
Intelligent Customer Pathway

submitted in partial fulfillment for the degree of master of science

Silvio Affolter
11845953

master information studies
data science

faculty of science
university of amsterdam

2018-06-28

Internal Supervisor External Supervisor
Name Dr. Maarten Marx Zubair Afzal
Affiliation UvA, FNWI, IvI Elsevier
Email maartenmarx@uva.nl m.afzal.1@elsevier.com



Intelligent Customer Pathway
Automation of customer service by classifying incidents automatically from email messages.

Silvio Affolter
University of Amsterdam
silvio.affolter@gmail.com

ABSTRACT
Assigning contact reasons to incoming customer service emails is
a labor intensive and error prone task. Achieving human perfor-
mance with an automated system can lead to increased customer
satisfaction at lower cost. We used a training set containing 22,552
first email messages, received by Elsevier customer service to train
support vector machines and recurrent neural networks for au-
tomated email classification. Each email message has one out of
eight possible contact reasons assigned by customer service agents.
We used Krippendorff’s alpha to measure human performance on
an independent and stratified evaluation set of 500 emails mes-
sages, which were manually labelled by two independent anno-
tators. Cross-validation was used to train automated models and
measure their performance. To compare the performance of auto-
matedmethods with human performance, we built models using the
full training set and tested on the evaluation set. The performance
of several classifiers was similar. The results of the human perfor-
mance measure revealed the difficulty of the task. The research
has demonstrated a SVM or bidirectional LSTM can outperform
or reach the current human performance at the task of classifying
emails with a contact reason.

1 INTRODUCTION
Customer service departments are confronted every day with the
processing of a large number of emails from customers. To handle
the workload, organizational structures have been established, es-
pecially multi-tiered customer service structures. In the last decade,
automating customer services using intelligent methods has been
trending and is expected to be ubiquitous within a few years [12].
The goal of automation is to improve the customer service experi-
ence without increasing the operational cost [2]. Automated classifi-
cation of customer service emails by contact reason is a multi-class
classification problem. A large amount of research has already been
performed on email classification and even more on text classifi-
cation [19] [15]. In the specific domain of customer service, little
research has been published. The related literature found by the
author for classifying customer service messages based on their
content does not involve human performance measures for the task.
In most general text classification studies, human performance is
not considered either. Hence, this research focuses on comparing
automated customer service email classification performance with
human performance.

At Elsevier the first tier of customer support is responsible for
identifying high level contact reasons and solving them right away
if the problem is within their scope of complexity. A tiered orga-
nizational structure aims to keep the workload as low as possible
for the second and third tiers of support [21]. The second and third
levels are specialized departments for specific non-standard issues.

Recent research claims that a combination of human interaction
and automation is the most beneficial setup for customer service
success [3]. One of the main factors of customer satisfaction with
the service provided is the time needed to resolve the problem [7].
Automation can speed up the progress by forwarding the email
instantly to the right person without waiting in a general queue
for processing. The most important factor for the success of an
automated system is the performance. If it can be shown that an
automated system reaches the human performance level, chances
for acceptance are high.

Van den Poel and Coussement [2] use machine learning methods
for classification of customer service email and identify cost savings.
Research of Jeltey et al. [8] focuses on customer service analytics
by using automated classification methods. Recent research for
customer service is mainly focusing on fully automated service
chat bots [23]. In all of the machine learning text classification
studies found by the author human peformance is not assessed
for the classfication task. Only one report [22] has been found by
the author where human performance is measured on a standard
multi-class classification datastet. Therefore, the focus of the study
is to assess if human performance of customer service agents can
be reached by a machine learning classifier.

In this study, the focus is solely on the first level of customer sup-
port at Elsevier, which is split into three different queues specialized
in specific contact reasons. The algorithms are trained on a dataset
of 23,052 first email messages sent from the customer to customer
service, which are labelled with a contact reason. For each message
one out of eight contact reasons needs to be assigned. Based on the
assigned contact reason, one out of three queues can be derived
to determine where the message is to be routed. Each queue has
two or three fixed contact reasons to process. The messages have a
median length of 122 words.

Research questions. The goal of the research is to determine
whether automated text classification methods can reach the hu-
man performance level of customer service agents in the task of
labelling customer emails with a contact reason by using only the
text body. The research is split into four subquestions.

(1) What is the current human service agent performance and
can the system dataset labels be validated by the observers?

(2) How accurately can the text body of the first message from
the customer to the customer service be extracted?

(3) What performance level can be achieved with a baseline
model by using a well-performing (according to literature)
standard multi-class text classification pipeline setup?

(4) How much can the automated classification performance
be improved by using different pre-processing steps, fea-
ture selection methods, sampling techniques for imbalanced
datasets, hyperparameter tuning, and alternative models?



This document is structured into several parts. After the introduc-
tion, the related literature relevant to each of the research questions
is introduced. Later, the dataset is described and the methods used
to answer the research questions are explained. Furthermore, the
evaluation part includes results of all the sub-questions of the re-
search and at the end, a conclusion regarding the main research
question is drawn from the results of the sub-questions.

2 RELATEDWORK
2.1 Text classification
The classification of emails based on the text body is a specific task
of text classification. Machine learning models replaced rule-based
systems years ago in the area of text classification [19]. Hence, only
machine learning models are considered in this study. The main
focus is on text classification using support vector machine (SVM)
classifiers. Additionally, due to the increasing popularity of neural
network approaches [25], recurrent neural networks (RNNs) with
long short-term memory (LSTM) cells are considered for improve-
ments. The focus is on an SVM baseline because the training set
is not large and because literature reports good performance of
multi-class classification tasks using support vector classifiers [9]
[14].

Manning et al. [14] provide an introduction to support vector
classifiers and divide them into two main groups of SVM, depend-
ing on whether they have a linear or a nonlinear kernel. They state
that an SVM model is not necessarily better than other models
but can provide state-of-the-art performance for many small or
medium-sized datasets. According to a literature review about text
classification algorithms [1], SVMs are most frequently used with
the linear kernel in practice due to the simplicity of the kernel and
the stable results. Training an SVM requires choosing between a
one-versus-all approach and a one-versus-one approach [14]. The
research by Rifkin and Klatau [18] elaborates that, in many situa-
tions, a one-versus-all approach should be preferred. A different
aspect of training SVMs is the text representation, which needs to
be in a vectorized form. According to literature, the bag-of-words
(BOW) model is mainly used in combination with SVM, where each
word or n-gram is represented as a dimension in the vector space
[19]. Another approach of representing the text input is by using
techniques like latent semantic analysis, where language models
are created with lower dimensional and less sparse vectors [14].
A comparison of the text representation methods is provided by
Zhang et al. [26]. A further aspect is the term weighting, where the
tf-idf method is a common choice [14]. In literature, a lot of strate-
gies have been developed for improving multi-class text classifiers.
An approach that can lead to better classification performance is the
use of ensembles of classifiers. The voting and bagging approaches
are described by Aggarwal [1]. Other strategies only tackle the im-
balance, which is high in the dataset of this study, by oversampling
and under-sampling to improve the overall performance. The study
by Estabrooks et al. [4] shows that sampling can be effective on a
standard dataset.

