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A microscopic description of self-diffusion in a moderately dense classical one-component 
plasma is given on the basis of renormalized kinetic theory. The effects of close binary collisions 
and of collective interactions in the plasma are taken into account through the use of a composite 
memory kernel that includes both the Boltzmann and the Balescu-Guernsey-Lenard kernels as 
special cases. The composite kernel satisfies the lowest-order sum rule by virtue of the 
approximate validity of the hypernetted-chain equation for the static plasma correlation function. 
The ensuing values of the self-diffusion coefficient are obtained numerically for several plasma 
densities and are compared with the results of previous theories and of molecular dynamics. 

I. Introduction 

The evaluation of transport coefficients for a dilute plasma by means of 
kinetic equations often leads to divergent results~). The reason for the 
occurrence of these infinities is that in a plasma both close binary collisions 
and collective interactions play an essential role in the transport phenomena. 
In the kinetic equations of Balescu-Guernsey-Lenard and Boltzmann either 
the former or the latter processes are neglected; Landau's equation is a hybrid 
of the other two and has the deficiencies of both of them. Frequently a cutoff 
has been used to render the kinetic expressions for the transport coefficients 
finite. In a more systematic approach the various interactions in the plasma 
are taken into account by starting from a kinetic equation with a composite 
collision term that is a unification of those of the Balescu-Guernsey-Lenard 
and the Boltzmann equations; the finiteness of the transport coefficients is 
then guaranteed from the beginning2-4). 

In the last few years the transport properties of plasmas with higher 
densities have been studied with the help of the methods of liquid kinetic 
theoryS). Instead of the one-particle distribution functions that constitute the 
central quantities in the older kinetic theories attention is focused on the time 
correlation functions from which the transport coefficients follow by means of 
Green-Kubo relations. Dressing effects in the plasma are included by 
'renormalizing' the interparticle potential that governs the evolution of the 
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time correlation function. Under suitable approximations the memory kernel 
of the kinetic equation for the correlation function then reduces to a general- 
ized form of the Balescu-Guernsey-Lenard kernel6'7). Although this general- 
ized kernel has the virtue of yielding convergent expressions for the transport 
coefficients, it gives an incomplete description of the underlying processes 
since close collisions in the plasma are treated incorrectly. 

In the present paper it will be demonstrated how close collisions in the 
plasma can be incorporated in the formalism by introducing a memory kernel 
that is a generalization of the composite kernel of dilute-plasma theory. In 
particular, we shall consider the self-diffusion process that refers to the 
motion of a tagged particle. As a model we shall take the classical one- 
component plasma that consists of a system of charged particles in an inert 
uniform background of opposite charge. 

In section 2 the general formalism of renormalized kinetic theory will be 
introduced. As a starting point for the discussion of dense plasmas we shall 
adopt the second-order mean-field approximation of the memory kernel for 
the self-diffusion time correlation function. In the next section it will be 
shown how this mean-field kernel reduces to generalized forms of the well- 
known memory kernels of standard dilute-plasma kinetic theory. After a 
discussion of the general properties of the various kernels in section 4 a 
composite kernel that describes both close and remote plasma interactions 
will be introduced in section 5. In the last section numerical values of the 
self-diffusion coefficient will be obtained for plasmas of moderate density. 

2. Renormalized kinetic theory 

The motion of a tagged particle through a fluid in equilibrium may be 
described in terms of time correlation functions, the simplest of which is 
defined as 

CS(rp ;r 'p'  ;t) = (Sp(rp  ; t )~p(r 'p '  ;0)). (1) 

The phase function fs appearing inside the canonical-ensemble average is a 
product of delta functions fixing the position rs(t) and momentum p,(t) of the 
tagged particle: 

f~(rp ; t) = ~/-N6[r - r,(t)]8[p -p~(t)] ,  (2) 

with N the total number of particles in the fluid system; furthermore the 
symbol ~ in (1) denotes the deviation from the equilibrium value, so that 
8f,  = f~ _ (fs) = p _ (n/VN)f0(p), with n the particle density and f0(p) the 
normalized Maxwell-Boltzmann distribution function. More general tagged- 
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particle time correlation functions C~.t, which for k = l = 1 reduce to C s, are 
introduced by writing 

l I I f 
C ~ , l ( r l P l  • • • r k P k  ; r l P l  • • • r j p t ; t )  

= (~[f~(rlpl ; t ) f ( r 2 p 2 ; t ) . . .  f(rkpk ;t)] 

s r '  ' t r '  ' ;  ' '" ~ [ f  ( l p l ,  ) f (  2P2 t ) . . .  f ( r , p l , t ) ] ) ,  (3) 

with phase functions f given by 

N 

f ( rp  ;t) = ~ $[r - r,(t)]8[p - p,(t)]. (4) 

The time correlation functions Ck.t for arbitrary particles in the fluid have the 
same form as (3), with p replaced by f. The static correlation functions 
obtained by putting t = 0 will be denoted by C[~ and Ck.t; for k = l = 1 one 
finds in particular 

C~(rp ; r 'p')  = n~o(p )~(r  - r ' )$(p - p'), (5) 

C(rp  ; r 'p')  = n~o(p )8 ( r  - r ' )6(p - p') + nEfo(P )~o(p')h(r - r'), (6) 

with h(r )  -- g ( r ) -  1 the pair correlation function. 
The self-diffusion coefficient D can be found directly from C~; in fact, upon 

introducing the Laplace transform 

C~(rp ; r 'p '  ; z)  = - i  I dt  eiztC~(rp ; r 'p'  ; t), (7) 
o 

with Im z > 0, one may write the Green-Kubo relation in the form 

= i/(3m2n) lim V -I f d r  dr '  dp dp'  p • p 'C~(rp ; r 'p ' ;  z).  (8) D 
z-, i  0 ) 

The time correlation function C~(z) will satisfy a kinetic equation of the 
general form 

[z - Lo(rp)]C~(rp ; r 'p '  ; z)  

f d r"  dp"  ~S(rp ; r " p " ; z ) C ~ ( r " p " ; r ' p ' ; z )  = C~(rp ; r 'p') ,  (9) 

with L o ( r p ) = - ( i / m ) p  .V, the free-particle streaming operator and q~ a 
memory kernel. An expression for this kernel may be found from the 
equation of motion of the phase function 8[S(rp ; z)  contained in C ~. In general 
the memory kernels for time correlation functions can be split into a static 
z-independent part that gives rise to a mean-field term in the kinetic equation, 
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and a dynamic part describing the effect of individual collisions. In the present 
case the static part of the kernel vanishes; the dynamic part can be brought 
into the form a) 

q~s(rlpl ; r~p~ ; z ) n f o ( p D  = - f dr2 dp2 dr~ dp~ Lf(r lp~r2p2)  

