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The collective mode spectrum of the magnetized ionic mixture consisting of s 
components is studied by starting from the microscopic balance equations and 
the fluctuation formulas for the microscopic densities. Apart from a heat mode 
and s -  1 diffusion modes with frequencies of second order in the wavenumber, 
four modes with complex finite frequencies for vanishing wavenumber are found. 
If the mixture consist of particles with equal ratios of charge and mass, these 
four modes become similar to the gyroplasmon modes of the magnetized one- 
component plasma of which the frequencies are real in lowest order in the 
wavenumber. Green Kubo relations are derived for the transport coefficients 
which appear in the frequencies of the heat mode and the diffusion modes. 
The long-time behavior of the integrands of the Green Kubo expressions is 
evaluated with the help of mode-coupling theory. The static transport coef- 
ficients are found to be finite unless the mixture consists of species with equal 
ratios of charge and mass. It is concluded that the presence of species with dif- 
ferent charge-mass ratios is essential for the validity of magnetohydrodynamics 
for an ionic mixture. 

KEY WORDS: Multicomponent ionic mixture; magnetic field; collective 
modes; mode coupling; long-time tails. 

1. I N T R O D U C T I O N  

In  recent  years  a la rge  n u m b e r  of  pape r s  h a v e  been  p u b l i s h e d  in wh ich  the  

d y n a m i c  p rope r t i e s  of  c lass ical  C o u l o m b  sys tems were  s tudied.  (1 3) T h e  

sys tem wh ich  is i nves t i ga t ed  m o s t  f r equen t ly  is the o n e - c o m p o n e n t  p la sma ,  

wh ich  cons is t s  of  iden t i ca l  c h a r g e d  par t ic les  i m m e r s e d  in a neu t r a l i z ing  

b a c k g r o u n d .  W i t h  the  he lp  o f  k ine t i c  theory ,  the co l lec t ive  m o d e  spec t ra  of  
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the one-component plasma ~4~ and the one-component plasma in a uniform 
magnetic field (5) have been studied. The results of these studies have been 
corroborated by a different method to derive the mode spectra, which 
starts from the microscopic balance equations for the particle density, the 
momentum density, and the energy density. (6 8) 

The damping of the collective modes is determined by the transport 
properties of the plasma. These transport properties can be calculated from 
Green-Kubo-type expressions that contain integrals over time correlation 
functions. To evaluate the long-time behavior of the Green-Kubo 
integrands for the transport coefficients, mode-coupling theory has been 
used, both for the unmagnetized (6) and for the magnetized one-component 
plasma. (9'1~ In this way interesting results have been found for the 
Green-Kubo integrand of the heat conductivity. In the case of the 
unmagnetized one-component plasma the integrand decays, for long times, 
like t 1/2 cos(COp+ O), with COp the plasma frequency. This long-time tail 
leads to a divergence in the dynamic heat conductivity coefficient 2(o)) for 
the frequency CO=COp. For the magnetized one-component plasma the 
Green-Kubo integrands for the longitudinal and the transverse heat con- 
ductivity coefficients both decay like t-1/2. Consequently, the static heat 
conductivity coefficients are divergent. The transport coefficients have also 
been studied by means of kinetic theory. The divergences of the dynamic 
heat conductivity for the unmagnetized plasma and of the static heat 
conductivities for the magnetized plasma, found with the help of mode- 
coupling theory, have been confirmed by this method. (11'12) From the. 
divergence of the static heat conductivity for the one-component plasma in 
a magnetic field it can be concluded that magnetohydrodynamics is not 
well defined for this system. 

In order to determine whether the divergence of the heat conductivity 
is an artefact of the adopted model, i.e., the magnetized one-component 
plasma, we will investigate in the following the properties of a more general 
model system, viz. an ionic mixture with several particle species in a 
magnetic field. Our aim is to establish formal expressions of Green-Kubo 
type for the dynamic heat conductivity and diffusion coefficients of a 
magnetized ionic mixture, and to study the static limit of these expressions. 

The model adopted in this paper is the classical multicomponent ionic 
mixture. It consists of s species of particles with charges e~ and masses mo 
(a = 1,..., s). The particles obey the classical equations of motion and move 
in an inert, neutralizing background. The interaction between the particles 
and with the background is purely electrostatic. The external magnetic field 
is static and uniform in space. 