In the past few years, research in text classification methods has
shifted toward methods that use artificial neural networks. The
paper by Young et al. [25] provides an extensive overview of re-
cent deep-learning-based natural-language-processing methods.

Two major popular architecture types of neural networks are used
for natural language processing tasks—the convolutional neural
networks (CNN) and the RNNs, which gained popularity mainly
through image recognition and were later adapted to text classifica-
tion. A comparison of the two approaches supports the indication
that situations where the full sentence needs to be understood are
better suited to RNN than CNN [24]. This study only focuses on
RNN because it is assumed that some of the classes are semantically
close and hard to distinguish without understanding the full sen-
tence. Two common feature-representation techniques are mainly
used with RNNs—the BOW representation, which leads to long and
sparse vectors, and denser short vectors learned from the text data
[25]. Pretrained global vectors have shown good performance as
embedding layer because they can be computed on a large corpus
and represent semantics [17]. Bi-directional neural networks are
a special type of RNN; they take the previous and the following
steps into account to assess a decision. In combination with the
recurrent network, LSTM cells are used to tackle the problem of
vanishing or exploding gradients while training RNNs [5]. Studies
show that a bi-directional LSTM can outperform an SVM classifier
on a standard multi-class dataset like the 20newsgroups dataset
[13].

2.2 Performance measurement
2.2.1 Human labelling performance for emails. Measuring the

human performance for a text classification task is important as all
classes are not always easily identifiable. There is often some degree
of ambiguity in free text—multiple people classifying the same text
do not agree regarding the label. Measures have been developed
to interpret results obtained by different people on the same text.
The most complete introduction to content analysis and measuring
agreement between observers is provided by Krippendorff [10].
One of the most commonly used measures for agreement between
raters is Cohen’s Kappa, which is used for two raters, and Fleiss’
Kappa, which can be used for more than two raters [6]. In this
study, Krippendorff’s alpha is used instead as it is the most general
measure of agreement, with appropriate reliability interpretations
in content analysis [10]. According to Krippendorff, a score of 63%
is the minimum score for slight agreement while a score above 80%
indicates good agreement. A score of 80% means that the agreement
is for 80% of the messages bigger than chance.

No email-related report could be found by the author and only
one report—byWolf et al. [22]—could be foundwhere human perfor-
mance is evaluated on a machine learning text dataset. The report
by Wolf et al. [22] assesses the classification accuracy in differ-
ent experimental situations on a standard document classification
dataset. The experiment is performed on the 20newsgroup dataset.
The goal is to evaluate how time pressure and the representation of
the text as a BOW model influence the accuracy. They report that
humans performed very well even with limited time and seeing
only a BOW representation of the document.

2.2.2 Algorithm performance measurement. Apart from the eval-
uation of the human performance, the algorithm performance needs
to be assessed. To compare the performance between different clas-
sification methods, standardized measures are used. An overview
of the common measures for classification is given by Sokolova
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et al. [20]. For the multi-class classification task in this study, for
each class precision, recall and f1-score are relevant measures to
understand the performance and the practical implications. For the
total performance, the micro-averaged performance is considered
over the macro-averaged performance. These standard measures
are all described by Manning et al. [14], including the advantages
and disadvantages of specific methods. If the emphasis is on the
performance of large classes, micro-averaging is preferred. This
is the case for the specific task in this study based on the com-
pany’s organization, where, for less frequent contact reasons, lower
processing capacities are available in the departments.

2.3 Automation of customer service
communication

Automated email classification in the specific case of customer ser-
vice emails has been studied by Van den Poel and Coussement [2].
They try to split a binary classification into complaint and non-
complaint categories by using a set of handcrafted linguistic fea-
tures. Another study [8] focusing on analysis of customer inquiries
describes an approach to classify customer reports automatically
with a lot of effort in manual feature creation. In general literature,
for the specific domain of customer service, email classification
is scarcely mentioned. In contrast, less application-area-specific
literature for general email classification is common, even though
the majority of research in the area of email classification covers
spam or phishing email detection [16], which is a binary classifi-
cation problem. With the popularity of deep learning approaches
and social media, chatbots for customer service were introduced.
Xu et al. [23] describe an approach for filtering out messages that
are only emotional and do not include an actual problem. The doc-
umented approach is interesting because a content analysis section
is included to compare between humans.

3 METHODOLOGY
3.1 Description of the data

3.1.1 General dataset information. The dataset used has been
provided by Elsevier and contains Scopus customer service email
messages. Scopus is a large abstract and citation database for aca-
demic publications. The dataset includes email correspondence of
several months. A conversation can comprise multiple emails or
only one initial message. The focus in this study is only on the
first messages sent to open an incident in the customer service sys-
tem. The dataset for each incident contains a contact reason, which
is used for the company’s internal problem-solving and problem-
routing. There are multiple levels of contact reasons, but only the
first one is considered in this study. Hence, the first contact reason
is only referred to as contact reason. Emphasis has been put on pro-
tecting the customer by conducting the research GDPR compliant.
Additionally, Elsevier’s critical business information is protected
by anonymizing contact reasons with the letters A-H and queues
by the numbers 1-3.

In Table 1, an overview is provided about the size of the dataset.
There are 23,168 incidents included in the dataset, but only 23,052
have been completed. Only the completed incidents are used as the
assigned contact reason and the problem is only fully known after
an incident has been completed. The 23,052 completed incidents

Table 1: Summary of important figures about the email
dataset used within this study.

Description Unique items

Number of incidents 23168
Number of completed incidents 23052
Number of contact reasons 8
Number of service queues 3
Corpus size in words (Unigrams) 172314

represent the number of first messages, which can be used to assign
a contact reason based on the first messages’ text body. Each email
falls under one of eight contact reasons. Each contact reason is
processed by one of the three specialized departments (queues). An
overview of the queues and their corresponding contact reasons is
provided in Figure 1. Additionally, the figure shows the absolute
number of messages per queue and per contact reason, as well as
the percentage of total messages. The dataset is very imbalanced
regarding the class distribution. There is one dominating class, with
48% of the total messages. The smallest class only contains 2% of
the total number of messages.