× L1(r~p~r~p~)G~,2(r lp l r2p2;r~pir~p~;z ) .  (10) 

The operator L~ contains the potential v for the interaction between the 
particles in the fluid: 

L1(r~plrzp2)  = i V r l v ( r l -  r2)" (V~,- V~). (11) 

Furthermore GL2 is a four-point function defined as 

S . ! P ! t .  $ . I ! r P .  
G2.2(rlplr2p2,  r ip  t r2p2, z) = C2,2(riplr2P2, r ip  i r2p2,  z )  

f , I t, S t l ,  • - dr3 dp3 dr~ dp~ CLl(rlplr2p2, r3p3, z) [C (r3p3, r3p3,z)] -1 

• I ! ! I .  X C~,2(r3P3,rlplr2p2,z), (12) 

with C $-! the inverse of C $. In the following we shall also need the four-point 
function G~,2 that is found by replacing the functions C $ in (12) by their static 
counterparts C~. Its explicit form is 

(~ .2(r lplrEp2 ; r;p~r~p~) = 8 ( r l  - r[)8(pl-  p D n 2 f o ( p O  fo(p2) 

× {8(r2 - r~,)8(p2 - p~,)g(rl - r2) 
+ nfo(p~)[g3(rl  - rE, rl -- r~) -- g ( r l  -- r2)g(rj -- r~)]}, (13) 

where g3 is the triplet correlation function. 
A first approximation for the correlation function C $ is obtained from the 

kinetic equation (9) by retaining only the static part of the memory kernel. 
Since the latter is zero one recovers in this way the free-particle form of C $. 
A higher approximation can be found 9-1~) by substituting in the dynamic part 
(10) of ~'  the mean-field expression for the four-point function GL2. This 
expression follows by solving formally the static-kernel approximation of the 
kinetic equation for G~,2. In this way one finds from (10) 

,p $(r,p, ; r~p~; z)nfo(p ~) 

= - f dr2 @2 dr3 dp3 dr~ dp~ dr~ dp~ V1(rlp~ ; r2pzr3p3) 

× V | ( r ; p ~ ;  r~p~r~pJ)d~.2(r2pEr3p~;r~p~r~p~;z) .  (14) 

The vertex functions V[ have the form 

V~ (rtp~ ; r2pzr3p3) = - n2fo(p2)fo(P3)g(r2 - r3) 

x L~( r2p2r3p~)6 ( r~ -  r 2 ) ~ ( p ~ -  P2); (15) 
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they contain the "renormalized" interaction operator/~,i defined as 

Ll ( r lp l r2P2)  = --i/3-1[~Trl In g ( r l -  r2)]" ( V p l -  Vp2). (16) 

The reduced four-point function t~,2 in (14) is determined implicitly by giving 
its inverse: 

[G ~,2(rlplr2p2 ; r~p~r~p~ ; z)]  -1 = z G  ~,2(rlplr2p2 ; r~p~r~p~) 

- n2fo(POyo(P2)g(r l  - r2)[Lo(r lp l )  + Lo(r2p2) + f ,1(r lplr2p2)]  

× ~ ( r l -  r [ )8(pl-  p ~ ) ~ ( r 2 -  r ~ ) ~ ( p 2 - p ~ )  

+ in3/3-1fo(pl)yo(p2)fo(p~)[g3(rl- r2, r l -  r ~ ) -  g ( r l -  r 2 ) g ( r l -  r~)] 

x ( ~ , .  Vp~ - ~p~" V,~)8(rl - r~)6(p~ - p~); (17) 

here the gradient operators ~ are meant to act to the left only. 
The kinetic equation that arises by substituting into (9) the second-order 

mean-field approximation (14)-(17) of the memory kernel is a suitable starting 
point for the discussion of a one-component plasma. Both the effects of close 
binary collisions between individual particles and of collective interactions 
that play an essential role in a plasma are contained in the memory kernel, as 
will be shown in the next section. 

3. Generalized Boltzmann, Balescu-Guernsey-Lenard and Landau 
memory kernels for a plasma 

The time correlation function for a dilute gas of neutral particles can be 
found by solving the Boltzmann equation in its linearized form. For a plasma 
the Boltzmann equation cannot be employed straightforwardly, since the 
ensuing collision integrals diverge owing to the long-range character of the 
Coulomb potential. A method to overcome this difficulty is to make use of the 
phenomenon of Debye shielding and to replace the bare Coulomb potential in 
the collision integrals by a Debye potentia112"~3). The resulting kinetic equation 
takes due account of the close binary collisions in the plasma but treats the 
collective effects only in an approximate way. 

A Boltzmann-type memory kernel with an effective shielded potential can 
be found easily from the second-order mean-field memory kernel. In ,fact, if 
the inverse four-point function G~-~ given by (17) with (13) is approximated 
by retaining only the binary-collision terms one obtains 

[G~,E(rlplr2p2 ; r~p ~r~p~ ; z)]  -I = n2 fo(p l ) fo (p2)g(r l  - r2) 

× [z - Lo(rlpt) - Lo(r2p2) - L t ( r lp l rEp2)]  
8( r l  -- r~)~(pl  -- p~)$(r2 -- r~)~(p2 -- p~). (18) 
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Upon insertion into (14) the memory function gets the form of a generalized 
Boltzmann kernel, viz. 

q~( r lp lr  ~p ~ ; z ) n f  o(p ~) 

f " " t t I t = - n 2 dr2 dp2 dr~ dp~ Ll (r lp l r2p2)Ll ( r lP lr2P2) fo (Pi ) fo (P2)g(r |  - r2) 

[z - Lo(r lpO - Lo(r2p2) - L~(rlplr2p2)]-16(rl  - r[ )6(p l  - p D6(r2 - r'2) 6 (p2- p:),' 
(19) 

in which -/3 -~ In g is the effective pair potential. To evaluate the self-diffusion 
coefficient the time correlation function and hence the memory kernel is 
needed only for homogeneous systems, or in Fourier representation for k = 0; 
moreover the Markovian limit z ~ i0 has to be taken. In that case the kernel 
(19) can be shown 8'~4) to reduce to the Boltzmann form, 

,. f dtr q~d(k = O,p~p~ , z  = iO)nfo(pD = - in  2 dO dp2~--~ 

× [P~ - P21 fo(pOfo(p2)[6(pl  - pD - 6(P~ - PD], (20) 
m 

where dcr[dO is the differential cross section for a collision pl + p e ~ p ~ + p ~  

of two particles that intereact according to the effective pair potential -/3-1 In g. 
For dilute plasmas (with small plasma parameter) this effective potential 
indeed reduces to a Debye potential, since the pair correlation function is then 
given by its (nonlinear) Debye-Hiickel form, 

e 2 
g(r) = exp [ -  ~--~ exp(-kDr)], (21) 

with k 2 = ne2/kT .  

