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Abstract. Adiabatic perturbation theory is employed to establish a relationship between 
the S matrix and the averaged energy shift of a degenerate level. 

Field-theoretical methods have proved extremely useful in perturbation theory for 
stationary energy-eigenvalue problems. In particular, a simple connection between the 
energy shift and the scattering matrix in the Feynman formalism has been applied 
before to lowest-order processes; such a connection may already be understood 
heuristically on the basis of the Born approximation (e.g. Akhiezer and Berestetskii 
1953). A general relationship has been obtained by Rodberg (1958), who used a 
linked-cluster expansion and showed how the energy shift of a non-degenerate state 
then follows from the connected part of the S matrix (see also Michels and Suttorp 
1978). 

The linked-cluster expansion in fact relies upon the choice of the non-degenerate 
unperturbed state as a new vacuum state; consequently Rodberg’s treatment cannot be 
applied in degenerate perturbation theory. Yet a generalisation of his final result does 
exist for the averaged energy shift of a degenerate level, as we shall prove now along 
different lines. 

We study a time-independent Hamiltonian H that is the sum of an unperturbed part 
Ho and a perturbation H1 = A V. Let Eo be a degenerate eigenvalue in the discrete part 
of the spectrum of Ho, and let I&) be normalised eigenstates of H with eigenvalues 
E, =Eo+ AE, that reduce to Eo for A tending to zero. Since AdHldA = H1 and 
Ad/dA(+, 14,) = 0 we may write for the energy shifts AE, : 

(cf. Pines 1961) and hence for the average hE of these energy shifts: 

A(d/dA)hETr P = T r ( H I P ) ,  (2) 
with P = Z, /#,)(t,b,I the projector onto the subspace of perturbed eigenstates. 

Starting from the identity (2) we shall derive the connection between hE and the S 
matrix. To that end we go over to the time-dependent interaction representation; 
moreover the perturbation is switched on adiabatically, so that it takes the form: 

H,,(t) = A , ( t )  exp(iH0r)V exp(-iHot), A , ( t )  = A  exp(-e/tl). (3) 
t Present address: Koninklyke/Shell-Laboratorium, Amsterdam. 

0305-4470/79/081321+ 03$01.00 @ 1979 The Institute of Physics 1321 



1322 M A  JMichels and L G Suttorp 

The time dependence of the perturbed system is governed by the unitary evolution 
operator U,(t, t’), which satisfies the differential equation 

i(a/at)U,(t, t’) =Hl,(t)U,(t, t’), U,(t, t )  = 1.  (4) 

In terms of this operator one can prove the following relation between the projector P 
and the corresponding projector Po of the unperturbed level (Dmitriev 1975): 

P = lim U,(O, *:co)PoU, (*CO, 0) .  ( 5 )  
€ + O  

If the perturbation is sufficiently small the operations PPo and POP constitute a 
non-singular linear mapping between the perturbed and the unperturbed states. 
Consequently we may write the projector P as: 

(6 )  P = P- Po( POP, P- P o )  - POP,, 

with P* = P given by ( 5 ) .  Upon substituting (6) with (5)  into (2) and using Tr P = Tr PO 
we obtain for the averaged energy shift in the adiabatic formalism: 

A(d/dA)BTr  Po=limTr[(PoUf(m, -~ )PO) - ’P~U, (OO,  O)HIU,(O, -co)Po]. (7) 
S - 0  

Between the square brackets at the right-hand side the adiabatic S matrix S E =  
PoU,(m, -co)P0 shows up. To deal with the remaining part of (7) let us consider the 
identity: 

i(d/at)(U,(t’’, t)iA,(t’)(S/SA,(t’))U,(t, t”)} = U,(t”, t ’ )Hl , ( t ’ )Uf ( f f ,  t ” ) S ( t ’ -  t ) ,  (8) 

which follows by first applying (4), and then (3) and the definition: 

(S/SA.(t’))A,(t)  = 6( t ’ -  t )  (9) 

ih, ( t  ’) ( S /  SA, ( t  ’)) U, ( t, f ”) = U, ( t, t’)H1 , ( t ‘) U, ( t ‘, t ”), (10) 

When this result, with t = a, t’ = 0, t”= -43, is inserted in (7) the right-hand side is 
expressed completely in terms of S,. In view of the trace operation we may formally 
write: 

of the functional derivative. From (8) we get after integration over t from t” to t :  

( t  > t’> t”). 

A (d/dA)hETr Po = lim iA,(O)(S/SA,(O)) Tr In S,. 
E + O  

So the averaged energy shift a can be obtained from the adiabatic S matrix by 
performing a functional differentiation of Tr In S, with respect to the time-dependent 
coupling constant. 

From the well-known Dyson series expansion of the operator U, in powers of A an 
expansion of the same general structure follows for Tr In Se, namely, 

dt, . . . dt, Tr(PoT(tl, . . . , t,)Po)A,(tl) . . . A , ( t n ) ;  

here the operator T(t,,  . . . , t,) need not be specified in detail, apart from its behaviour 
under time translation: 

(13) T( t ,  + T, . . . , t, + T )  = exp(iHo.r)T(tl, . . . , t,) exp(-iHo.r). 
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Combining (12) with (11) and (9) we find: 

1 "  m cc 
Z T r  PO = i A n  dt, . . . dtn- 8(tm) Tr(PoT(tl, . . . , tn)Po), 

n = l  tl m = l  

where in the integral at the right-hand side the adiabatic limit has been taken. 
Comparison of (12) and (14) shows that hE may be calculated in the same way as 

Tr In So, the only difference being, apart from a factor i/Tr PO, the suppression of one 
time integration. 

Let us now formally put the energies of the final and initial projectors in (12) and 
(14) equal to Er and Ei ,  respectively; the scattering matrix So will accordingly be 
denoted as Sfi. When the time variables ti in (14) are replaced by ti + T we then have in 
view of (13): 

W 

n = l  

Upon bringing the factor i exp[i(Ef - Ei)7] to the left-hand side, integrating from 
T = -CO to T = CO and using (12) we arrive at the relation 

-2.rri8(Er-Ei)hETrPo=Tr In Sfi. (16) 
This is a generalisation of Rodberg's result, which was also obtained by adiabatic 
perturbation theory, but in a completely different way. In particular our starting 
equation (7) for the energy shift in the adiabatic formalism does not contain an explicit 
factor E ,  owing to which the step of actually putting E = 0 is facilitated. 

The above expressions enable one to obtain the averaged energy shift hE of a 
stationary system by applying the covariant Feynman formalism. It should be noticed, 
however, that in general this cannot be achieved by a straightforward evaluation of the S 
matrix, since the existence of the adiabatic limit is not proved for the individual 
Feynman diagrams contributing to (14). In a forthcoming paper we shall develop a 
systematic method for resumming the integrands PoT(tl, . . . , tn)Po of these Feynman 
diagrams in such a way that each term may be calculated separately in the limit E + 0. 
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