Figure 1: Overview of queues Q1-Q3 and the corresponding
contact reasons CR-A to CR-H. The absolute numbers of
firstmessages and the percentage of the total number of first
messages are given.

3.1.2 Text message specific information. For each text message,
there is a field containing the actual message and one contact rea-
son label. From the contact reason label, it is possible to infer the
queue directly as the corresponding queue for a contact reason is
fixed. In 2, an example is given of the beginning of a text message
and its contact reason. The email message content is the only in-
formation available, from which all features have to be derived for
predicting the corresponding contact reason of the message. The
text is the raw email, including HTML tags and headers or footers.
A lot of variation regarding the structure is possible based on the
email clients used by the customers and whether the emails were
forwarded. The contact reason label in the data is the label which is
assigned finally by the customer agent who resolved the problem.
Between the initial message and the resolution, there could have
been follow-up communication to elaborate the exact problem in
more detail. Hence, this given label is more correct regarding the
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customer’s actual issue but does not always correspond to the text
in the first message if it was not clearly described there.

Table 2: Important features listed in email dataset with an
example value.

Field Example Value

Thread Text <div dir="ltr"><div>Dear Sir/
Madam, </div><div>My institution
(Universitat, Spain) is subscribed to
...

Contact Reason Using the product

To gain an overview of the text messages regarding length and
vocabulary, corpus size statistics and message length statistics are
calculated. The emails are tokenized in words respectively unigrams
after the HTML tags are removed to obtain the corpus size of the
actual content. The corpus size when all first messages are used
equals 172,314 unigrams. Plotting the word frequencies in relation
to their frequency rank shows that the occurrences of the word
is close to a power law distribution. The corresponding plot is
illustrated in Figure 6 in the appendix A.

For the text length analysis, each contact reason is observed
separately and for all contact reasons together. The average length,
standard deviation, 25% quantile, 50% quantile, and 75% quantile
are calculated and illustrated in Figure 2. All the messages together
contain on average 197 unigrams. There is a visible difference in
terms of the length distribution by class. The differences are visible
mainly in the longest 25% to 50% of the messages. The contact
reasons G, D, and F have significantly longer messages included.
If the total of messages is observed, 50% of the messages are less
than 112 unigrams long. Hence, the mails have a short text body in
general if it is taken into account that the emails contain footers as
well.

Figure 2: Illustration of text message lengths in words for
each contact reason and the total of all messages.

3.1.3 Evaluation set. The validity of the training dataset de-
scribed in Section 3.1 was assessed by handing out an evaluation
set of 500 messages to two customer service agents from different

queues, who assign contact reasons to emails on a daily basis. All
the evaluation messages were already labelled in the system dataset
with a contact reason. Random messages were selected based on
the system dataset contact reasons. The contact reasons [A,B] are
represented by 85 examples in the dataset and the contact reasons
C-H by 55. The customer service agent had to assign a contact rea-
son and a queue label for each message by only seeing the extracted
text of the message. In a comment field, additional remarks were
captured to provide information for the validity assessment. The
number of 500 messages was determined as the maximum capacity
that can be handed out to Elsevier’s customer service agents for
human annotation. As the original imbalance in the dataset is very
high, a stratified sample of 500 messages would not lead to enough
samples for assessing the less frequent class performance. Hence,
the choice for a nearly balanced evaluation set was made, where
only the contact reasons A and C are represented by 35% more
samples to achieve balance between queues.

The service agents read the emails and provided comments if
they were unable to assign a contact reason. Based on the feedback,
36 messages from the evaluation set, which were spam or did not
include any information about the problem in text form, were re-
moved. The remaining 464 messages were identified as messages
with a text body, which is to some extent related to a customer
service incident. Because the evaluation set was randomly picked
for each class, a similar number (7%) of non-usable email messages
is expected in the full dataset for each contact reason. The contact
reasons F to H show a relatively high amount (10-15%) of messages,
where no relation with the given contact reason could be found at
all.

3.2 Methods
In this section, the methods used to gain insights into the research
questions are described. The methods have two main areas of focus.
The first area focuses on the methods used to assess human perfor-
mance and make it comparable to the second part, which covers
the automated classification approach. The human classification
part describes what is considered as human performance in order
to be compared with the automated performance. The automated
classification part contains three major steps—extracting the text
body, building a baseline model, and searching for improvements.
At the end, the best performing classification model is picked and
the agreement measure is calculated to compare with the human
performance.

The general approach is illustrated in Figure 3. From the origi-
nal dataset, 500 messages are extracted for human evaluation and
classifier evaluation. The human evaluation is used to assess the
difficulty of the task for humans based on the text body and to
assess the validity of the dataset. The remaining data is used to
train and evaluate classifiers. At the end, the results are compared
between the best classifier and humans.

3.2.1 Text body extraction from email. The basis for evaluation
and classification of an email in this study is the text body. The
emails in the dataset are stored in the raw HTML structure created
by the email client from which it was sent. Hence, a lot of noise
and variation is included in the raw text of a message. The most
important factors for variation are the email client used, the style
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Figure 3: Diagram of the experiment setup. Extracting an evaluation set from the original dataset and handing it out to two
annotators. The remaining data is used to train and evaluate the classifier by five-fold cross-validation. At the end, the perfor-
mance results are compared.

of structuring an email body, and the footer with contact informa-
tion. To remove critical information and reduce the noise, multiple
cleaning steps are performed. The individual steps are explained in
the appendix B.1.

The efficiency of the steps to extract and prepare the text body
for human evaluation and classification are assessed by checking
100 messages manually. For each message, the original message is
compared with the extracted text body. Then, the decision is made
regarding whether the step was successful or not. The step is con-
sidered as successful if the text body with the problem description
is still within the message after the extraction.

3.2.2 Service agent data evaluation and human performance.
This section describes the evaluation procedure for the label validity
and the human performance measurement.

Service agent data evaluation. The validity of the training dataset
is assessed by measuring the agreement between the two observers
(customer service agents) on the evaluation set. Krippendorff’s α
[10] score is used to measure the agreement between the observers.
The Alpha score is the ratio between the observed disagreement
and the expected disagreement by chance is subtracted from one.
Perfect agreement is represented as α = 1, no agreement α = 0 and
systematic disagreement with a negative α . A detailed explanation
is provided by Krippendorff [11]. The nominal difference function
is used and calculated with the NLTK 1 implementation. The agree-
ment between the two observers and between each of the observers
and the system dataset is calculated. The agreement score compari-
son between the observers itself and the observers with the system
dataset is part of the assessment to decide if the system dataset
labels are usable for training. If the agreement is good between
the two observers (α > 80%) and is simultaneously low (α < 63%)
between the observers and the system dataset, then doubts can be
1https://www.nltk.org/_modules/nltk/metrics/agreement

raised on the correctness of the system labels. Further investigation
would be required as well in the case of extremely low agreement
scores in general (α < 40%). The ranges for agreement are based on
statistical analysis of Krippendorff [10]. It is important to be aware
that for the system dataset labels, additional information—like the
full conversation history and attachments—is available and can be
viewed.

