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ABSTRACT
Determining semantic similarity between texts is important in many
tasks in information retrieval such as search, query suggestion, au-
tomatic summarization and image finding. Many approaches have
been suggested, based on lexical matching, handcrafted patterns,
syntactic parse trees, external sources of structured semantic knowl-
edge and distributional semantics. However, lexical features, like
string matching, do not capture semantic similarity beyond a triv-
ial level. Furthermore, handcrafted patterns and external sources
of structured semantic knowledge cannot be assumed to be avail-
able in all circumstances and for all domains. Lastly, approaches
depending on parse trees are restricted to syntactically well-formed
texts, typically of one sentence in length.

We investigate whether determining short text similarity is pos-
sible using only semantic features—where by semantic we mean,
pertaining to a representation of meaning—rather than relying on
similarity in lexical or syntactic representations. We use word em-
beddings, vector representations of terms, computed from unla-
belled data, that represent terms in a semantic space in which prox-
imity of vectors can be interpreted as semantic similarity.

We propose to go from word-level to text-level semantics by
combining insights from methods based on external sources of se-
mantic knowledge with word embeddings. A novel feature of our
approach is that an arbitrary number of word embedding sets can be
incorporated. We derive multiple types of meta-features from the
comparison of the word vectors for short text pairs, and from the
vector means of their respective word embeddings. The features
representing labelled short text pairs are used to train a supervised
learning algorithm. We use the trained model at testing time to pre-
dict the semantic similarity of new, unlabelled pairs of short texts.

We show on a publicly available evaluation set commonly used
for the task of semantic similarity that our method outperforms
baseline methods that work under the same conditions.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: H.3.3 Information Search
and Retrieval; I.2 Artificial Intelligence [I.2.7 Natural Language
Processing]: Text analysis
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1. INTRODUCTION
Determining semantic similarity between two texts is to find out

if two pieces of text mean the same thing. Being able to do so
successfully is beneficial in many settings in information retrieval
like search [26], query suggestion [30], automatic summarization
[3] and image finding [12].

Many approaches have been proposed for semantic matching
that use lexical matching and linguistic analysis, next to semantic
features. Methods for lexical matching aim to determine whether
the words in two short texts look alike, e.g., in terms of edit dis-
tance [31], lexical overlap [23] or largest common substring [21].
While this might work for trivial cases, it is arguably not robust as
it allows for simple mistakes. For example, the US would be closer
to the UK this way, than it would be to the States. Features based
on linguistic analysis, like dependency parses or syntactic trees, are
often used for short text similarity [19, 39]. Linguistic tools such
as parsers are commonly available these days for many languages,
though the quality might vary between languages. However, not all
texts are necessarily parseable (e.g., tweets) and high-quality parses
might be expensive to compute at run time. More importantly still,
relying on parse trees limits an approach to single sentences, while
the work presented here, even though it is evaluated on sentences,
incorporates no theoretical constraint restricting it to (syntactically
well-formed) sentences.

For semantic features, many approaches use external sources of
structured semantic knowledge such as Wikipedia [6] or WordNet
[6, 17, 18, 31, 37]. Wikipedia is structured around entities and
as such is primarily of avail in settings where a focus on rather
well-known persons and organisations can be assumed, such as,
e.g., news articles. Such an assumption cannot always be made
however. A drawback of using dictionaries or WordNet is that high-
quality resources like these are not available for all languages, and
proper names, domain-specific technical terms and slang tend to be
underrepresented [2].

In the present work we aim to make as few assumptions as possi-
ble. We aim for a generic model, that requires no prior knowledge
of natural language (such as parse trees) and no external resources
of structured semantic information.

Recent developments in distributional semantics, in particular
neural network-based approaches like [32, 34] only require a large
amount of unlabelled text data. This data is used to create a, so-
called, semantic space. Terms are represented in this semantic
space as vectors that are called word embeddings. The geometric
properties of this space prove to be semantically and syntactically



meaningful [13, 32–34], that is, words that are semantically or syn-
tactically similar tend to be close in the semantic space.

A challenge for applying word embeddings to the task of deter-
mining semantic similarity of short texts is going from word-level
semantics to short-text-level semantics. This problem has been
studied extensively over the past few years [4, 25, 39].

In this work we propose to go from word-level to short-text-level
semantics by combining insights from methods based on external
sources of semantic knowledge with word embeddings. In partic-
ular, we perform semantic matching between words in two short
texts and use the matched terms to create a saliency-weighted se-
mantic network. A novel feature of our approach is that an arbitrary
number of word embedding sets can be incorporated, regardless of
the corpus used for training, the underlying algorithm, its param-
eter settings or the dimensionality of the word vectors. We derive
multiple types of meta-features from the comparison of the word
vectors for short text pairs and from the vector means of their re-
spective word embeddings, that have not been used before for the
task of short text similarity matching.

We show on a publicly available test collection that our generic
method, that does not rely on external sources of structural seman-
tic knowledge, outperforms baseline methods that work under the
same conditions and outperforms all methods, to our knowledge,
that do use external knowledge bases and that have been evaluated
on this dataset.

The rest of the paper is structured as follows. In Section 2 we
describe relevant literature. We present our method for short text
similarity in Section 3. The experiments and results are detailed in
Section 4 and Section 5. In Section 6 we conclude.

2. RELATED WORK
In this section we discuss previous work related to the different

aspects of our method.

Distributional semantics.
Distributional semantic approaches are based on the intuition

that words appearing in similar contexts tend to have similar mean-
ings. The Latent Semantic Analysis algorithm (LSA) [14] incor-
porates this intuition by building a word-document co-occurrence
matrix and performing singular value decomposition (SVD) on it
to get a lower-dimensional representation. Words are represented
as vectors in this lower dimensional space. The distance between
these word vectors (measured, e.g., with the cosine function) can
be used as a proxy for semantic similarity. The full co-occurrence
matrix, however, can become quite substantial for a large corpus,
in which case the SVD becomes memory-intensive and computa-
tionally expensive.