After reviewing the balance equations for the magnetized ionic mixture 
in Section 2, we derive the dispersion relation, which yields the collective 
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mode frequencies, and the modes in lowest order in the wavenumber k in 
Section 3. The zeroth-order dispersion relation is also investigated for an 
ionic mixture consisting of species with equal charge-mass ratios and for 
the unmagnetized ionic mixture. In Section 4 the frequencies of the heat 
mode and the diffusion modes are determined in second order in k. 
Green-Kubo-type expressions are derived for the transport coefficients 
which appear in these frequencies. Finally, Section 5 is devoted to the 
evaluation of the long-time behavior of the integrands of the dynamic 
coefficients occurring in the Green-Kubo expressions. 

2. B A L A N C E  E Q U A T I O N S  

In this section the balance equations for the microscopic partial par- 
ticle density, the total momentum density, and the energy density for a 
multicomponent ionic mixture in a uniform magnetic field are given. These 
balance equations will be used to derive the collective modes of the system 
in the next section. 

The balance equation for the Fourier transform of the partial particle 
density n~(k) of the species with label ~ = 1,..., s, 

n~(k) = ~ e x p ( - i k ,  r~)  (2.1) 
c~ 

with k the wave vector and r~  the position of particle c~ of component ~, 
reads 

k 
Ln,,(k) . . . .  g~,(k) (2.2) 

ma 

The Liouville operator in phase space L determines the time derivative 
of an arbitrary function F through F =  iLF. 

The partial momentum density of species o- in Fourier space is given 
by 

g~(k) = ~ p~ e x p ( - i k ,  r~)  (2.3) 

with p~ the momentum of particle e of component or. The balance equa- 
tion for the total momentum density g (k)=  Z~ g,(k) can be written as 

k 
Lg(k) = - k .  "c - q~ ~5 q~(k) - i ~ co,,,g~(k) A B (2.4) 

o- 

It contains a pressure tensor r, which is finite in the limit of small 
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wavenumber k. The explicit expression for r is not needed here. Further- 
more, the momentum balance equation contains a term which is propor- 
tional to the electric field generated by the charge density fluctuation 
q~(k) = Z~ eono(k). Here q, = Z~ e,,n,~ is the (equilibrium) charge density, 
with n~ the (equilibrium) particle density of species a. The last term in (2.4) 
accounts for the Lorentz force due to the uniform magnetic field, which 
points in the direction of the unit vector B. The cyclotron frequency for a 
particle of component ~r in a magnetic field with strength B is given by 
coB,~=e,,B/rn,,c. For the unmagnetized ionic mixture this term is absent. 
We remark that only the total momentum density satisfies a simple balance 
equation. 

The energy density consists of a kinetic and a potential part: 

with 

e(k) = g k i n ( k )  + g P ~  

gkin(k) = ~ 2m~ p]~ exp( - i k "  r,~) 

eP~ = 2V1 ~ Z' 
q ( ~ 0 ,  ~ k )  al eLI, ~r2 c~2 

• exp[iq �9 ( r ~ , -  ro2~2 ) - ik �9 r<~ ]  

(2.5) 

q. (k - q) 
er q2(k _ q)2 

(2.6) 

(2.7) 

The prime on the summation symbol denotes the restriction (~iO~i# ffjO~j 
(i#j).  The balance equation for the energy density reads 

Le(k) = -k - j~ (k )  (2.8) 

The energy-current density j~(k) is the sum of a kinetic and a potential 
part: 

�9 "kin j~(k) =,It (k) +jp~ (2.9) 

' k in 'k)  k x~ P~ p 2  e x p ( - i k . r ~ )  (2.10) 
k'J~ t = "~m--72m---~ 

k "pot k 2 '  e~ler P~l~ 
"J~ (k ) - -V"  2~ ~ m~m k 2 exp(-ik 'r~2~2) 

q. ( k - q ) ( k - q ) ~ . P ~ t ~  
( k -  q)2 J q2 

with 

1 ~ '  e~t eo2 I 
+ ~  2 m~ q -  

q ( # 0 ,  ~-k) ~r1~1, a2~2 

x exp [iq" (r~1~1 -- r~2~2) - ik- r~1~1 ] (2.11 ) 
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The balance equations can be used to derive the fluctuation formulas 
for the densities and the currents. The fluctuation formulas which are 
needed in the derivation of the collective mode spectrum of the 
(magnetized) multicomponent ionic mixture are given in Appendix A. 