Human performance. Human performance is evaluated using
two different approaches. The first approach is to use the α de-
scribed in the previous paragraph. Including the system dataset,
which is also created by human service agents but is considered to
be more correct, there are three human-labelled contact reasons
available. Hence, the total agreement between all three datasets
and between the two observers is used as a human performance
score. The second approach is to calculate precision, recall, and
f1-scores for each of the two observers on the evaluation set by
using the system dataset as a gold standard. The total performance
is measured by the micro-averaged f1-score. In the case of the eval-
uation set, the micro-averaged score is nearly a macro-average due
to the balanced representation of the classes in the evaluation set.
Confusion matrices are used to analyze the errors on contact reason
level classification and queue level.

For the specific task of labeling customer servicemessages, a high
precision score implies that a person is assigning a certain contact
reason or queue only when the person is sure about the label. A
high recall metric means that the messages that should be assigned
to a specific contact reason or queue are nearly always identified.
For the specific case of the Elsevier customer service structure, it
is important achieve a high recall on the biggest classes because
otherwise too many messages are routed to smaller departments,
which do not have the capacity to handle many messages, resulting
in a big backlog.
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3.2.3 Text classification baseline setup. To establish a strong
baseline for the automated classification a linear SVM is used and
the input features are represented in a BOW model by using un-
igrams with term frequency-inverse document frequency (tf-idf)
weighting [14]. The training dataset is split into five folds and cross-
validation is used to evaluate the performance. The 500 messages
used in the evaluation set have been excluded previously. A brief
overview is provided in Figure 4. Each individual step used for
the baseline classifier is described in more detail in the following
paragraphs.

Figure 4: Illustration of the steps included in the baseline
classifier.

Preprocessing. The start of preprocessing is considered within
this document after the text body extraction has been performed,
as described in Section 3.2.1. The difference is that the text body
extraction is seen as a necessary step to create a usable dataset
for human and automated classification. The preprocessing is only
used for preparing the data for automated classification. Hence, the
extracted text body is used in the first step of preprocessing. To cre-
ate features that can be used by an SVM, a vector representation of
the text body has to be created. There are various methods that can
transform text into a vector representation. The most frequently
used one is the representation of the text as a BOW, where each
element in a vector represents a word or an n-gram. Hence, first
the n-grams have to be created by tokenizing the text into n-grams.
The n-grams are created by using a word tokenizer, which has the
objective of separating words or word combinations within a docu-
ment. In the baseline, unigrams are used and the tf-idf weighting
is used instead of raw term frequencies. The tf-idf weighting has
the main advantage that the impact of a word is dependent on
how frequently it occurs in other documents. Hence, it is assumed
that words occurring in all documents or many documents are less
discriminating for the classification of a document to a category
than words occurring in only in a smaller number of documents.
For example, the word Scopus is expected to be present in many
of the emails because all email messages are about Scopus, but it
does not provide any information about which contact reason an
email is written. These two steps are implemented by using the
standard configuration of the scikit-learn tfidfvectorizer 2 by using
the default configuration.

Classifier. For the multi-class classification problem of assign-
ing contact reasons to messages, a linear SVM is used. The linear
support vector classifier has multiple hyperparameters. The first
2http://scikit-learn.org

parameter, referred to as the C value, influences the number of
datapoints within the support vectors when the decision boundary
is fit. The standard setting of parameter C is the value 1.0.

An SVM is by definition a binary classifier. Therefore, for training
a multi-class model, multiple classifiers have to be trained. There
are two commonly used training strategies. The first one is the one-
vs.-all strategy, where one specific class, e.g. the contact reason A, is
the first class and all other contact reasons B-H are the second class.
Using this strategy requires the training of one classifier per class.
The other common method is to use a one-vs.-one strategy, where
a classifier is trained for each class pair. This strategy requires the
training of more classifiers but can lead to better or faster results
under some conditions. For example, a one-vs.-one strategy can be
beneficial if there are many small classes and only one much bigger
class. For the baseline, the one-vs.-all approach is used with the
linearSVC implementation of scikit-learn.

Themodel is evaluated and trained using a five-fold cross-validation
on the full training set without any adjustment on the sampling
procedure. The distribution of the class frequencies is therefore
imbalanced, as in the complete dataset.

3.2.4 Algorithm performance measurement. The classifier per-
formance is evaluated in two different situations. The first one is
the performance on the test set during cross-validation, which is
the reference for comparing the automated models. The second
one is the performance of the evaluation set, which is used to ob-
tain a directly comparable performance on a small set between the
automated predictions and the human annotations. The measures
calculated are the same as described in 3.2.2 for the human perfor-
mance. The only difference is regarding the α score, which is only
calculated between the original system label and the predicted label.
The F1 micro-averaged scores are used as scoring function because
good performance on the biggest class is important. In comparison
to the evaluation set on the training set, there is a big difference
between the micro- and macro-averaging scores. The same rules
regarding the importance of the recall on the most frequent classes
apply as for the human performance.

3.2.5 Algorithm improvements. In this section, the attempts to
improve the performance of the classifier compared to the baseline
are described. For text classification, many steps can be adjusted
within the pipeline, which might lead to better classification results.
A better classification result is defined as the result with the highest
micro-averaged F1 score; if the F1 scores on the contact reason
are equal, the best F1 micro-score on the queue level is used for
selection. The search for improvements is structured into multiple
parts, each related to a specific step within the pipeline. In this part,
the improvements are briefly described a more detailed description
for each paragraph can be found in the appendix B.2.

Sampling adjustments. The number of messages for each contact
reason class in the training data is adjusted to balance the examples
fed to the classifier. Oversampling and under-sampling are two
commonly used techniques. Under-sampling reduces the examples
used for the most frequent classes and oversampling increases the
number of examples of the less frequent classes. Under-sampling
leads to a situation where not all available information is used,
which could be used for training a classifier. Oversampling leads
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to an over-representation of individual text messages because the
sample message is fed to a classifier multiple times. A better balance
can lead to less bias toward the most frequent classes.

• Under-sampling. Decreasing the number of samples in the
majority class.

• Oversampling. Increase the number of samples in the smaller
classes by drawing with replacement.

• Combine over- and under-sampling.