An alternative equation for a low-density plasma may be found from the 
BBGKY hierarchy by neglecting higher-order correlation functionsl). The 
resulting Balescu-Guernsey-Lenard equation takes full account of the col- 
lective interactions in the plasma, but does not treat correctly the effects of 
individual collisions. In accordance with the latter fact the collision term 
contains an integral that diverges for small values of the interparticle separa- 
tions. 

A generalization of the Balescu-Guernsey-Lenard memory kernel can be 
obtained in the present formalism by disregarding in the four-point function 
G~,~I the correlations between the tagged particle and the field particles. Since 
the static four-point function ~s given by (13) then becomes 

G ~,2(rlp~r2p2 ; r~p ~r~p~) = ~(rl - rD~(p l  - p DnEfo(pl)fo(P2) 

× {8(r2- r ~ ) 6 ( p : -  p~) + n fo (p ~ ) [g ( r2 -  r~) - 1]}, (22) 
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one finds for 0 '-1 in this approximation 2,2 

[d~,2(rlplr2p2 ; r~p~r~p~ ; z)] -1 = n2fo(pl)fo(P2) 

× {[z - L0(rlpl) - Lo(r2p2)]~(r2 - r~)~(p2 - p~) 

+ n [ g ( r 2 -  r ~ ) -  1]fo(p~)[z - L o ( r l p l ) ] } ~ ( r l -  r D 6 ( p l -  PD. (23) 

To evaluate the inverse of this function it is convenient to take a spatial 
Fourier transform according to the formula 

• t ' Z -1 V-1  f [CJ~,2(klk2q ,plp2plp2; )] = drl dr2 dr~ dr~ 

exp[- ikl  • ( r j -  r [ ) -  ik2" ( r2-  r~)- iq • ( r l -  r2)] 

×[G~,2(rlplr2p2 ; . . . .  ; r lp l  r2p2 Z)]-l; (24) 

inverting the ensuing expression for t~3  ~ one finds then 

' ' z "  (2Tr)3~(q)~(Pl -- PD 
G L2(k~k2q ; plp2 pip2;  ) = nYo(pO(z - kl • p l / m  - k2 " p2/m ) 

[8(p2-  p~) (z - kl " p , / m ) c ( k 2 )  ] 
x [ nfo(P2) - E(k2, z - k l "  p l / m ) ( z  - k l "  p J m  - k2" p~ /m)  " 

(25) 

Here c ( k )  is the direct correlation function which is connected to the pair 
correlation function h ( k )  through the Ornstein-Zernike relation c (k )=  
h(k) / [1  + nh(k)] .  Furthermore the dielectric function E(k, z) is defined as 

e(k ,  z )  = 1 + n c ( k ) [ z F ( k ,  z )  - 1], (26) 

with the abbreviation 

F ( k ,  z)  = f dp fo (p ) / ( z  - k . p / m ) .  (27) 

Substitution of (25) into the Fourier transform of (14) leads to the following 
expression for the memory kernel: 

~ G L ( k p p ' ; z ) n f O ( p ' )  = - ~  h ( q ) c ( q ) q  " Vpq " V,, 

F[q ,  z - (k  - q)  " p/m]~ (28) 
x t~(p  - p')Io(p ) E[q, z - (k  - q)  . p / m  l J" 

For k = 0, z ~ i0 this expression becomes 

~ri n 2/'dd_q_ 2 0 ~aGL( , pp ' ; iO)nfo(p ' )  = ~ - J  (2Ir)3 [c(q)] q • V~q- V v, 

{~(P - p') fo(P)le(q ,  q "  p / m  + i0)[ -2 f dp" f0(p")8[q • (p - p " ) / m  ]}. (29) 
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The memory kernels (28) and (29) have been obtained before by Gould and 
Mazenko 6) in a somewhat different way. These authors introduce a 'dis- 
connected approximation' (which amounts to the neglect of correlations 
between the tagged particle and the field particles) in an early stage of their 
treatment. Subsequently they use the free-particle approximation for C '  and 
an 'effective-interaction' approximation for the correlation function C of the 
field particles. In the present derivation we preferred as a starting point the 
memory kernel (14) in the second-order mean-field approximation in which 
both the effects of close binary collisions and of collective interactions are 
still taken into account. 

For low-density plasmas the memory kernel (29) with (26) reduces to that of 
the (linearized) Balescu-Guernsey-Lenard equation, since the direct cor- 
relation function c ( q )  can then be approximated by its Debye-Hiickel form 
- -~e2 /q  2. It should be remarked however that the memory kernel (29) is 
convergent for large values of q. 

A generalization of the Landau memory kernel can likewise be derived 
easily in the present formalism15). It is found by considering the free-particle 
approximation of the inverse four-point function given in (17): 

[G~,E(rlplrEp2 ; r~p~r~p~ ; z)] -l = nEfo(Pl)fo(P2) 

× [z - L0(rlpt) - L0(r2pE)]$(rl - r~)8(pl  - p[)8(r2- r ~ ) 8 ( p : -  p~). (30) 

Alternatively, this formula may be obtained either from the inverse four-point 
function (18) of the generalized Boltzmann kernel, namely by neglecting the 
correlations between the tagged and the field particles, or from the expression 
(23) of the generalized Balescu-Guernsey-Lenard kernel, by taking the binary 
collision terms. The resulting memory kernel will therefore be an approxi- 
mation to both of these kernels, as is the case for the corresponding kinetic 
equations of a low-density plasma. 