3. C O L L E C T I V E  M O D E S  

In the following we will study the long-living modes of a magnetized 
multicomponent ionic mixture. These so-called collective modes are charac- 
terized by frequencies of which the imaginary part is either negative and 
close to zero or vanishing in the long-wavelength limit. An ionic mixture 
consisting of s components will have s + 4 collective modes, since the 
number of collective modes equals the number of conserved microscopic 
densities. The collective modes, denoted by ai(k), are particular inde- 
pendent linear combinations of the conserved microscopic densities: the 
partial particle densities n~(k), the total momentum density g(k), and the 
energy density e(k). The time evolution of the collective mode ai(k) is given 
by 

(z + L) ai(k, z) = ai(k ) (3.1) 

with ai(k, z) the Laplace transform of ai(k, t) 

a i ( k , z )=  - i  dteiZtai(k, t), I m z > 0  (3.2) 

A method to derive the collective modes from the balance equations 
and the fluctuation formulas, by using projection operator techniques, is 
given in a recent paper. (8) With the help of this method the frequencies zi 
of the collective modes ai(k) are found as the eigenfrequencies of the 
frequency matrix f2 for small wavenumber. The elements of this matrix are 

~2~j (k, z) = f2 ~)(k, z) + s z) (3.3) 

with the direct and the indirect parts given by 

(1) 1 
f2 0. (k, z )=  - - ~  (ti*(k) Laj(k))  

(2) 1 s (k, z ) = ~  (6*(k) LQ - -  
1 

z +  QLQ QLaj(k) ) 

(3.4) 

(3.5) 
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The angle brackets denote an equilibrium ensemble average. The adjoints 
d~(k) are defined by 

1 
(h*(k) a j (k))  = 6~j (3.6) 

The projection operator Q is the complement of a projection operator P 
which projects an arbitrary function in phase space onto a space spanned 
by the s + 4 conserved microscopic densities. As a basis set of independent 
linear combinations of the conserved microscopic densities we choose 
the total charge density t~/2k-~q~(k), the total momentum density 
(t~/m~) ~/2 g(k), the partial particle densities n~(k) with a = 2  ..... s, and the 
energy density e(k): 

ai(k) e q~(k), \rn-~/ g(k), nz(k),..., n,(k), e(k) , i =  0 ..... s + 3 

(3.7) 

The charge density is divided by the wavenumber since the fluctuation for- 
mulas involving the charge density are proportional to k 2, as a conse- 
quence of the strong suppression of charge fluctuations by the Coulomb 
interaction. For convenience we have multiplied k-lq~(k) and g(k) by nor- 
malization factors. Here, /~ is 1/k~ T, with kB Boltzmann's constant and T 
the temperature. Furthermore, mv--Zom~n~ is the (equilibrium) total 
mass density. 

With the help of the balance equations of the previous section and the 
fluctuation formulas given in Appendix A, one can determine the elements 
of the frequency matrix with respect to the basis set (3.7). The adjoints of 
the basis set (3.7) in lowest order in k follow from (3.6). The only matrix 
elements of the direct part s / which differ from zero for vanishing 

/J 

wavenumber are 

f21~)(k, z) = f2toli)(k, z) = cop/~i, i =  1, 2, 3 

f2!~)~k z) = --icoBSijkBk, i, j = 1, 2, 3 

(3.8) 

(3.9) 

with ~ = k/k a unit vector in the direction of the wave vector. The plasma 
frequency is given by cop = qvmy 1/2. Furthermore, the collective cyclotron 
frequency is coB= q~B/mvc. 

In contrast with the indirect part of the frequency matrix for the 
(unmagnetized and magnetized) one-component plasma, (s) the matrix f2 (2) 
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for a multicomponent ionic mixture contains elements which are of order 
k ~ since one has in leading order in k 

QL-s -~ .  e~ g ~ ( k ) -  q--5~ g(k) (3.10) 
m a  my  

QLg(k)= - i I ~  co,~go(k)-coBg(k)] A B (3.11) 

From (3.10) and (3.11) we conclude that the matrix elements f2! 2~ with t2 

i, j = 0, 1, 2 are of order k ~ if we choose the direction of the magnetic field 
parallel to the positive z axis. With the help of (3.11) one finds that the 
matrix elements f2~ 2) with i, j = 1, 2 are independent of the wave vector k, 
at least in lowest order in k: 