Preprocessing adjustments. The preprocessing of the data is ad-
justed to change the text representation fed to the SVM classifier. In
the baseline, the words of the text were used unchanged and only
unigrams were used. Techniques like stemming or lemmatizing
reduce the words to their stem or base form. Stemmed words are
no longer actual words; the stems are rule base created without a
dictionary. Lemmatizing retains the actual words and reduces them
to their base form by using a dictionary. Part-of-speech (POS) tags
are used in combination with lemmatizing to reduce the word from
its inflectional form to a base form while retaining the original part
of speech.

• Stemming
• Lemmatizing
• Lemmatizing with Part-of-speech tags
• Use unigrams, bigrams, trigrams

Hyperparameter tuning of support vector classifier. For an SVM, a
few hyperparameters can be adjusted. In the linear case, the main
parameter is the C value and in the case of using a radial basis (RBF)
kernel, an additional parameter, gamma, is adjustable. The training
method can vary between the one-vs.-all and one-vs.-one training
strategies.

• Adjust kernel from linear to radial basis function (RBF)
• one-vs.-all and one-vs.-one
• Adjust C

Ensemble. In the ensemble section, classifiers other than the SVM
are used for the first time. A voting method is used based on the
majority vote with different classifiers and a bagging method with
only SVM. The SVM are only trained on a smaller subset of the
data in the case of bagging. Furthermore, an approach is attempted
where four individual classifiers are trained. The first classifier
predicts the queue and then—for each individual queue—a classifier
predicts the contact reasons possible within the queue. Combining
multiple classifiers, according to the literature, can lead to better
performance than a single classifier itself [1].

• Voting logistic regression, naive Bayes and random forest
• Bagging SVM
• 4 individual SVM Classifiers. First queue prediction and then
contact reason.

LSTM. As a last improvement step, two RNN architectures are
evaluated. Specifically, an RNN is used with LSTM cells in a unidi-
rectional architecture and a bidirectional architecture. According
to the literature, they can perform well on short text classification
and have gained popularity over the last few years [5].

• One directional LSTM
• Bi directional LSTM

3.2.6 Final human and automated comparison. The final com-
parison of the performance between the human performance and
the automate performance is made based on the comparison of the
performance of the two annotators with the baseline model and the
best performing improved model. For each automated model, there
are two performances—one is obtained during cross-validation and
the other by predicting the labels on the evaluation set. The same
statistics and measures introduced for the human performance
and the baseline performance in the previous sections are used.
The rules for comparison are that the performance on the bigger
classes is more important than that on the less frequent classes. The
performance is compared for each contact reason and each queue.

4 EVALUATION
4.1 Text body extraction
In an experiment with 100 messages, for each message, it was
assessed whether the text body extraction steps worked. The results
of the evaluation are shown in Table 3. The first step of the text
body extraction includes the removal of header-specific HTML tags
and the extraction of the email text without the HTML tags. The
package ”Beautiful Soup” 3 achieves very good results on the email
messages; even many emails have a broken HTML structure. The
results listed in Table 3 are assessed regarding the goal of keeping
the important email body, which includes the user-written problem
description to customer service. All the HTML text was correctly
extracted; in two cases, the removal of Gmail signature and quote
tags caused a removal of the problem description. All tags where
removed if they had to be removed and 98% were correctly removed.
The same approach has been used to evaluate if the text body is
separated correctly from the footer or chained emails. A few naive
rules have been used to remove footers from the text body. The
footer signatures have been removed in 74%, if there were any, and
97% of the removed content was correctly removed. Hence, the
important text body content with the description of the problem
remained in nearly all of the cases.

Table 3: Text body extraction success overview.

Text Extraction Split Text Body

Removed correctly 87 58
Remained correctly 11 20
Removed too much 2 2
Removed not enough 0 20

Removal precision 98% 97%
Removal recall 100% 74%

4.2 Service agent data evaluation and human
performance

4.2.1 Service agent data evaluation. The agreement on the label
between the two observers itself and between the observers and
the system dataset is listed in Table 4. All the α scores are between
46% and 50% on the contact reason level. On the queue level, the
3https://www.crummy.com/software/BeautifulSoup/bs4/doc/

7

https://www.crummy.com/software/BeautifulSoup/bs4/doc/


agreement is better with a range from 60% to 65%. The agreement
on the contact reason is low for the dataset; the agreement is big-
ger than chance only for 50% of the data. On the queue level, the
agreements are better and slight agreement is measured according
to the definition of Krippendorff [10].

Table 4: Agreement on contact reasons and queues in human
annotated datasets.

Set 1 Set 2 Contact reason α Queue α

System Dataset Observer 1 0.46 0.61
System Dataset Observer 2 0.50 0.60
Observer 1 Observer 2 0.49 0.65

All three 0.49 0.62

These results are definitely not a high agreement and show that
the task of identifying the contact reason from text is not trivial
for humans. More important than the degree of agreement is the
observation that the agreement between the two human-annotated
evaluation sets is not significantly better than between the human-
annotated datasets and the system-exported dataset. This observa-
tion does not conflict with the assumption that the dataset in the
system is more correct than the single human assessed. If there
would have been perfect agreement between the two raters and
bad agreement toward the system datasets, further investigations
would have been needed to assess why the labels are that different
to the system values.

4.2.2 Human performance. The classification results of the hu-
man annotators are illustrated in Figure 5 with a line for each
performance measure and each target variable. The performance
measures shown are precision, recall, and f1-score on a queue rout-
ing basis and a per contact reason basis. The total micro-averaged
performance scores for the queue and contact reason level are listed
in Table 5. The total agreement between the observers is shown
in Table 4. The total micro-averaged f1-score, which is due to the
hardly imbalanced evaluation set nearly a macro-average is 74% for
Observer 1 and 73% for Observer 2 on queue classification. For the
contact reason classification, 51% and 57% are measured.

Comparing Observer 1 and Observer 2 on a contact level shows
that they are close together on precision and recall for contact
reason A, which is the biggest class. On all the other contact rea-
sons, except the least frequent class H, the performance differs
significantly on either recall or precision. Class H has in general,
extremely low performance, which could be due to various rea-
sons. One observer is not better than the other on all the classes.
Nevertheless, Observer 2 has a more constant performance over all
classes. Annotator 1 was significantly worse in terms of identifying
the affiliation profile correction and citation correction class. The
content class could not be identified at all by the first annotator.
The extremely low performance on contact reason H could have
various reasons, such as ambiguity with another class from the
taxonomy, no clear definition, or insufficient agent training.

