, or vice versa, or even whether AD-Bl
follows from a stronger version of AD such as ADIR. From a given (binary) game
of Perfect Information, we can easily construct a Blackwell game that is ‘equiva-
lent’, and assuming AD-Bl we can find an ε-optimal strategy for that equivalent
Blackwell-game. However, to derive AD from AD-Bl, we need to have a pure
strategy, and even though we can interpret the strategy we have as a probability
distribution on pure strategies (Theorem 6.6), there is no guarantee that any of
these pure strategies will function separately against all counterstrategies.

6.4 Half-Finite Variations

Theorem 6.16 Let X be a finite set, Y an infinite set, or vice versa, and
f : X × Y → IR a bounded function. Then the ‘Blackwell Game’ Γ1(f) is
determined.

Proof:
Without loss of generality we may assume that X is finite, Y is infinite, and
f : X × Y → [0, 1]. Define for n > 0, the payoff function fn : X × Y →
{0, 1

n
, . . . , n−1

n
, 1} by

fn(x, y) =
bf(x, y) • nc

n
(6.23)

and the equivalence relation ∼n on Y by

y ∼n y
′⇔∀x ∈ X : fn(x, y) = fn(x, y

′) (6.24)

For any n > 0, the set of equivalence classes Y/∼n is finite, of cardinality
at most (n + 1)#X . Consider the game where player I picks an x ∈ X, and
simultaneously player II picks a ȳ ∈ Y/∼n, with payoff being equal to fn(x, y)
for y ∈ ȳ. This is a one-round Blackwell game with finite choice of moves, and
hence determined by Von Neumann’s Minimax Theorem. But it is easily seen
that strategies for this game translate to strategies of equal value for the game
Γ1(fn) and vice versa. We conclude that each game Γ1(fn) is determined. By
Lemma’s 3.1 and 3.2, we have that for n > 0,

val(Γ1(fn)) ≤ val↓(Γ1(f)) ≤ val↑(Γ1(f)) ≤ val(Γ1(fn)) +
1

n
(6.25)

Therefore val↓(Γ1(f)) = val↑(Γ1(f)).
2
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Theorem 6.17 If we allow either player I or II to have an infinite selection of
moves (i.e. X or Y is infinite, but not both), and S is an open or Gδ set, then
Γ(S) is determined.

Proof:
Most of the proofs in Chapters 3, 4, 5 merely use the result of determinacy
of one-round games, and are not concerned with the internal details of that
proof. Using Theorem 6.16 instead of Von Neumann’s Min-Max Theorem, by
inspection all the results given in Chapters 3, 4 and 5 are still valid, with the
exceptions of Corollary 3.5, Theorem 4.4 and Corollary 4.6, that depend on the
finiteness of the sets Wn and compactness of W , and no longer hold, and the
proof of Theorem 5.5 (the determinacy of Gδσ-games), which uses Corollary 4.6.

2

Example 6.18 It is essential that either X or Y is finite. If, for example, we
take X = Y = IN , S = {(x, y) ∈ IN × IN | x > y}, then the game Γ1(S) is
not determined. For let σ be any strategy for player I, and let ε > 0. We can
interpret σ as a probability distribution on IN . As

∑∞
i=0 σ(i) = 1, there is an

N ∈ IN such that
∑N

i=0 σ(i) > 1−ε. For player II, the strategy of playing N+1
beats σ with probability greater than 1− ε. It follows that σ has value less than
ε for any ε > 0, i.e. σ has value 0. Similarly, any strategy τ for player II has
value 1. Hence, the game Γ1(S) is not determined.
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