Word vectors—also referred to as word embeddings—have re-
cently seen a surge of interest as new ways of computing them ef-
ficiently have become available. In [32, 33] an algorithm called
word2vec is proposed. There are two architectures to word2vec,
continuous bag-of-words (CBOW) and Skip-gram. Both are a vari-
ation on a neural network language model [9, 13], but rather than
predicting a word conditioned on its predecessor, as in a traditional
bi-gram language model, a word is predicted from its surrounding
words (CBOW) or multiple surrounding words are predicted from
one input word (Skip-gram). To avoid computing a full softmax
over the entire vocabulary, hierarchical softmax can be applied on
a Huffman tree representation of the vocabulary, which saves cal-
culations, at the potential loss of some accuracy. An additional
strategy to get better embeddings is negative sampling, where, in-
stead of only using the words observed next to one another in the

training data as positive examples, random words are sampled from
the corpus and presented to the network as negative examples.

An alternative way of getting word embeddings, called GloVe, is
proposed in [34]. Rather than being based on language models it is
based on global matrix factorisation. As such, it is closer to LSA,
only a word-word co-occurrence matrix is used. GloVe avoids the
large computational cost of, e.g., LSA by not building the full co-
occurrence matrix, but training directly on the non-zero elements
in it. As a cost function, the model uses a weighted least squares
variant. The weighting function has two parameters, an exponent
and a maximum cut-off value that influence the performance.

As both algorithms produce high-quality word embeddings and
their implementations are publicly available, we use them in our
experiments. In Section 5 we report on the results and analyse the
effect of different parameter settings for both methods.

Text-level semantics without external semantic knowl-
edge.

Word embeddings, as described above, provide a way of compar-
ing terms to one another semantically. It is not evident, however,
how longer pieces of text should be represented with them. Several
approaches have been proposed to go from word-level semantics to
phrase-, sentence-, or even document-level semantics.

Le and Mikolov [25] propose a variation on the word2vec al-
gorithm for calculating paragraph vectors, by adding an explicit
paragraph feature to the input of the neural network. A convolu-
tional neural network, built on top of word2vec word embeddings,
is employed for modelling sentences in [20]. Other corpus-based
methods have been proposed, such as [21], in which both seman-
tic and string distance features are employed, and [38] in which a
vector space model is used. All four methods, in line with the work
presented here, do not rely on external sources of structured seman-
tic knowledge, nor on natural language resources. As such, these
methods are natural baselines for our experiments in Section 4. It
is problematic to reproduce the work presented in [25], however, as
the original source code was not released by the authors and it is
not clear, algorithmically, how the second step – the inference for
new, unseen texts – should be carried out. Therefore, we omit this
method as a baseline.

Many methods rely on natural language resources such as parsers.
Socher et al. [39] propose recursive auto-encoders for the task of
semantic textual similarity. This method relies on full parse trees
for every sentence it processes. Annesi et al. [4] apply a kernel
method on dependency parse tree features. Another strong method
is presented in [22] where features from dependency parser are used
to train a supervised method. The latter method, to our knowl-
edge, yields the highest performance on the MSR Paraphrase Cor-
pus [15, 35], an evaluation set commonly used for textual similarity
experiments, and the one we use in our experiments in Section 5.

Sentence representations based on word2vec word embeddings
are also the focus in [24], where a convolutional neural network
is trained on top of word2vec word embeddings. However, the
method is only evaluated on sentence classification tasks (not on
semantic similarity).

Text-level semantics with external knowledge.
A large body of research has been directed at using sources of

structured semantic knowledge like Wikipedia and WordNet for se-
mantic text similarity tasks. In [17, 18, 28] methods very similar
to one another are proposed, using pairings of words and Wordnet-
based measures for semantic similarity. Our method of aligning
words as described in Section 3 draws on this work. The key dif-
ference between these approaches and ours, apart from the fact



that WordNet is used, is that parsing/POS tagging is carried out
[18, 28], as the WordNet-based measures are limited to comparing
words having the same POS tag. Furthermore, no full-scale ma-
chine learning step is involved. All methods present one overall
score, based on a threshold which is calculated through a simple
regression step [18, 28] or set manually [17].

Corpus methods are combined with WordNet-based measures
in [27, 31]. In [31] an IDF-weighted alignment approach, based
both on WordNet-based and corpus-based similarities, is proposed.
Texts are parsed and only similarities within identical part-of-speech
categories are considered. Finally, a single score is calculated as an
average over the maximum similarities. In [27] a WordNet simi-
larity measure is combined with word order scores. In neither ap-
proaches any machine learning step is applied.

SemEval STS.
Recently, the SemEval 2012 Semantic Text Similarity (STS) task

[1] and SemEval 2013 STS task [2] (part of *SEM’13) were organ-
ised. A full description of the work of all participating teams (over
30 in both years) is beyond the scope of this section. We discuss
the approaches of the best-scoring teams.

The best-scoring teams in 2012 both calculate a large number of
features based on a wide variety of methods. Additionally, hand-
crafted rules are applied that deal with currency values, negation,
compounds, number overlap [37] and with literal matching [6].
The main difference with our approach, apart from the handcrafted
rules, is in the features extracted, and in particular the number of
additional resources required (WordNet, a dependency parser, NER
tools, lemmatizer, POS tagger, stop word list [37], and WordNet,
Wikipedia, Wiktionary, POS tagger, SMT system for three lan-
guage pairs [6]).

In 2013, we see similar approaches where the best teams extract
features from sentence pairs and use regression models (SVRs) to
predict a similarity score. The features in [19] are based on LSA,
WordNet and additional lists of related words and stopwords. In
[29] features are calculated from aggregated similarity measures
based on named entity recognition with WordNet and Levenshtein
distance, higher order word co-occurrence similarity, the RelEx
system, dependency trees and reused features of SemEval 2012
participants. Additionally, handcrafted features like lists of aliases
(e.g., USA and United States) are used. A parallel between our
work and both these approaches is the use of word alignment.