If the focus is solely on the queue to which an email message
would have been routed based on the annotator’s label, then all the
metrics are higher than 60%. The messages from the Queue 1 are

identified by both annotators in a similar range, with slightly better
performance by Observer 1. Queue 2 shows a big difference in recall
between the observers. Observer 1 has identified over 80% of the
messages that belong to Queue 2. For Queue 3, with the least volume,
Observer 1 is precise at assigning the queue but has a significantly
lower recall thanObserver 2. Having a high precision is important in
practice for the small queue to not overload the low capacity queue
with many wrong messages. Hence, the performance of Observer 1
is preferred for Queue 3. The observations support the presumption
that Observer 1 is better at routing Queue 1 and Observer 2 is
better at routing Queue 3. The assumption was made based on the
department in which Observer 1 and Observer 2 work. Nevertheless,
the differences observed are much smaller than expected.

4.2.3 Human errors. In Figure 7 and Figure 9 of the appendix C,
the confusion matrix of the errors is presented. The human errors
can be identified in the matrices, which show that the errors were
made in similar areas by the two annotators. The contact reasons
G and F were confused most often. The contact reason H was often
misinterpreted as contact reasons A and C. In general, for both
annotators, a slight bias toward the contact reasons A and C is
observed. Observer 1 shows a stronger bias toward A and Observer
2 toward C.

4.3 Text classification baseline results
The results of the baseline classifier are illustrated in Figure 5 in
the same way as the human performance. In contrast to the human
performance measures, there are two lines for the same baseline
classifier. The lines differ by the data on the basis of which the pre-
dictions have beenmade. The first line uses the exact samemessages
of the evaluation set as for the human performance measurement.
The second line is calculated based on the averaged cross-validation
test scores of the full training dataset. The results on the evaluation
set show for the baseline a low precision on contact reason A—only
a little over 40% . For the cross-validation training set, the precision
is close to 75% for the same contact reason. The recall is close to
90% in both variants. Most of the classes are in a bandwidth regard-
ing precision and recall from 55% to 65%, except contact reason D,
which has very good precision and recall scores, and contact reason
H, which has extremely poor precision and recall scores. The total
f1-score of the baseline classifier for the evaluation set is 57% on
the evaluation set and 70% on the training set. In the case of the
evaluation set, nearly a macro-averaged performance is measured
due to the balance in the contact reasons. The small classes are
over-represented in the evaluation set compared to the daily busi-
ness pattern within the training set. Measuring and comparing the
performance on both datasets offer better insights into how well
the classifier is able to distinguish between the classes. The second
line is the performance, which can be expected in practice if the
messages are received in similar proportions with similar content
in the future.

The results on the queue level measured by cross-validation are
very good. A total f1-score of 81% is measured at training and 74%
on the evaluation set. On the queue level, the difference in precision
for Queue 1 between the evaluation set and the training data is high.
The f1-score performance is stable over all the queues. The results
on the queue level show a favorable pattern for the precision and
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Figure 5: Performance comparison on contact reasons level and queue level. Observer 1, Observer 2, and classifier evaluation
data are all evaluated on the same evaluation set. Classifier training data represents the average scores of the cross-validation.

Table 5: Total performance for the observers on the evaluation set and the classifier on the training set.

Total scores Precision Q Precision CR Recall Q Recall CR F1 Queue F1 CR Alpha Q Alpha CR

Observer 1 0.74 0.53 0.74 0.53 0.74 0.53 0.61 0.46
Observer 2 0.73 0.57 0.73 0.57 0.73 0.57 0.6 0.5
Classifier Evaluation 0.78 0.64 0.74 0.59 0.74 0.57 0.6 0.51
Classifier Training 0.82 0.70 0.82 0.72 0.81 0.70 0.66 0.58

the recall for practical business application. The precision increases
for Queues 2 and 3 with less volume and the recall is highest for
Queue 1 with the highest message volume.

In Figure 8 of the appendix C, the errors of the classifier can be
analyzed in the confusion matrix. The performance on the eval-
uation set and on the cross-validation test set is compared. The
confusion matrix clearly shows a strong bias toward contact reason
A and a small bias toward the B class, which are the largest classes.
Additionally, the contact reasons G and F are likely to be confused.
If the results on the queue level are observed, there is a visible
bias toward Queue 1 class. Other confusions are low and therefore
most misclassified messages end up at Queue 1. Furthermore, the
distribution of the cross-validation performance scores is illustrated
in Figure 11 of the appendix C.

4.4 Text classification improvements results
During the search for improvements, no significant performance
gains were found regarding the total performance. The baseline
model provides the same performance as the improvements with a
simpler classification approach. Hence, the baseline model remains
the model for comparison with human performance in the next sec-
tion. Results for a selection of the different models are documented
in the appendix B.2. This section summarizes the most important
insights.

A major observation from the search for improvements is that
there are contact reasons that can be hardly identified in any model
configuration. The performance observed for many of the improve-
ments is very close to the baseline model even, though a completely
different classification approach is used. The classification results
are in general stable and not very dependent on the exact input
structure or a single parameter of the classifier. The contact reason
H cannot be reliably identified in any of the models. The contact
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reasons F and G are often confused and none of the improvements
can reduce the confusion between them. The same problem applies
to the contact reasons A and C. The total performance could not
be improved, but with under-sampling, the emphasis on precision
or recall for the most frequent class A could have been influenced
strongly.

5 CONCLUSION & DISCUSSION
5.1 Conclusion
Measuring the human performance of the service agents (observers)
in labeling the messages with a contact reason, showed the task is
for humans challenging. The agreement between the two observers
was low at assigning contact reasons and slight on queue routing.
Training a baseline classifier lead to a classifier which performs
in a similar range as the humans. Searching for improvements by
adjusting the classifier and its input, did not lead to a significant
performance gain. Hence, the baseline model is used for comparison
with human performance to answer the main research question.

The baseline model performed better or equally compared to the
human service agents. The baselinemodel reached a total F1 score of
57% on the evaluation set. This score is equal to or better than those
of the observers, who scored 53% and 57% for the contact reason
classification. For the queue routing, the baseline model performed
equallywell as the observers, with a 74% F1 score. If the performance
of the classifier measured during cross-validation on the training
set is considered, the classifier performs significantly better than
the human service agents. F1 scores of 70% for the contact reason
prediction and 81% for the queue routing are measured. All the
total scores listed in Table 5 are in favor of the classifier.

In an individual comparison, the classifier could keep up with
the human service agents or outperform them. The results are not
as clear as for the total performance but the individual performance
comparison shown in Figure 4.3 leads to the conclusion that the
classifier can perform in a similar range or better on seven out of
eight contact reasons and all the queues. Hence, the human perfor-
mance can be reached using automated text classification methods
at the task of labelling customer service emails with contact reasons
by only using the text body.