The Fourier transformed inverse of (30) gets the form 

G~,2(klk2q ;plp2p~p2' ; z )  = (21r)3~(q)~(pl-pDS(p2-p~) 
n2fo(POfo(P2)(z - kl • p l / m  - k2 " p2/m )' (31) 

which yields upon insertion into (14) the memory kernel 

tl 2 d q  2 
c [ ( k p p ' ; z ) n [ o ( p ' )  = - ~ f  (21r)3 [h(q)] q • V~q "V~, 

x {3(p - p ' ) f o ( p ) F [ q ,  z - (k  - q ) .  p /m]} ,  (32) 

with F given in (27). For k -- 0, z --> i0, one arrives at the Landau-type kernel 

s 0 "trine ( dq 
L( , pp ' ; iO)n fo(p ' )  = ~ j (2~r)3 [h(q)]2q • V~q • V~, 

x {8(p - p') fo(P)  [ d p "  [o (p" )8[q"  (p - p") /m]} .  (33) J 
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An alternative form results by performing the angular integrations: 

s 0 in2 f ~OL( , pp' ;i0)nf0(p') = - ~ - ~  J dq q3[h(q)]2 
0 

- J J" 

A comparison of (33) with (29) shows that dynamic screening effects caused 
by the dielectric function ~ are missing here, while the correlation function 
h(q) takes the place of the direct correlation function c(q). In the Debye-  
Hiickel limit the kernel (33) reduces to the ordinary Landau kernel, with a 
screened potential -18-1h(q)= eEl(q2+ ko2). Of course, (33) or (34) may also 
be obtained from the Boltzmann kernel (20) by evaluating the contribution of 
small-angle scattering in the tail -[3-~h(r) of the effective potential 
-/3 -1 In g(r). 

4. Symmetries,  conservation laws and sum rules for the 
memory  kernel 

The invariance of the N-particle Hamiltonian with respect to translation, 
rotation and reflection in space and time implies symmetries of the memory 
kernel for the time correlation function~). In fact, from (10)-(12) with (3) one 
may prove the symmetries 

q~S(kpp' ; z) = ~oS(-k, - p ,  - p '  ; z), (35) 

~ ( k p p '  ;z)yo(p') = ~os( - k, - p ' ,  - p ;  z)f0(p), (36) 

as a result of parity invariance and of the invariance under the combined 
effect of time translation and time reversal. The reality of the correlation 
functions gives moreover 

~0s(kpp' ; z) = - [~0 ~(- k, pp'; - z*)]*. (37) 

All these relations are indeed satisfied both by the second-order mean-field 
kernel (14) and by its approximations (20), (29) and (33). 

The motion of the tagged particle does not conserve its momentum and 
energy; only the tagged-particle number is trivially conserved. The latter 
property leads with (9) to the conservation law 15) 

f dp tp'(kpp' ; z) = O, (38) 
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which is satisfied by the second-order mean-field kernel (14) and also by (20), 
(29) and (33). 

Sum rules for the memory kernel follow by considering the short-time 
behaviour of the time correlation function. The first few time derivatives of 
C s can on the one hand be calculated directly from (1) and follow on the 
other hand from the kinetic equation (9). A comparison leads to sum rules for 
the memory kernel the first of which has the form ~5"16) 

n2eEr dq 
lim zq~S(kpp ' ;z)nfo(p') - 3/3 J (2¢r) 3 h(q)Vp • Vp,f0(p)8(p -p ' ) .  (39) 

If this sum rule is fulfilled by an approximate kernel the ensuing time 
correlation function C s has a correct first and second time derivative at t = 0; 
the van Hove self-correlation function (obtained from C ' by integrating over 
the momenta) then has correct derivatives up to fourth order. 

The second-order mean-field approximation (14) of the memory kernel 
indeed satisfies the sum rule (39), as follows from the asymptotic relation 
limz~ z(~31= t~31 and the explicit form (13) for t~,2. In contrast, neither of 
the approximate forms that have been discussed in the previous section are 
compatible with (39). From the generalized Boltzmann kernel (19) one obtains 

lim zq~(kpp' ;z)n'°(P') = ~2  f ( ~ )  3 

× [In g(r)](q)V~. Vp,f0(p)~(p -p ' ) ,  (40) 

where [In g(r)](q) denotes the Fourier transform of In g(r). The generalized 
Balescu-Guernsey-Lenard kernel (28) gives, since limz_~zF(k,z)= 1 and 
limz~ e(k, z) = 1, 

lizm Zq~cL(kpp' ;z)nfo(p') = ~-~ q2h(q)c(q)V, " V,..f0(p)~(p - p'). 

(41) 

Finally, the generalized Landau kernel (32) leads to the sum rule 

lim z~L(kpp , z)nfo(p') = ~ q2[h(q)]2V, "V,,/0(p)~(p - p'). (42) 

All three approximations to the second-order mean-field kernel thus lead to 
time correlation functions with an incorrect behaviour for small t. 

5. Introduction of a composite memory kernel 

In the last two sections several approximate kernels for the time correlation 
functions of a one-component plasma have been discussed. All of these are 
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free of the divergencies that are frequently encountered in the kinetic theory 
for a low-density plasma. In spite of the absence of such divergencies neither 
of the approximate kernels give a correct treatment of both the close binary 
collisions and the collective interactions in the plasma. In the generalized 
Boltzmann kernel the collective effects are only partially taken into account 
by the use of an effective potential, while in the generalized Balescu- 
Guernsey-Lenard kernel typical binary-collision terms are missing altogether; 
the generalized Landau kernel, as a hybrid approximation, has the defects of 
both of the other kernels. A further symptom of the approximate nature of 
the kernels is the deviating form of the lowest-order sum rule. 

In the kinetic theory of low-density plasmas a better treatment of the 
various types of interactions between the particles can be achieved by 
combining the various collision integrals in a suitable way, as has been shown 
by Baldwin s) and others 3) for the one-particle kinetic equations, and by Bartis 
and Oppenheim 4) for the equation satisfied by the time correlation function. 
For a moderately dense plasma a similar method may be followed to arrive at 
an improved approximation for the memory kernel q~s as given by (14)-(17). 

Let us split off from the complete kernel q~s the part that describes the close 
binary collisions, i .e .  the generalized Boltzmann kernel: 

q~' = ~ ~ + (q~' - q~ ~). (43) 

The second term at the right-hand side takes account of the effects of 
collective interactions in the plasma that are not contained in q~d. As an 
approximation one may neglect in that term the correlations between the 
tagged particle and the field particles; these correlations are retained in the 
first term. When the correlations are suppressed q~ reduces to ~CL and ~ to 
q~g, so that one ends up with the composite memory kernel 

For a low-density plasma in which the pair correlation function may be 
approximated by its Debye-Hfickel form the kernel (44) reduces to that 
derived by Bartis and Oppenheim4). 