Finally, in [5] a method similar to the one we propose here is
presented, for a related, but different task of detecting semantic
similarity between texts of different lengths. Next to WordNet-
based features, a word alignment method is used based on word
embeddings, analogous to what we propose. A crucial difference
with our approach is that only a single feature is derived from this
score, rather than several bins. Moreover, only a single set of word
embeddings is used, while we show in our experiments in §5 that it
is beneficial to use multiple sets.

Meta-level features.
As described below in Sections 3.1 and 3.2 below, we use bin-

based features to capture the characteristics of the differences be-
tween vectors and the distribution of word embeddings. This is
similar to, e.g., [11] where meta-level features are proposed, in a
text classification setting using the kNN algorithm, to exploit the
distribution of the nearest neighbour similarities and the within-
class cohesion.

Input : List of sentence pairs
((s1,1, s1,2), (s2,1, s2,2), . . . , (sn,1, sn,2))

Input : List of associated labels L = [l1, l2, l3, . . . , ln]
Required: Sets of word embeddings [WE1,WE2, ...,WEm]
Required: Multiple feature extractors [fe1, fe2, . . . , fel]
Output : A trained prediction model M

1 F = empty feature matrix;
2 for i← 1 to n do
3 ~f = <>;
4 for j ← 1 to m do
5 for k ← 1 to l do
6 ~f = concat(~f, fek((si,1, si,2),WEj));
7 end
8 end
9 F [i]← ~f ;

10 end
11 M = trainModel(F,L);

Algorithm 1: Pseudocode of the feature generation step of our
method for semantic similarity of short texts

3. SHORT TEXT SIMILARITY WITH SE-
MANTICS ONLY

To calculate semantic similarity between two short texts we use
a supervised machine learning approach. Algorithm 1 shows the
pseudocode of the training phase. The training data for the su-
pervised step consists of sentence pairs and associated labels that
represent the semantic similarity between the two sentences. Mul-
tiple sets of word embeddings can be leveraged, possibly derived
from different corpora, with different (hyper)parameter settings or
with different algorithms. Every sentence pair in the training data
is represented by a set of features. A list of functions that gener-
ate features from a set of word embeddings and a sentence pair is
required. We detail the different kinds of features below in Sec-
tion 3.1 and Section 3.2.

At training time, we range over all sentences (Algorithm 1, line 2),
all sets of word embeddings (line 4) and feature extraction func-
tions (line 5) to compile a feature vector per sentence pair (line 6).
The feature vectors are stored in a matrix (line 9). We train a su-
pervised learning method from the features and the labels of the
training examples (line 11). As the labels in the evaluation set that
we use are binary, we build a classifier. At testing time, features
are generated for the sentence pairs in the test set in a similar fash-
ion as in the training phase, and a final prediction is made with the
classifier trained in the training step.

A convenient property of our method of computing semantic tex-
tual similarity for short texts, and one which we leverage in our ex-
periments as detailed in Section 4, is that different sets of word em-
beddings can be combined, regardless of the dimensionality of the
word vectors, the parameters that were used at construction time,
or the algorithms that were used to generate them.

As we are interested in the performance of different feature types,
we carry out experiments per feature type and with various combi-
nations. See Section 4 for further details on the experimental setup.

In the next section we describe the various types of features we
derive from the word embeddings. In Section 4.2 we detail how we
obtain the word embeddings themselves.

3.1 From word-level semantics to short-text-
level semantics

The meaning of longer pieces of text (containing multiple terms)
can be captured by taking the mean of the individual term vec-



tors.1 This approach is taken, next to other approaches, in, e.g.,
[5, 20, 40]. It works surprisingly well, and we use several features
based on vector means, described below. Means, or sums, how-
ever, are rather poor ways of describing the distribution of word
embeddings across a semantic space. It would be desirable to cap-
ture more properties of the two texts, especially with respect to the
terms that do or do not match. We will first turn to our algorithm for
constructing saliency-weighted semantic networks, which aims to
capture this intuition. After that, in Section 3.2, we discuss features
based on the mean vectors.

3.1.1 Saliency-weighted semantic network
In Figure 1 the word embeddings of two short texts are repre-

sented as dots in a two-dimensional space. As can be observed
from the picture, the two texts have terms that are close to each
other (at the top and bottom in the figure), while the ones at the
far left and right have no counterpart in their immediate vicinity.
Regardless of this discrepancy, the means of the two are close to
one another. The fact that both texts have a term unlike any term
in the other text is not well represented by the means. A classi-
fier, however, can benefit from more elaborate information about
the distribution of word embeddings across the semantic space.

Figure 1: Hypothetical example — two-dimensional represen-
tation of the word embeddings for two short texts (each con-
sisting of three terms), represented as transparent and opaque
dots respectively. The corresponding means of the two sets of
embeddings are depicted as ⊗.

We want a way of taking into account the distribution of terms in
one short text in the semantic space compared to distribution of
terms in another text. Of course, not all terms are equally impor-
tant. Common terms (like determiners) do not contribute as much
to the meaning of a text as less frequent words do. Inverted doc-
ument frequency (idf) is often used to implement this notion. Idf
is usually combined with term frequency, e.g., in the BM25 algo-
rithm. As BM25 has proven to be surprisingly successful [36] we
derive our idf weighting scheme from it. Our function for calculat-
ing semantic text similarity (sts) is:

fsts(sl, ss) = (1)∑
w∈sl

IDF(w) · sem(w, ss) · (k1 + 1)

sem(w, ss) + k1 · (1− b+ b · |ss|avgsl )

Here, sl is the longest text of the two, ss is the shortest and avgsl is
the average sentence length in the training corpus.

The semantic similarity of term w with respect to short text s is
represented by sem(w, s):

sem(w, s) = max
w′∈s

fsem(w,w′). (2)

The function fsem returns the semantic similarity between two
terms. As terms are represented as vectors in our case, a natural
1This is sometimes referred to as vector BOW approach

choice for fsem, which we use in our experiments in Section 4, is
the cosine similarity between the two vectors.