5.2 Discussion
The most important insight regarding customer service automa-
tion in general and especially for Elsevier is, even with a standard
text classification approach a similar or better performance than
for the service agents can be possible. The expectations in the im-
provement methods were clearly not met. None of the expected
experiments lead to significant improvements. During the research
process it became obvious that is hardly possible to generalize form
one dataset to another, even though they have similar character-
istics. To achieve the automation of the task in practice in future,
a bigger evaluation set should be annotated by at least one more
human annotator, where the original class distribution is retained.
This could lead to a better assessment of the current human perfor-
mance, to which the classifier can be compared. Themicro-averaged
F1 scores can only be properly compared in a dataset with the orig-
inal label imbalance. Furthermore, not labeling spam emails with a
contact reason or filtering them out from the training set could help

to improve the training set quality and therefore lead to a better
classifier and more accurate test results. Additionally, the current
business process needs to be assessed thoroughly. The percentage
of messages which are updated during the incident solving is not
known. Hence, it’s not clear how many messages are actually la-
belled the first time wrong. Furthermore, the impact of a wrong
labelled message regarding processing time, customer satisfaction
and operating cost needs to be assessed to evaluate advantages and
disadvantages of an automated system.

A practical application of the classifier could be a system where
the human agent and the classifier co-exist. The messages where
the contact reason can be classified with high confidence should
be automatically sent to the relevant department. Remaining low
confidence messages are still processed by customer service agents
manually. Such a setup can lead to a significant reduction of the
workload for the customer service department and speeds up the
processing of many standard inquires. Additionally, it is possible to
use the classifier to provide the customer service agent suggestions
for a label. The approach of automatic classification could even be
extended to Elsevier’s online webforms for Scopus support, where
currently the user has to choose a contact reason by himself. An
automatic system could provide the customer a suggestion based on
his text and eliminate the additional step for the customer. Further,
research could be conducted in the direction if it is possible to
answer some of the questions automatically.
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A DATA

Figure 6: Word frequencies versus rank plotted on logarith-
mic scales for the whole corpus.

B METHODS
B.1 Text body extraction from email
To remove critical information and reduce the noise, the steps listed
below have been executed on all of the messages.

(1) Use the Beautiful Soup package to parse the HTML con-
tent of the emails and remove the ”gmail_signature” and
”gmail_quote” tags. Furthermore, extract the text without the
remaining tags.

(2) Replace the email address with a placeholder.

(3) Split the email by common character sequences for indicating
a forwarded email. Additionally, split the email by common
text endings rule based to keep only the first split without
the footer.

The HMTL tags in the email are removed using the Beautiful
Soup package to extract the actual message text. Two specific meta-
data headers used by the Gmail client are removed in this step
as well. The HTML removal step is conducted to create a good
readable text format for the human evaluation and to reduce the
amount of information without reasonable predictable value. It is
assumed that the use of HTML tags does not deliver justifiable
performance improvements for assessing if a message belongs to a
specific contact reason.

With the current organizational structure, each queue has its own
email address for support. Those email addresses are often included
in the customer emails and would already be a very distinctive
feature for deciding which contact reasons apply, as every contact
reason is linked to a queue. Keeping the email addresses in the text
body would therefore lead to better performance on this dataset
but is contradictory to a pooled system, where all the emails are
processed through one centralized pipeline and then distributed
to the queue. Additionally, changes in email addresses can occur.
Therefore, the system should be independent of individual email
addresses. To achieve this, the email addresses are replaced with a
placeholder.

Another step is to separate the actual text body from the rest
of the email. The separation is done because the classifier and the
human annotator should not be biased by the name or institution
of a request. The goal is to identify and assess the problem only
on the basis of the problem description. Good generalization is
expected only by the separation of the text body in an environment
where customers and institutions can change. The separation of the
text body can be a challenging task. In this study, the decision has
been taken to use a simple rule-based separation. A small number
of random emails have been checked manually for elements that
separate the footer from the text body. There is a lot of diversity
regarding the separation but some easy patterns have been identi-
fied. Greetings are used as separator or e.g. many minus characters
which are used by people as separators between text and footer.
The method is very naive and, therefore, its efficiency needs to be
assessed. It is considered to be less severe to not cut off enough
information rather than cutting off too much.

B.2 Improvements
B.2.1 Sampling. To evaluate the impact of under-sampling on

the classification performance, the number of examples in the class
A is gradually reduced. The reduction is performed with steps of
20%, 30%, and 50%. In the case of 50% reduction, the two biggest
classes, A and B, are nearly equally represented. Changing the
number of examples for a specific contact reason could tackle the
classification bias in imbalanced datasets. In the case of the baseline
model, it is obvious from the confusion matrix in Figure 8 that the
classifications are biased toward the most frequent contact reason
A. Using less of the data for the majority class to train the classifier
can lead to better balance between the classes.
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For oversampling, the messages are drawn with replacement
for all of the classes except the biggest class A. The amount of
oversampling is increased by 50%, 100%, and 200%. In the case of
300% increase, every message is fed to the classifier of the lower
classes on average three times and the number of total messages in
the biggest two classes is nearly equal. The total number of different
messages cannot be changed in the training dataset; therefore, it
is only possible to use the same pool of messages and feed them
multiple times to the classifier.

In the last sampling step, a combination of the two is used. Hence,
the 20% under-sampling is combined with the 50% oversampling
and the 30% under-sampling with the 100% oversampling.

B.2.2 Preprocessing. The preprocessing in the baseline model
uses only unigrams tokenized by word. As a part of searching
preprocessing improvements, a stemmer from the NLTK package 4,
called snowball stemmer, is used. The wordnet lemmatizer is used
with and without making use of part-of-speech tags. The goal of
all these methods is to reduce the inflectual forms to a common
base form. The stemmer achieves it in a rule-based manner and
the output is often no longer an actual word. The lemmatizer is
dictionary-based and retains the full words. By default, the NLTK
word net lemmatizer lemmatizes all the words to a noun. Therefore,
the part-of-speech tags are used to keep the word in its original
part of speech.

An additional part where the preprocessing can be adjusted
comprises the parameters of the vectorizer and the term weighting.
In this step, the parameters of the scikit learn TfidfVectorizer are
adjusted and the best selection is made by performing a grid search.
For the following parameters, the best combination is searched.

• Stop words removal English or no removal
• Use of unigrams, bigrams, trigrams
• Using the sublinear tf-idf option where the importance of
the occurrences of a n-gram is not treated linearly.

• The minimum of occurrences of a n-gram (1,3, 5) to incorpo-
rate it in the vocabulary.

• Replacing numbers with a placeholder

B.2.3 Single SVM adjustments. A linear support vector machine
trained with the one-versus-all approach has been used as a base-
line classifier. As possible improvement, the training approach is
changed to a one-versus-one approach.