The short-time behaviour of the composite kernel follows directly from the 
sum rules (40), (41) and (42) for its constituents: 

lim zq~ (kpp' ; z)nlo(p') = 3t3~ j (2~)3 q~h(q){[ln g(r)l(q) 

+ c ( q )  - h(q)}V, • V , , f o ( p ) 3 ( p  - p ' ) .  (45) 

Comparison with the exact sum rule (39) shows that the composite kernel has 
the correct short-time behaviour if the pair correlation functions satisfy the 



36 L.G. SUTTORP 

identity in coordinate space 

In g(r) + c(r) - h(r) = -[3eE/4~rr. (46) 

This is the basic equation of the hypernetted-chain (HNC) approximation 17) 
for the static pair correlation function of a plasma. Empirically it is a 
well-established fact that the HNC-approximation leads to static correlation 
functions that compare favourably with the results of Monte Carlo cal- 
culationsS). By virtue of this property the composite kernel (44) satisfies the 
first sum rule to a fair approximation so that the correct short-time 
behaviour of the ensuing time correlation functions is guaranteed. 

In recent papers 7) an approximate memory kernel for the full time cor- 
relation functions C has been proposed which likewise has the virtue of 
satisfying the first-order sum rule. The analogous memory kernel for the 
tagged-particle problem may be obtained along lines similar to that of sections 
2 and 3. First the memory kernel q~s is written in a form similar to but slightly 
different from (14); one of the vertex functions V~ is replaced by the 
interaction operator LI and, correspondingly, the four-point function (~,2 is 
transformed into a function t7~.2, which is in fact the product of GL2 and GL2. 
When subsequently the correlations between the tagged particle and the field 
particles are disregarded in -~ G2.2 one ends up with a memory kernel q~{va that 
resembles (28) or (29), apart from an extra factor -[3eE/[q2c(q)] inside the 
integral. Instead of (29) one finds 

q~vB(O, pp' ;iO)nfo(p') = ~rieEn2f dq c(q)  ,, 
/3 j (2,rr)3 q2 .! " Vpq • Vp, 

The sum rule for this modified kernel follows by inserting the same extra 
factor as above into the BGL sum rule (41), so that the exact sum rule (39) is 
indeed recovered. The modified kernel ~va may thus be considered as an 
improved version of the generalized Balescu-Guernsey-Lenard kernel. It 
should be remarked however, that the neglect of correlations between the 
tagged particle and the field particles implies that close binary collisions in the 
plasma are again not treated adequately. The consequences of this fact will be 
discussed in the next section, where the relative merits of the various ap- 
proximate kernels will be assessed through an evaluation of the self-diffusion 
coefficient. 

6. Evaluation of the self-diffusion coefficient 

The self-diffusion coefficient D follows from the time correlation function 
C s by using the Green-Kubo relation (8). Introducing in that relation dimen- 
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sionless velocities ~ = p/(mvo),  with v0 = ( m / 3 )  -1/2 and writing the Fourier- 
t ransformed correlation function as CS(kg~ ' ;z )  = (m/ /3)  3 C S ( k p p ' ; z )  one gets 

D = lim in -~ v0 2 f d~ d~' ~zsz ~: r"C~rk 0, ~ ' ;  z). (48) 
z--*i0 J 

The kinetic equation (9) reads in the new variables 

(z - vok " g ) C ~ ( k ~ '  ; z )  - f d~"  q ; ' ( k ~ "  ; z ) C ~ ( k ~ " ~ '  ; z )  

--- n F ( ~ ) 8 ( ~  - g'), (49) 

with q;S(kd~{~';z) =(mvo) 3 q ; ' ( k p p ' ; z )  and F ( O  = (2*r) -3/2 exp(-21~2). Upon in- 
troducing a complete set of functions {f,(g)} in velocity space, such that 

f d~f~(6).f~(6)F(O = ~ ,  (50) 

f~ (~ ) f* (~ ' ) r (~ )  = ~(~ - ~'), (51) 
(x 

the kinetic equation for k = 0, z = i0 may be written as a set of algebraic 
equations 

~, ¢~,c~ =-nS,,, (52) 
3' 

with the matrix elements 

¢ ~  = f d{~ d~' f*(~)q;'(0, ~ '  ;i0)/~(~')F(~'), (53) 

~tJ = f dg  d~ '  f*({~)C'  (0, {~g' ; i0)f~ (6')- (54) C 

A convenient  set of orthonormal functions in velocity space is 

f~(~) = Cklm~tSlk+~,/e(a2~z)Y'7(~), (55) 

with k, ! and m non-negative integers, Stk+~l/2 Sonine polynomials, YT spherical 
harmonics depending on ~ = ~/l~l and C~,~ = 2-(I-I)12qr314[k !/(k + 1 ± l x D l / 2  T 27.l n o r -  

malization~constants. Rotation invariance implies that ~0~ is diagonal in the 
indices l and m. Since the self-diffusion coefficient is according to (48) 
proportional to C ~  with a =/3 = (k, l, m ) =  (0,1, 0) the kinetic equation (52) 
has to be solved for l = 1, m = 0; omitting these indices one may write it as 

¢ kv'C ~"k' = -- n&,k'. (56) 

An approximate solution of this infinite set of equations is obtained by the 
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well-known truncation method. The lowest 1-Sonine approximation gives the 
self-diffusion coefficient as 

D(O) • 2 s = -lVo/q~oo, (57) 

while in the next approximation one gets 

D u) = D(°)/(1 - A ), (58) 

with the correction term 

A = (q~+l)2/(Go~oGo11). (59) 

The evaluation of the lowest-order matrix elements of q~+ proceeds by 
inserting the polynomials /010 = +z and IN0 = (1--l+2)+z into (53). The results 
have the form 

~, = - [i v g/( COp a 2)] q5 ~ ,, (60) 

with COp = (ne2/m) 1/2 the plasma frequency, a = [3/(4~rn)] 113 the average inter- 
particle distance and ff Ik' a dimensionless matrix element. 

For the Boltzmann kernel (20) one obtains by standard manipulations 18) 

2 / a F \  ~/2 
-+ - -  l " "  I ~(1,~) q~B,oo = "rr \ 7r / ' (61) 

- s  __ 1 (3_71./'__) 1/2 [~(~ (1,1) 21"] (1,2)], (62) 
q~B,01 = 'IT 

(),,2 
1 3F - u - u l '  2Ou,2)+~O(t,3) + (63) ~ l , l l  = ~ y h0~Z ' -  ~O(2'2)], 

with F the plasma parameter e2~/(4zra). The collision integrals defined as 

a (t,+, = a - Z f  dx  e-XZxZ+++ f d I 2 ( 1 - c o s  t O)dcr(O,x) /dO (64) 

contain a scattering cross-section d(r/dO that measures the probability of a 
binary collision pl + p2+p~'+ p+ (with solid angle O between pl and p~' and 
with relative velocity IPl-  pzl/m = 2vox) under the influence of the effective 
potential -13 -1 In g(r).  