As is apparent from (1), we always take the longest short text
of the two as a reference when calculating fsts. We do so for
two reasons. Firstly, we want fsts to be symmetrical. Calculat-
ing the semantic similarity between two short texts should yield the
same score regardless of their order. Secondly, the reason why the
longest of the two short texts is summed over is that we do not want
terms to be overlooked. Suppose we have two texts, where one con-
sists of a subset of terms contained in the other. If the shortest text
would be taken as a reference this would lead to a perfect score.
However, if we take the longest text as a reference, the incongruity
between the texts does have its bearing on the score, as desired.

We should note that, although (1) bears a superficial resemblance
to the BM25 formula, it in fact models something completely dif-
ferent. We borrow the b and k1 parameters that have a smoothing
effect, together with the length normalisation: the average sentence
length, avgsl, in our case. The key difference, however, lies in the
introduction of semantic similarity term in the formula. Where a
tf*idf weighting scheme relies on literal matches between the query
and documents it matches, we are, in the present setting, interested
in particular in semantic matches. By using (2) for calculating se-
mantic similarity, the maximum similarity of terms in ss is taken
into account for every term in sl.

One interpretation of fsts is that it allows for non-literal, seman-
tic matching. As noted above, in a tf*idf weighting scheme, terms
only contribute to the score if they match perfectly. In fsts all
terms contribute, with the semantically most related ones contribut-
ing most.

An alternative interpretation of fsts with (2) is as a word align-
ment method. As a max is being computed in (2) over all words in
a sentence, semantically close words are aligned to one another. In
this way fsts bears similarity to other alignment approaches such
as [5, 19, 29].

Yet another alternative view is that fsts applies saliency weight-
ing to a semantic network. If we interpret the dots in Figure 1 as
vertices of a graph, the max in (2) draws edges between the ver-
tices and weights them according to (1). As a result, a mismatch
between two terms such as the far left and right ones in Figure 1
is of little consequence if both have a low IDF score (e.g., they are
function words). If they are salient however, the mismatch has a
larger impact.

As can be seen from (1) the fsts score is a sum over |sl| terms.
However, rather than giving the overall score to the final learning
algorithm, we want to capture more information about the way the
score is composed. Therefore, we make bins of its summands and
normalise by the number of summands, so the value for every bin
represents the percentage of summands in (1) between the mini-
mum and maximum values for that bin.

3.1.2 Unweighted semantic network
To convey as much information as possible to the final classifier

we also construct an unweighted semantic network. For a short text
pair (s1, s2), we compute the cosine similarities in the semantic
space between all terms in short text s1 and all terms in s2. This
gives us a matrix of similarities between the terms in s1 and s2.
From this matrix we compute two sets of features.

Firstly, we take all similarities and bin them. If we think of
the word embeddings as nodes in a graph this would correspond
to an fully connected, unweighted, bipartite graph. In Figure 1
this would be represented by connecting every opaque dot to every
transparent dot.



Secondly, the maximum similarity for every word is computed,
and bins are made of these maximum values. In this way, small
distances between words (such as the top and bottom ones in Fig-
ure 1) end up in the same bin, while outliers (the ones at the far left
and right) end up in a separate bin.

3.2 Text level features

3.2.1 Distance between vectors means
As noted previously, a standard way of combining word embed-

dings to capture the meaning of longer pieces of text is to take the
mean of the individual term vectors. This aggregation over terms
gives us one vector per sentence. We calculate both the cosine sim-
ilarity and the Euclidean distance between the vectors for every
sentence pair in the test set.

3.2.2 Bins of dimensions
The cosine similarity between two vectors can be interpreted as

an aggregation over the differences per dimension. As such, it does
not capture all information about the similarities or differences be-
tween the two vectors. For example, taking the cosine similarity
between two vectors that are highly similar in many dimensions
and quite different in few, could lead to the same result as taking
the cosine similarity between two vectors that differ slightly in all
dimensions. Intuitively though, these are two different situations.
In order to capture this intuition, we make bins of the number of
dimensions in the mean vector of s1 and the mean vector of s2 that
match within certain limits. See §4.3 for the exact values.

4. EXPERIMENTAL SETUP
The primary focus of our experiments is to determine how our

method, which relies solely on semantic features, compares to other
methods that work under the same conditions, and to methods that
do rely on external sources of structured semantic knowledge, lin-
guistic tools and handcrafted rules. To do so, we perform experi-
ments on the MSR Paraphrase Corpus [15, 35], the evaluation set
most commonly used for this purpose.

As described in the previous section, we compute features from
word embeddings, which are obtained from large amounts of unla-
belled data. A practical feature of word embeddings is that word
vectors computed on a large corpus can be made available, without
the necessity of disclosing the entire training corpus as well (which
can be problematic due to copyright issues). In our experiments
we compute features from four publicly available sets of word em-
beddings (see Section 4.2.1 and Section 4.2.2 for more details). As
the word vectors are not trained by ourselves, we refer to them as
Out-of-the-Box (OoB).

We distinguish between two feature sets. The saliency-weighted
semantic network features capture information about the similar-
ity of the distribution of word vectors in the two sentences (Sec-
tion 3.1.1). The unweighted features are calculated from the un-
weighted semantic network (Section 3.1.2) and the means of the
word embeddings of both sentences (Section 3.2). Our hypothe-
sis is that saliency-weighted semantic networks can add valuable
features for a classifier that learns to predict semantic similarities
between short texts. To verify this hypothesis we perform experi-
ments without the features based on the saliency-weighted seman-
tic networks, and with the saliency-weighted semantic network fea-
tures added.

Additionally, as there are many parameters that have an impact
on the word embeddings we use to construct features, we want to
investigate which settings lead to word embeddings best suited for
our approach. As it is not possible to do this with out-of-the-box

vectors, we construct our own vectors from a publicly available
text corpus (see 4.2.3 for details). As we use the features derived
from these additional sets of word embeddings supplementary to
the OoB features, we refer to them as auxiliary.