Apart from the training strategy, the linear support vector ma-
chine has a parameter C, which can be adjusted. Increasing the value
of the parameter C penalizes those datapoints more which are lying
within the support vectors. Adjusting this parameter could lead
to a better fit of the model. Hence, the values [1,3,5,10,30,100] are
used to evaluate if there is a better fit possible by using a different
C value.

Instead of using a linear kernel, it is possible to use a nonlinear
kernel which could separate the data better if it is not linearly
separable. A common nonlinear kernel is the radial basis function
(RBF) kernel [14].

4https://www.nltk.org/

B.2.4 Ensemble methods. In all the previous classifications, a
classifier has directly predicted the contact reasons. As an alter-
native, in this section, the queue is predicted first and the contact
reason is predicted in a second step based on the result of the queue
classifier. The idea behind this approach is that the messages are
distributed approximately 60%, 30%, and 10% over the queues. For
each queue, there are more total messages available to train a clas-
sifier than for a contact reason. Pooling those messages could lead
to a better performance regarding the routing of the queue, which
is an important factor in the business process to avoid backlogs and
waiting times.

In this study 10,20, and 30 SVM classifiers are trained with a
bagging approach on a subset of max 50% and 70% of the data.
Furthermore, the combination of different classifiers to a voting
ensemble is tested. Random forest, logistic regression, and support
vector machine classifiers are used and themajority vote determines
the label selected.

B.2.5 Recurrent neural networks. In the previous sections, mainly
an SVM is used for the classification. This section focuses on a
different and more recent approach of text classification. An unidi-
rectional and a bidirectional LSTM is trained with global vectors
(GloVe) as an embedding layer. A subset of the possible parameters
is adjusted to search for improvements. The bidirectional configu-
ration is listed in Table 6

Table 6: Bidirectional LSTM configuration used for the con-
tact reason classification with Keras and Tensorflow.

Layer (type) Output Shape Parameters

Input 400 0
Embedding (400, 200) 4000000
Bidirectional (400, 128) 135680
Global max pooling 128 0
Dense 64 8256
Dropout 64 0
Dense 8 520

A recurrent neural network can process sequences of text and
exploit information about the positions of words in a sentence.
In a unidirectional approach, only the context before a word is
taken into account when learning to classify. With a bidirectional
recurrent neural network, the context after a word is taken into
account as well. The LSTM cells are used to learn the short- and
long-term dependencies of a word regarding its context. The GloVe
representation is a dense vector representation, which can be self-
trained or used pretrained from a large corpus. The vectors can
represent semantics of similar words in a lower dimensional space.

C RESULTS
C.1 Improvements

C.1.1 Sampling. The results of gradually decreasing the amount
of messages for contact reason A showed, that small changes in
under-sampling are hardly noticeable. Only significant changes
where the number of messages for contact reason A gets close to-
wards the number of messages for contact reason B make a big
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difference. For the oversampling very little impact in general is ob-
served. The most extreme changes of the experiment are illustrated
in Figure 12. Relevant to the business process is the observation
that with under-sampling the trade off between high recall on the
two biggest queues is adjustable. This is important if the number
of missclassified messages should be adjusted between the two big
queues.

C.1.2 Preprocessing. The results of gradually decreasing the
number of messages for contact reason A show that small changes
in under-sampling are hardly noticeable. Only significant changes,
where the number of messages for contact reason A is close to the
number of messages for contact reason B, make a big difference.
For the oversampling, very little impact is observed in general.
The most extreme changes of the experiment are illustrated in
Figure 12. Relevant to the business process is the observation that
with under-sampling, the trade-off between high recall on the two
biggest queues is adjustable. This is important if the number of
misclassified messages has to be adjusted between the two big
queues.

C.1.3 Single SVM adjustments and ensemble. The tuning of the
hyperparameter C resulted in keeping it equal to 1.0, like in the
baseline. The results of changing the kernel to RBF show a bias
toward the majority class. Even when the contact reason A class
was under-sampled, the classifier always predicted the same contact
reason A for all the data. Hence, the classifiers predictions were
not usable. The adjustment of the training method to one-vs.-one
increased the precision but the total result was slightly worse than
the baseline.

The ensemble approach was not successful in general for the
bagging and voting classifier. No noticeable performance gain was
observed. The classification for the two levels, where first the queue
and afterwards the contact reason are predicted, is nearly identical
with the single baseline classifier.

The results of the training strategy and the two-level prediction
are illustrated in Figure 14. Other steps are not illustrated as they
overlapped too closely with the baseline performance or, in case of
the RBF kernel, the prediction performance was zero for all of the
classes except contact reason A.

C.1.4 Recurrent neural networks. The best results for the unidi-
rectional and bidirectional LSTM are illustrated in Figure 15. The
unidirectional approach showed a slightly lower performance than
the bidirectional variant. The main difference between the two ap-
proaches in terms of performance is observed in precision. The F1
score for the most frequent contact reasons A-C is better than the
baseline with the bidirectional LSTM.

The adjustment of the training and network parameters shows
that increasing the complexity of the network quickly leads to over-
fitting. The adjustment of the GloVe size and text length parameter
showed little influence.
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Figure 7: Human confusion matrix with fractions of total messages per contact reason. Comparison between the results of
observer 1 (O1) and observer 2 (O2) on the evaluation set.

Figure 8: Automated confusion matrix with fractions of total messages per contact reason. Comparison between prediction
results on evaluation set with baseline classifier (C1) and the averaged prediction results on the test sets during the baseline
cross validation (C2).

Figure 9: Human confusion matrix with fractions
of total messages per queue.

Figure 10: Automated confusion matrix with frac-
tions of total messages per queue.
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Figure 11: Boxplot of the cross validation performance scores for the baseline model.

Figure 12: Sampling procedure adjustment comparison with the baseline model.
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Figure 13: Preprocessing adjustment comparison with the baseline model.

Figure 14: SVM adjustments & ensemble approaches comparison with the baseline model.
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Figure 15: Performance comparison of unidirectional and bidirectional LSTM with baseline model.

Table 7: Improvement results total f1-scores.

Improvement Step Contact Reason F1 Queue F1

Baseline Training Data 0.70 0.81
Undersampling 50 0.69 0.8
Oversampling 200 0.7 0.81
Undersampling 30 Oversampling 100 0.7 0.81
Stemming 0.71 0.82
N-Gram Sublinear 0.73 0.83
Training Strategy 0.7 0.82
Queue Contact Reason 0.7 0.82
Unidirectional LSTM 0.68 0.8
BiDirectional LSTM 0.7 0.82
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