The matrix elements of the generalized Balescu-Guernsey-Lenard kernel 
follow by inserting (29) into (53). The square of the dielectric function (26) 
that occurs in (29) may be written as 

le(q, q .  p /m + i 0 ) [  2 = [S(k)]-2lD(k, x)12; (65) 

here S(k )  = [1 - nc(k)] -1 is the structure factor depending on the dimension- 
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less Fourier variable k = qa, while D(k,  x)  is defined as 

D(k,  x) = 1 + [S(k) - 1] V'2x~ - i~/~r x e -~2/2 ~ , (66) 

with ~b(x)= f0 ~ dt exp(t 2 -  x 2) Dawson's integral and x = ~ .  p/mvo = ~ .  ~ the 
longitudinal velocity component.  The dimensionless matrix elements that are 
obtained after integration over the transverse components of the velocities 
have the form 

oo oo 

f f 6 e L , , j  = ~ - ' - ~  , - , ,  : dk : dx iD(k,x)l=,, P0(x), (67) 

0 0 

with the polynomials 

Poo(x) = 1, (68) 

Pol(x) = - ]x ~ + 5, ~ (69) 

P u ( x )  - 9 _ 4  2~2± ~ (70) 
- -  2 5 A  - -  5 -~ T 25 ,  

The matrix elements of the generalized Landau memory kernel may be 
obtained from (67) by replacing ID(k, x)l 2 by 1, as follows by comparing (29) 
with (33) and using (65) with S(k )  = h (k ) / c (k ) .  Upon performing the integrals 
over x one gets in this way 

c¢ 

e[,~i = ~ 1~-~] dk k ' [S (k )  - 1]2ci;, (71) 
0 

with the coefficients coo = l, c01 = 3/10, cu = 59/100. 
The explicit evaluation of the matrix elements of the memory kernels 

requires a knowledge of the static properties of the plasma, as given by the 
pair correlation function and the structure function. For moderately dense 
plasmas, with plasma parameter satisfying 0.1 < F < 2 ,  a fair approximation 
to these functions is obtained by solving the hypernetted-chain equation. This 
equation is equivalent to the set of relations ~9'2°) 

g(r)  = e x p [ d s ( r ) - F  + , ( r )J ,  (72) 

c~(r) = g ( r ) -  1 -ds(r ) ,  (73) 

cs(k) - [ (k )  - c~(k), (74) 
d,(k)  = 1 - (3/47r)[c~(k) - / ( k ) ]  

connecting the pair correlation functions c(r) ,  g(r),  the difference function 
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d( r )=g( r ) -1 -c ( r )  and their Fourier transforms (all distances r are 
measured in units a, the Fourier variables k in units a-l). To avoid numerical 
difficulties resulting from the long-range character of the functions both c(r) 
and d(r) have been split into a long-range and a short-range part by writing 
c(r) = Cs(r)- f(r),  d(r)= ds(r)+ f(r). Good choices for the auxiliary function 
/(r)  are [(r) = (F/r) [1 - exp(-ar) ] ,  with a ~ (3F) 1/2 or f(r) = (F/r) erf(ar),  with 

~ 1.1. Both of these functions have been used in the present work. The 
equations (72)-(74) can be solved efficiently by iteration, if use is made of fast 
Fourier transform techniques. Several thousands of points were used in these 
transforms, while the spacings Ar and Ak were chosen in the order of 0.02 
and 0.1, respectively. A few iterations are sufficient to yield values for g(r) 
with an error less than 10 6, at least if a suitable convergence accelerating 
mechanism is employed2°). 

A modification of the HNC equations that leads to slightly improved values 
for the static properties of a one-component plasma has been proposed 
recently2~). In this MHNC approximation the so-called 'bridge diagram' con- 
tributions that are omitted in the HNC equations are taken into account by 
employing the pair correlation functions for a hard-sphere system. In fact, the 
relation (72) is replaced by the equation 

g(r) = exp[ ds(r)-F + f(r) + b(r) ], (75) 

with b(r) following from the exact solution of the Percus-Yevick equation for 
hard spheres22): 

b(r) = CHS(r) + 1 + ln[-crts(r)], r < (8-0) j/3, (76) 
= - gHs(r) + 1 + ln[gHs(r)], r > (8r/) 1/3. (77) 

The packing fraction ~ must be considered as an adjustable parameter chosen 
so as to yield an optimal fit to the Monte Carlo data23'24). For F = I and F = 2 
the values "O = 0.035 and 77 = 0.075, respectively, have been chosen, while for 
F < 1 the available Monte Carlo data are compatible with the pure HNC 
equation ( r /=  0). 

The integrals O "s) (64) that describe binary collisions in the effective 
potential -/3 In g(r) have been evaluated by the usual methods25). The poten- 
tial is determined from its values at a discrete set of points (obtained by 
solving the HNC or MHNC equations) with the help of Aitken's interpolation 
method. For small F(F <~ 1) the effective potential turns out to be a mono- 
tonically decreasing function of the separation r. When F increases the 
potential starts oscillating; for F~<2 the amplitude of these oscillations is 
small, however, so that the potential may be assumed to vanish for all r > r0, with 
r0 the first zero of the potential. For higher F this approximation can not be 
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justified. The evaluation of the collision integrals then becomes a complicated 
numerical task, especially when the number of oscillations in the potential gets 
large. We have limited ourselves therefore to the study of moderately dense 
plasmas with F ~< 2. 

For small F the effective pair potential may be approximated by its 
Debye-Hiickel form (21), which reads in the present units -/3 -1 In g = (F/r) 
exp[-(3F)~/Zr]. The collision integrals for screened potentials of this type are 
available in the literature26); to facilitate a comparison they have been recal- 
culated for a number of F values. 