For the experiments with features derived from the OoB vector
sets, the only hyper-parameters of our model are the regularisa-
tion parameters of the learning algorithm. We choose their optimal
setting by cross validating on the training data with folds of 10 ex-
amples. The experiments including the auxiliary vectors are aimed
at demonstrating the potential of our method and the effect of the
parameter settings. Therefore, we show the best results obtained
across all settings and discuss the individual parameter settings in
detail.

4.1 Learning algorithm
As discussed in Section 3 we use the features described above

to represent sentence pairs in the training material and we train a
supervised learning algorithm on these features. As the MSR Para-
phrase Corpus is annotated with binary labels (see Section 4.6.1)
we use a classifier for prediction. In particular, we use Support
Vector Classifier (SVC) with a Radial Basis Function (rbf) kernel
because the feature space is not necessarily linear.

4.2 Word embeddings
For ease of comparison with other approaches using word em-

beddings, we use four sets of vectors that are publicly available
(two word2vec sets and two GloVe sets) which we refer to as Out-
of-the-Box sets (OoB). Additionally we train our own word vectors,
both with word2vec and GloVe, and perform runs with different
settings for both algorithms (the auxiliary vectors).

Once word embeddings have been trained on a corpus, there is
no way to fold terms that were not observed during training into the
semantic space. One way of dealing with these out-of-vocabulary
(OOV) words when calculating the features described below is to
simply ignore them. However, it is possible that important semantic
information is present specifically in these new words. For exam-
ple, names of persons or organisations occurring in a test set, which
are likely to be semantically relevant, might have been absent from
the training data. Therefore, following, e.g., [24], we map OOV
words to random vectors, while remembering which OOV word
maps to which random vector.

The intuition behind this simple scheme is the following. If two
texts are being compared in which two different OOV names ap-
pear, this incongruity would go unnoticed if the OOV terms would
be ignored. Likewise, if the same OOV term is observed in two
texts being compared, this contributes to the similarity score be-
tween the two (while it would be silently ignored otherwise).

4.2.1 OoB: Word2vec
Mikolov et al. [33] experiment with several settings of the word2-

vec algorithm to produce the highest quality word embeddings. The
resulting vectors have been made publicly available.2 The vectors
are 300-dimensional and were trained on a corpus of about 100 bil-
lion words.

Baroni et al. [7] compare word2vec word embeddings to tra-
ditional distributional semantics approaches. The best perform-
ing vectors were released by the authors.3 The vectors are 400-
dimensional, a 5-word context window was used, with 10 negative
samples and subsampling.

2See https://code.google.com/p/word2vec/
3See http://clic.cimec.unitn.it/composes/
semantic-vectors.html

https://code.google.com/p/word2vec/
http://clic.cimec.unitn.it/composes/semantic-vectors.html
http://clic.cimec.unitn.it/composes/semantic-vectors.html


4.2.2 OoB: GloVe
In [34] an algorithm is proposed for deriving word embeddings

optimised especially for word analogy and similarity tasks. As the
GloVe algorithm differs from the word2vec algorithm, it is interest-
ing to see if and how GloVe word embeddings behave differently
from word2vec vectors when applied to the task of short text sim-
ilarity. In our experiments we use two sets of publicly available
GloVe vectors. Both sets are 300-dimensional. The word vectors
of the first set were trained on a very large corpus of 840 billion to-
kens while the other set was trained on a 42 billion token corpus.4

4.2.3 Auxiliary word embeddings
As we are interested in the utility of the vectors and what settings

work best for the task of predicting short text similarity, we calcu-
late auxiliary word embeddings both with the word2vec algorithm
and with GloVe. We train word embeddings on a publicly available
data set released by INEX.5 The corpus contains 1.2 billion tokens.

The word2vec algorithm has several parameters: the architec-
ture (CBOW or Skip-gram), word sampling threshold, whether or
not to apply hierarchical softmax and the number of negative exam-
ples. Preliminary experiments indicated that a sampling threshold
of 10−5 is most robust across settings. We use the default window
width of 5 and vector dimensionality of 300.

For the auxiliary GloVe vectors we use the same dimensionality
of 300. We set the number of training iterations to 100 as is sug-
gested in [34] for training vectors of dimension 300 and up. There
are two parameters in particular to experiment with: (1) the expo-
nent of the weighting function used in the cost function, which we
set to any of [.1, .5, .75, .9], and (2) the cut-off in the weighting
function, which we set to any of [10, 50, 100, 500, 1000].

Preprocessing of the corpus consists of tokenization with NLTK
sentence splitter and token splitter [10] with additional removal of
non-ascii quotes and non-word characters. No stemming or stop-
ping is carried out. All text is lowercased.

4.3 Parameter settings
As discussed in Section 3.1 and Section 3.2 a binning approach

is used for most features. We use three bins in most cases, where
one bin is meant to capture highly similar values, one bin is for the
medium values and the third bin is for very dissimilar values. The
values were obtained by examining the raw features for the train-
ing material. For features calculated from the saliency-weighted
semantic network, the values are 0–.15, .15–.4, .4–∞. For the un-
weighted semantic network features the values are−1–.45, .45–.8,
.8–∞ (the same values are used for when all similarities are taken
into account, as when only the maximum similarities are consid-
ered). For the bins of dimensions, preliminary experiments showed
that a four-bin approach, with two bins for similar and highly simi-
lar values worked slightly better than a three-bin approach. We use
values −∞–.001, .001–.01, .01–.02, .02–∞.

As an extensive tuning of the parameters k1 and b is beyond the
scope of this paper we use the default settings of k1 = 1.2 and
b = 0.75 when computing fsts in our experiments. The IDF values
were calculated from the INEX data set described above.