The matrix elements ~ ~,is of the Boltzmann-type kernel that follow through 
(61)-(63) from the collision integrals in the (modified) HNC and the Debye- 
Hiickel approximation have been compiled in table I. It turns out that the 
difference between the HNC and MHNC values is always less than a few 
percent; the HNC and DH matrix elements differ only 1% for F = 0.1, but 
already 15% for F = 0.5. For F = 0.1 and 0.2 the table also gives the ap- 
proximate values for 6~,ij"that follow ~2'~3) from the leading terms of the 
Debye-Hiickel collision integrals for small F; this ADH approximation to the 
matrix elements has the form 

~.is = /-5/2[_ cij l n ( X / 3 F  3/2) - dijl, (78) 

Table I 
Matrix elements of the generalized Boltzmann kernel ~ and the generalized 
Balescu--Guernsey-Lenard kernel ~BGL, as obtained from the static pair correlation 
function in the hypernetted-chain approximation (HNC), the modified hypernetted- 
chain approximation (MHNC), the Debye-Hiickel theory (DH) or the approximate 
Debye-Hiickel theory (ADH) 

F = 0.1 HNC 0.00815 0.00185 0.00482 0.00632 0.00152 0.00423 
DH 0.00804 0.00182 0.00476 0.00805 0.00201 0.00528 
ADH 0.00815 0.00183 0.00481 0.00805 0.00201 0.00528 

F = 0 . 2  HNC 0.0304 0.00615 0.0180 0.0230 0.00497 0.0162 
DH 0.0291 0.00585 0.0173 0.0276 0.00603 0.0192 
ADH 0.0279 0.00487 0.0165 0.0273 0.00590 0.0191 

F = 1 HNC 0.402 0.0465 0.240 0.311 0.0344 0.276 
MHNC 0.404 0.0464 0.242 0.312 0.0346 0.277 

F = 2 HNC 0.982 0.0718 0.590 0.804 0.0395 0.822 
MHNC 1.00 0.0708 0.601 0.820 0.0408 0.836 

F = 0.5 HNC 0.145 0.0227 0.0861 0.109 0.0179 0.0856 
DH 0.125 0.0193 0.0746 0.0691 0.00470 0.0648 
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with coefficients cij defined below (71), and with d0o = 0.2681, d0~ = 0.2804 and 
dn = 0.1582. As expected these approximate Debye-Hiickel values are quite 
accurate for F = 0.1, but are less reliable already for F = 0.2. 

The matrix elements of the generalized Balescu-Guernsey-Lenard kernel 
(67) may be evaluated by numerical integration once the values of the 
structure function are known, either from the modified HNC equation or in 
the Debye-Hiickel approximation (see table I). When the latter values are 
employed, so that S ( k ) =  kZ/(k2+ 3F), the double integral diverges for large 
k; as a cut-off one may take k0 = F -~, for F < 1. The integral over k can then 
be carried out analytically, since one has 

F- I  

f k3[S(k)  - 1] 2 = ~,~2, [(1/9)  F-6  + (2/3) F-3A + A2 + B2.] 
j dk I--D~,~-~I ~ 41 m[ A--~-~ 

J 
0 

A [ . [(1/3)F -3 + A )  
~[arctgk- ~ - a rc tg(A)] ,  (79) 2 

with the abbreviations 

A ( x )  = 1 - V'2x e-X2/2@ [ x__~ (80) 

B ( x )  = ( 2 )  mx e-:/2" (81) 

For small F only the leading terms of the expansion in powers of F need be 
retained in (79). A numerical evaluation of the integral over x then gives 

q~ BGL,ij ~--" F 5/2 - cij In F 3/~) - d ij , (82) 

the coefficients cij have been defined below (71), while the numerical in- 
tegrations yield d~0 = 0.3008, d~ = 0.2221, and d~ = 0.00624. It should be 
remarked here that the lowest-order matrix elements of the ordinary Balescu- 
Guernsey-Lenard kernel (which is equivalent to the generalized BGL kernel 
in the Debye-Hfickel approximation) have been evaluated previously along 
similar lines27); the leading terms in the expansions are not treated con- 
sistently, however, in these papers, so that the results for ~ do not agree 
with those given in (82). 

The generalized Landau kernel leads to a set of matrix elements (71) that 
are all proportional to a single integral over the structure function $(k) .  The 
numerical evaluation of this integral is quite straightforward, if the HNC 
values for S(k)  are inserted (see table II). The use of the Debye-Hfickel 
structure function gives rise to an integral that can be performed analytically; 
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Table II 
Matrix elements of the generalized Landau kernel ff[ and the modified Balescu- 
Guernsey-Lenard kernel ff~vB 

43 

- s  - s  - s  -s - s  - s  
~0 L,OO ~L ,01  ~0 L,II ~0 WB,00 ~ WB,01 ~O WB,I1 

F = 0.1 HNC 0.00577 0.00173 0.00340 0.00822 0.00208 0.00537 
DH 0.00744 0.00223 0.00439 0.00805 0.00201 0.00528 
ADH 0.00743 0.00223 0.00438 0.00805 0.00201 0.00528 

F =0.2 HNC 0.0203 0.00608 0.0120 0.0321 0.00757 0.0217 
DH 0.0243 0.00728 0.0143 0.0276 0.00603 0.0192 
ADH 0.0239 0.00716 0.0141 0.0273 0.00590 0.0191 

F = 0.5 HNC 0.0894 0.0268 0.0527 0.170 0.0340 0.124 
DH 0.0494 0.0148 0.0292 0.0691 0.00470 0.0648 

F = 1 HNC 0.239 0.0718 0.141 0.528 0.0841 0.422 
MHNC 0.241 0.0722 0.142 0.528 0.0842 0.422 

F = 2 HNC 0.581 0.174 0.343 1.47 0.150 1.33 
MHNC 0.593 0.178 0.350 1.47 0.148 1.34 

when F -1 is chosen for the upper limit of the integral, as before, one gets 

~ , i j  = ½ F 512 In 1 + ~ 1 + F 3 cir. (83) 

For small values of F one finds, on a par with (78) and (82) 

~ L,O = F 5/2 [ - l n ( V 3 P / 2 )  - ½] cir. (84) 

The matrix elements of the composite kernel follow directly from those of 
its constituents, as given in the tables I and II. For F ~ 1 an approximate 
analytic formula is obtained from (78), (82) and (84): 

- s  = , ,  ( 8 5 )  q~c,ij F 5/2 - c i j  In F 3/2) - dij , 

with d~ = 0.0688, d'o'~ = 0.3525 and d'fi =-0.1306.  
For comparison the matrix elements of the alternative kernel ~n3 (47) have 

been evaluated as well. This kernel is a modified form of the generalized 
Balescu-Guernsey-Lenard kernel ~ c L  (29);.its matrix elements can be obtained 
from (67) by inserting an extra factor - 3 ( F / k  z) S ( k ) l [ S ( k )  - 1] in the integrand. 
Since this factor reduces to 1 in the Debye-Hiickel approximation the matrix 
elements of the two kernels coincide in that case (see table II). 

The self-diffusion coefficients that follow from the various memory kernels 
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Table III 
Self-diffusion coefficients (in units topa 2) for moderately dense plasmas, with 
0.1 < F <  2, as found from a number of alternative memory kernels in the 
l-Sonine- and 2-Sonine-polynomial approximation (first and second line of 
each entry, respectively) 

Dc DaGL Dw8 Da DL 

F = 0 . 1  HNC 114.9 158.2 121.6 122.6 173.3 
121.5 173.1 134.8 134.4 204.5 

DH 115.6 124.2 124.2 124.4 134.4 
122.0 137.2 137.2 136.2 158.6 

ADH 114.1 124.3 124.3 122.7 134.6 
120.3 137.3 137.3 134.2 158.8 

F = 0 . 2  HNC 30.1 43.4 31.2 32.9 49.3 
31.2 46.5 34.0 35.3 58.2 

DH 30.8 36.2 36.2 34.3 41.2 
31.7 38.9 38.9 36.8 48.6 

ADH 31.9 36.6 36.6 35.8 41.9 
32.5 39.2 3912 37.8 49.5 

F = 0 . 5  HNC 6.10 9.20 5.90 6.92 11.2 
6.16 9.53 6.24 7.22 13.2 

DH 6.91 14.5 14.5 7.99 20.2 
6.94 14.5 14.5 8.33 23.9 

F = 1 HNC 2.11 3.22 1.90 2.49 4.18 
2.11 3.26 1.96 2.55 4.93 

MHNC 2. I0 3.20 1.89 2.48 4.16 
2.10 3.25 1.96 2.53 4.91 

F = 2 HNC 0.830 1.24 0.681 1.02 1.72 
0.833 1.25 0.689 1.03 2.03 

MHNC 0.815 1.22 0.680 1.00 1.69 
0.818 1.22 0.687 1.01 1.99 

with the use of (57)-(59) have been collected in table III. All kernels predict 
that the self-diffusion coefficient diminishes rapidly with increasing F. In 
particular, for F ~ 1 one finds from (78), (82), (84) or (85) that D is propor- 
tional to F-51:/(ln F). Although the qualitative behaviour of the self-diffusion 
coefficient is the same for all kernels the numerical values for D are distinct, 
even for low values of F. 

Let us consider first the self-diffusion coefficients Dc following from the 
use of the composite kernel which includes both the effects of close binary 
collisions and of collective interactions in the plasma. For F = 0.1 the values 
that follow by using the HNC pair correlation function differ by less than 1% 
from those obtained by applying the Debye-Hiickel approximation (or its 
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crude form ADH). When F increases the differences become more 
pronounced; in particular, for F--0.5 the Debye-Hiickel approximation is no 
longer reliable. At F = 1 or 2 the modification of the hypernetted-chain 
equations proposed recently is found to lead to self-diffusion coefficients that 
do not differ significantly from the pure HNC results. 

The use of higher Sonine polynomials in the evaluation of the self-diffusion 
coefficient on the basis of the composite kernel turns out to give rise to 
quickly converging results. The largest differences between D t°~ and D tl) occur 
for F = 0.1. From the leading terms in (85) for F ~ 1 it follows that the first 
two approximations will eventually differ by a factor 1.18. 

A comparison of the calculated self-diffusion coefficients with experimental 
data is possible only for iv = 1, since most results of the molecular dynamics 
experiments refer to plasmas of a higher density28'29). The most recent 
experimental value 29) for F = 1, viz D = 2.05, compares favourably with the 
result D = 2.10 found here. 

The self-diffusion coefficient in moderately dense (and dense) plasmas has 
been studied previously on the basis of the generalized Balescu-Guernsey- 
Lenard kernel ~0BGL and its modified form q~WB6'7). From the table it is seen that 
the self-diffusion coefficients that follow from the generalized BGL kernel are 
systematically too high by a factor of the order of 1.5. This peculiarity has 
been noted already in ref. 6. It was conjectured there that the inclusion of 
higher order Sonine polynomials might improve the results; the present 
calculation shows, however, that this is not the case. The discrepancy should 
be ascribed in fact to the incorrect treatment of the close binary collision in 
the BGL kernel. Another peculiar feature of the generalized Balescu-Guern- 
sey-Lenard kernel is that the ensuing self-diffusion coefficients are rather 
sensitive to the use of the Debye-Hiickel approximation, even for small Iv; 
apparently the application of a cutoff that is necessary to render the Debye- 
Hiickel integral finite leads to a rather drastic change in D already for iv -- 0.1. 

The values of the self-diffusion coefficient that follow from the modified 
kernel q~wa are much nearer to those of the composite kernel. The con- 
vergence of the polynomial expansion turns out to be somewhat slower for 
the WB kernel. In particular, it is found that for iv = 0.1 the lowest-order 
approximation is changed by more than 10% when a second Sonine poly- 
nomial is included. The resulting values are considerably higher in this case 
than those following from q~c. For F = 1 the self-diffusion coefficient Dwa = 
1.96 as calculated here is a good approximation to the molecular-dynamics 
result D -- 2.05, although the agreement seems to be somewhat less convinc- 
ing than for the composite kernel. It should be remarked that in a recent 
review 3°) a value D = 2.04 is cited in connexion with the kernel q~wa; the 
reason for the discrepancy is not clear. 
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The discussion of the results for the other two kernels, viz. the generalized 
Boltzmann and the generalized Landau kernels, can be brief. Neither of these 
yield quantitatively correct values of the self-diffusion coefficient for a 
moderately dense plasma, as a comparison with the molecular-dynamics result 
for F = 1 shows; the Boltzmann value is more than 20% too high, the Landau 
value even 140%. For a dilute plasma, with F = 0.1, the Boltzmann diffusion 
coefficient is still 10% higher than that of the composite kernel; the Landau-type 
kernel remains completely unsatisfactory even in that regime. The neglect of 
collective plasma interactions in the calculation of the self-diffusion coefficient is 
hence unjustified. (Of course both kernels eventually give correct values for D in 
the limit of a vanishing plasma parameter.) 

The above discussion of the numerical results leads to the conclusion that a 
kinetic description of a moderately dense plasma yields reliable values for the 
self-diffusion coefficient if both the close binary collisions and the collective 
interactions in the plasma are taken into account. The composite kernel ~pc 
introduced in this paper takes care of these processes through a unification of 
generalized forms of the Boltzmann and Balescu-Guernsey-Lenard kernels. It 
has the additional advantage of guaranteeing the correct short-time behaviour of 
the time correlation function, since it satisfies the first-order sum rule by virtue of 
the well-established approximate validity of the hypernetted-chain equation for 
the static distribution functions in a plasma. 
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