4.4 Feature sets
All feature sets are calculated per set of word embeddings. Hence,

for 3 saliency-weighted semantic network bins, 2 × 3 unweighted
4Both sets of vectors can be downloaded from http://nlp.
stanford.edu/projects/glove/
5The data consists of an English Wikipedia dump from November
2012. It was released as a test collection for the INEX 2013 tweet
contextualisation track [8]

semantic network bins, 2 distances and 4 dimensional bins, we have
15 features per set of word embeddings, and 60 features in total per
sentence pair, when, e.g., the 4 OoB sets are used.

4.5 Baselines
As discussed in §2 the systems for detecting short text similarity

as described in [20, 21, 38] are natural baselines to our method as
they work under the same conditions, i.e., no external sources of
structured semantical knowledge are used and no prior knowledge
of natural language (such as parse trees) is required.

4.6 Evaluation
We first describe the evaluation set used in our experiments. Then

we discuss the associated evaluation metrics.

4.6.1 Evaluation sets
We use the Microsoft Research Paraphrase Corpus data set [15,

35] in our primary experiments in Section 5 as it is commonly used
for evaluation in short text similarity tasks [4, 17, 20, 21, 31, 38].
The set consists of sentence pairs judged for semantic similarity on
a binary scale. The annotator guidelines allowed for an interpreta-
tion of semantic similarity that went beyond strict semantic identity,
as using the latter notion would yield only trivial examples. The set
consists of 5801 sentence pairs in total, divided in a training set of
4076 and a test set of 1725 examples.

Other evaluation sets.
Li et al. [27] present a data set comprising 65 pairs of dictionary

glosses extracted from two sources. The set is used for evaluation
in, e.g., [18, 21]. We omit this set in our experiment because of its
limited size.

The task of semantic textual similarity was part of the SemEval
2012 and SemEval 2013 campaigns [1, 2]. The SemEval data is
impractical for evaluation in a supervised learning setting with a
substantial number of features, as the training data is limited (max-
imally 750 training examples per subset in the SemEval 2012 data)
which leads to overfitting. Additionally, more recent work in se-
mantic textual similarity is evaluated on the MSR Paraphrase cor-
pus. For these two reasons, we evaluate our methods for calculating
semantic text similarity on the latter.

4.6.2 Evaluation metrics
As the MSR Paraphrase Corpus has binary annotations, accuracy

is the metric most often applied, together usually, with precision,
recall and F1 [4, 17, 20, 31].

5. RESULTS AND ANALYSIS
In this section we show the results of our experiments. We are

interested in answering two questions. Firstly, we want to see if our
method performs better than the baseline methods that work under
the same conditions. Secondly, we want to know if a semantics-
only approach, without access to external sources of knowledge,
can yield results comparable to the state-of-the-art methods that do
use external semantic knowledge bases and/or features based on
computationally more involved processes as syntactic parsing.

In Table 1 results of our experiments are listed. For convenience,
the results from the baseline methods, as reported in the litera-
ture, are displayed in the top three rows.6 The rows marked ‘un-
wghtd’ use all features described above, but for the features based
on the saliency-weighted semantic network. The rows marked ‘un-

6No precision and recall numbers were reported in [20].

http://nlp.stanford.edu/projects/glove/
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Table 1: Results on the MSR Paraphrase Corpus set. The rows
marked ‘unwghtd’ display results for runs based on all fea-
tures, but for the saliency-weighted semantic network features.
The rows marked ‘unwghtd + swsn’ display results for runs
that had features based on saliency-weighted semantic network
added as well. Results marked† are significantly different from
the best performing OoB run (two-tailed paired t-test, p-value
< .007)

Baseline methods Acc. p r F1

Convolutional NNs [20] .699 – – .809
VSM [38] .710 .710 .954 .814
Corpus-based PMI [21] .726 .747 .891 .813

Our method Features Acc. p r F1

OoB unwghtd .746 .768 .882 .822
OoB unwghtd + swsn .751 .768 .896 .827

OoB + aux w2v unwghtd .754 .770 .897 .829
OoB + aux w2v unwghtd + swsn .757 .775 .894 .830
OoB + aux Glv unwghtd .756 .774 .894 .830
OoB + aux Glv unwghtd + swsn .758 .771 .907 .833
OoB + both aux unwghtd .762† .780† .893† .833†

OoB + both aux unwghtd + swsn .766† .781† .906† .839†

wghtd + swsn’ use the both the ‘unwghtd’ features and the saliency-
weighted semantic network features.

5.1 Using out-of-the-box vectors
For the rows marked ‘OoB’ only out-of-the-box word embed-

dings were used of the four sets described in Section 4.2.1 and Sec-
tion 4.2.2. The settings for the regularisation parameters of the
classifier are determined by cross validating on the training set. For
the experiment with only unweighted features, the hyper-parameter
settings are C = 108 and gamma = 10−5. For the experiment in-
cluding the saliency-weighted semantic network features we have
C = 106 and gamma = 10−4.

Table 1 shows that the result when using only publicly available,
out-of-the-box word vectors (the rows marked OoB), surpass all the
baselines.7

An important observation is that the best scoring approach on
this data set using WordNet-based features, to our knowledge, re-
ports an accuracy of .741 and an F1 score of .824 [17]. As we
can see, our generic approach with only publicly available vec-
tors, without any tuning or optimisation, outperforms this method.
This is an important finding, as it shows that for computing seman-
tic similarity, the labour-intensive construction of a rich semantic
knowledge source such as WordNet is not a necessity. As an aside,
our finding supports a claim made in [5] in a different context of
matching texts of different lengths, “that traditional knowledge-
based features are cornered by novel corpus-based word meaning
representations.”

5.2 Using auxiliary vectors
To show the potential of our method we report the results when,

next to the OoB vectors, the auxiliary vectors—generated from
the embeddings trained on the INEX data as described in Sec-

7We cannot calculate statistical significance between our results
and the baseline results as for the appropriate test—a matched-pairs
t-test—we need to compare our output to the outputs of the base-
line systems, which are not publicly available (only the aggregate
results are).

tion 4.2.3—are used. The bottom rows in Table 1 show the best
results obtained with these vectors.

The results of the experiments with the auxiliary vectors are con-
sistently better than the baselines and the results with only OoB
vectors, both in terms of accuracy and F1.

If we compare the results of our method that only uses semantic
features, to the current state-of-the-art methods, which rely on lin-
guistic analysis and handcrafted features, we observe that when op-
timal settings are used, our method can outperform the tree kernel
approach described in [4]. This method uses features derived from
dependency parses, and yields an accuracy of .753 on this data set
(no precision, recall and F1 score are reported). Furthermore, our
top-performing run, the bottom row in Table 1, shows results com-
parable results presented in [39], based on dynamic pooling and
unfolding recursive auto-encoders trained on parse trees—that has
an accuracy of .768 and F1 of .836. Our top-performing run does
slightly better in terms of F1 and slightly worse with respect to the
accuracy. It is important to note, however, that the results in [39]
are only achieved when, next to the general neural network-based
method, several handcrafted features are added, which are designed
especially for the evaluation set at hand (the features are primarily
dealing with representation of numbers). Interestingly, our method
performs better than the neural network-based approach in [39]
when the latter is run without the test-set-specific handcrafted fea-
tures, in which case it yields an accuracy of .726.

The best performance on the MSR Paraphrase Corpus, to our
knowledge, is presented in [22]. Matrix decomposition is per-
formed on a co-occurrence matrix, and saliency weighting is ap-
plied, where the saliency weight per word or n-gram is optimised
on the training data. A dependency parser is used to generate the
ngrams. The best performance is obtained by performing matrix
decomposition on the training and test data combined. But even if
only the training set is used, an accuracy of .786 and .846 F1 is
attained, when no additional hand-crafted features are used. This
result is better than ours in terms of accuracy, while in terms of F1

the scores are comparable.
The word2vec vectors and GloVe vectors, when added sepa-

rately, yield better performance. This is particularly noteworthy
as it shows that high-quality word embeddings can be produced
for the present setting by both algorithms, even when the corpus
used for training was substantially smaller than what is commonly
used (namely∼1B tokens, against 3B and 100B tokens for the OoB
word2vec sets and 42B and 840B for the OoB GloVe vectors).

When both the auxiliary word2vec and GloVe vectors are added
to the OoB vectors—the rows marked ‘OoB + both aux’—we see
another increase in performance specifically in terms of precision.
These results are significantly different from the OoB run with both
feature sets. The results in the ‘OoB + both aux’ rows also surpass
the results in the ‘OoB + aux w2v’ and ‘OoB + aux Glv’ sepa-
rately. This is particularly interesting, as it indicates that, while the
performance of both vectors sets on their own is comparable, the
two models capture different semantic information.

Finally, an overall observation from Table 1 is that adding the
saliency-weighted semantic network features consistently yields bet-
ter performance. We note that this goes against an observation
in [17]: “Since experiments with document specificity weightings
(such as tf-idf ) had shown that using these factors actually reduced
performance no such weighting factor was used here.”

5.2.1 Parameter analysis
Space constraints prevent us from providing an extensive over-

view of results across all parameter settings. An important obser-
vation, however, is that although the settings matter, few consistent



patterns emerge. To illustrate, for the ‘OoB + both aux’ setting, the
worst performance in terms of accuracy across parameters, with
optimal regularisation parameters was .730, which is worse than
the performance with only OoB vectors, but above baseline per-
formance. For the auxiliary word2vec vectors, negative sampling
seems to be beneficial in general, with a value of 10 being a ro-
bust choice. Both the choice of architecture (CBOW or Skip-gram)
and applying hierarchical softmax or no seems to be of little con-
sequence.

For the GloVe vectors different values for the exponent of the
weighting function and the cut-off in the weighting function were
used. The moderate values (.5, .75 for the exponent, and 50 or 100
for the maximum cut-off) yielded the best results.

Lastly, the regularisation parameters (C and gamma) of the clas-
sifier are hyper-parameters of our model. We use large values for
C (in the range of 106–109 depending on the number of features)
and small values for gamma (10−4, 10−5). Not surprisingly, the
setting of these parameters in particular has substantial repercus-
sions on the final performance. To illustrate again, the worst perfor-
mance with optimal features but across regularisation parameters
was .690, which is lower than the lowest baseline. The worst over-
all performance (worst features and worst regularisation) is roughly
equal, at .685, which suggests that the harm is primarily caused by
suboptimal regularisation.

These findings indicates that both algorithms for generating word
embeddings, word2vec and GloVe, are robust across reasonable pa-
rameter settings. While it is important to find the optimal combina-
tion of all parameters, the settings for the word embeddings matter
less than regularising the learning algorithm.

5.2.2 Feature importance
In addition to studying the effect of the different sets of word

embeddings as discussed above, it is interesting to see how different
sets of features affect the performance. To analyse the effect per
feature set we perform an ablation study, where we leave out a set
of features for all word embedding sets we calculate features from.8

Table 2: Ablation study results
Omitted feature set Acc. p r F1

max unweighted sn bins .739 .766 .874 .817
swsn bins .741 .768 .874 .818
dimension bins .746 .767 .886 .822
all unweighted sn bins .747 .763 .898 .825
distances .759 .778 .892 .831

In Table 2 the results are shown for leaving out different feature
sets, sorted by accuracy. All other settings (the word2vec and GloVe
parameters for the auxiliary vectors and the regularisation param-
eters for the classifier) are identical to the ones used for the top
performing run in Table 1 (bottom row).

As can be seen from Table 2 leaving out the word alignment
methods, weighted by saliency or not, has the most dramatic effect
on performance. This indicates that aligning words is a successful
strategy for determining semantic similarity between short texts.

An interesting observation is that leaving out the distance fea-
tures has the least effect on performance. As noted above, these
features measure the distance between the means of the word vec-
tors in both sentences, and are a default method for going from

8Note that it is not possible to use the feature weights as a proxy for
feature importance, as this only works for linear kernel functions,
and we use a classifier with an RBF kernel.

word-level to sentence-level, applied, next to other methods, in e.g.,
[5, 20, 40]. Table 2 does suggest that binning the differences be-
tween dimensions of the mean vectors, as proposed in this paper,
increases the gain obtained from them.

5.3 Error analysis
To see whether our method of computing semantic textual sim-

ilarity for short texts is biased we perform an error analysis con-
cerning two important attributes of the test data: sentence length
and lexical overlap.

5.3.1 Performance across sentence length
Figure 2 shows an overview of the results of our experiments

divided by sentence length.

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Difference in sentence length

0

50

100

150

200

N
u
m

b
e
r 

o
f 

e
x
a
m

p
le

s

TP
TN
FN
FP

Figure 2: Results ‘OoB + both aux – unwghtd + swsn’ run
divided by difference in sentence length (measured in words).
TP: true positives, TN: True negatives, FP: false positives, FN:
false negatives. (Best viewed in color.)

As expected, sentences that are alike in in terms of length are
easier to perform well on, as reflected in the figure by the large
bulge at the left side of the scale for the true positives. The hump
for true negatives is less pronounced, which is easily explained by
a lower frequency of negative examples in the test set.

One observation from Figure 2 is that the number of false neg-
atives is rather constant in the left half of the figure, which means
that it increases relatively with the difference in sentence length,
while this is not the case for false positives. This means that the
classifier has a tendency to predict semantic dissimilarity when the
two input texts differ in length substantially.

Most importantly though, Figure 2 shows that the classifier al-
ways predicts the correct label in the majority of cases, regardless
of the difference in sentence length.

5.3.2 Performance across levels of lexical overlap
As our saliency-weighted semantic network features perform se-

mantic, rather than lexical, word pairings, it is interesting to see
how our method performs across different levels of lexical (i.e., lit-
eral) overlap between the sentence pairs in our test collection.

In Figure 3 we show an overview of the results across different
levels of lexical overlap of our best performing run on the MSR
Paraphrase Corpus (OoB + both aux – unwghtd + swsn; see bottom
row in Table 1).
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Figure 3: Results for the ‘OoB + both aux – unwghtd + swsn’
run, grouped by percentage of lexical overlap between test sen-
tences in the MSR Paraphrase Corpus. (Best viewed in color.)

In Figure 3 we can clearly see four different distributions of re-
sults, where, e.g., the TP results peak at 70–80% and the TN results
peak at 40–50%.

As is to be expected, the ‘OoB + both aux – unwghtd + swsn’ run
is right most times at high levels of lexical overlap. If it is wrong
it produced false positives, i.e., it predicts semantic similarity too
often, which is easily explained by the high similarity between the
sentences. An interesting glitch is the tiny FP bar at the far right of
the figure (90%-100% overlap), which denotes 3 cases of high lex-
ical overlap, where the annotators judged the test sentences not to
be semantically similar, while our method for predicting short text
semantic similarity did. Indeed, the differences are rather subtle, as
illustrated by this example pair:

Air Canada, the largest airline in Canada and No. 11
in the world, has been under court protection from
creditors since April 1

and

The No. 11 airline in the world, Air Canada has been
under court protection from creditors since April 1.

There is a peak in the middle for the FN bars, at 50–60% overlap,
where our method cannot make up for the relatively low level of
lexical overlap, and mistakenly predicts semantic dissimilarity. In-
terestingly, though, the bars show that our algorithm, even for these
difficult cases, still makes the correct prediction in the majority of
cases. An additional noteworthy observation is that even when the
majority of words in the sentences that make up the test pairs are
different, at 40–50% overlap level, our algorithm still produces true
positives, next to true negatives. This clearly shows the benefit
of semantic matching over lexical matching. More importantly, it
shows a meaningful distinction can be made by the algorithm, even
for these non-trivial cases.

The final important observation from Figure 3 is that our method,
the ‘OoB + both aux – unwghtd + swsn’ run, is right in the majority
of cases across all levels of lexical overlap.

6. CONCLUSIONS AND FUTURE WORK
We have described a generic and flexible method for semantic

matching of short texts, which leverages word embeddings of dif-
ferent dimensionality, obtained by different algorithms and from
different sources. The method makes no use of external sources
of structured semantic knowledge nor of linguistic tools, such as
parsers. Instead it uses a word alignment method, and a saliency-
weighted semantic graph, to go from word-level to text-level se-
mantics. We compute features from the word alignment method
and from the means of word embeddings, to train a final classifier
that predicts a semantic similarity score.

We demonstrate on a large publicly available evaluation set that
our generic, semantics-only method of computing semantic simi-
larity between short texts outperforms all baseline approaches work-
ing under the same conditions, and that it exceeds all approaches
using external sources of structured semantic knowledge that have
been evaluated in this dataset, to our knowledge.

An important implication of our results is that distributional se-
mantics has come to a level where it can be employed by itself in
a generic approach for producing features that can be used to yield
state-of-the-art performance on the short text similarity task, even
if no manually tuned features are added that optimise for a spe-
cific test set or domain. Furthermore, the word embeddings, when
employed as proposed above, substitute external semantic knowl-
edge and make human "feature engineering" unnecessary. As our
method does not depend on NLP tools, it can be applied to domains
and languages for which these are sparse.

It is interesting to see how other fields of research that deal with
large corpora of unstructured text can benefit. For example, in auto-
matically created probabilistic knowledge bases (e.g., [16]) triples
are extracted from an input corpus and have a confidence score as-
sociated with them based on the number of sentences in the corpus
describing the relation in the triple. Short text similarity can be
used to improve this confidence score.

An evident limitation of calculating meta-features in the manner
we propose, i.e., from averaged word vectors and word alignments,
is that the order of words is not taken into account. This goes for
any bag-of-words model, of course. The reason the difference be-
tween word-order-aware models and bag-of-word models is not ap-
parent from the results on sentence similarity tasks over the years
might be that the commonly used evaluation sets do not contain
enough sentence pairs (if at all) in which word order is a crucial
factor.
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