(2) B)  = a(z) eijkBk f2/j (k, z, (3.12) 

where the dependence of the matrix element on B has been made explicit. 
The coefficient a is a function of the frequency z and the magnetic field 
strength B. The dependence on the latter is suppressed in (3.12). By using 
the hermitian character of the Liouville operator it can be shown that the 
frequency-dependent coefficient a(z) satisfies the relation 

a(z) = - [ a ( - z * ) ] *  (3.13) 

for Im z > 0. By inspection of (3.10) and (3.11) it follows that one can write 
for the matrix elements o (2) and o(2) with i = i, 2, 3, in zeroth order in k, ~ i 0  ~ 0 i  

f2 ~2~L B)=b(z)[c ,+b'(z)(~ /x f~)~+b"(z)B~'f3 (3 .14)  iO \ ~  Z~ 

Qo~(2)(k, z, B) = b(z) 7ci- b'(z)(~ A ~)i + b"(z) 6 ~ .  B (3.15) 

The coefficient b(z) obeys the relation 

b(z) = [ b ( - z * ) ] *  (3.16) 

with similar relations for b'(z) and b"(z). Since QLgz(k) = 0 in zeroth order 
in the wavenumber, the matrix elements o (2) and 0(2) vanish in order k ~ 

~ 3 0  ~ 0 3  

so that one ends up with 

f212o)(k, z, B) = b(z) [c i + b'(z)(~ /x B)i (3.17) 

( 2 )  f20i (k, z, B ) =  b ( z ) k i - b ' ( z ) ( ~ / x  B)i (3.18) 
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for i =  1, 2. Finally, due to (3.10), the matrix element ~o0~ can be written 
in lowest order in k as 

ff~ 2)/It B) = c(z) (3.19) 00 \="  Z, 

with 

c(z) = -- [c( -- z*)]  * (3.20) 

The eigenvalue equation for the frequency matrix can now be 
evaluated in order k ~ One finds 

zSE [ z  2 - z c ( z )  2 ~ -copkll]{Z + [-icoB + a(z)] 2} 

- z ( z {  [co, + b(z)] ~ -  Eb'(z)] ~} 

- 2[ - - icoB+a(z)][cop+b(z)]  b ' ( z ) ) / ~ ]  = 0  (3.21) 

where /~tl = k ' ~  and ~2 k •  For a magnetized ionic mixture 
consisting of particle species with equal charge mass ratio, i.e., with 
constant e~/m~ for all o, all matrix elements f2~ 2) vanish in order k ~ as can 
be seen by inspection of (3.10) and (3.11). We call this a "well-poised" ionic 
mixture. For such a system the eigenvalue equation for the frequency 
matrix becomes 

2 2 ^2 zS[z 4 _ (co2 + co2) z 2 + COp COBklt ] = 0 (3.22) 

This equation yields s modes with zero frequency for vanishing wavenum- 
ber and four "gyroplasmon" modes with real frequencies. Hence, the mode 
spectrum of this system is, apart from extra zero-frequency modes, the same 
as the mode spectrum for the magnetized one-component plasma. (8) The 
dispersion relation (3.21) has s zero-frequency solutions and furthermore a 
set of solutions which generally have a real and an imaginary part. Due to 
the four real solutions of (3.22), we expect that (3.21) has four solutions 
which lie just below the real axis and possibly other solutions with a large 
negative imaginary part. Since we are only interested in the long-living 
collective modes of the magnetized multicomponent ionic mixture, we will 
concentrate on the four solutions with small imaginary part. They depend 
on the orientation of the wave vector: zi = z i (/~H) = z~(/~lt ) + iz"(/~tl ) with z 
and z7 real. With (3.13), (3.16), and (3.20) one can easily prove that, when 
z i= z; + iz~' is a solution of (3.21), z i= - z ;  + iz;' is also a solution. Further- 
more, the imaginary parts of all solutions are even in/~ll, whereas the real 
parts may be even or odd in /~tt- By requiring that the four solutions of 
(3.21) should evolve continuously from the four gyroplasmon mode fre- 
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quencies of the well-poised ionic mixture, we can write the four generalized 
gyroplasmon mode frequencies as 

z;~p=pz'a+iz'~, 2 =  _+1, p =  _+1 (3.23) 

with z;~ and z2 real. They satisfy the relations 

z L = -z~,_p (3.24) 

z'(/~lt) = 2zi( - kll) (3.25) 

z~'(/~lp ) = z;~(-/~ll) (3.26) 

The modes ai(k) are the eigenvectors of the frequency matrix s that 
correspond to the mode frequencies z i. The four generalized gyroplasmon 
modes of the magnetized multicomponent ionic mixture are, in lowest 
order in k, 

axe(k) = T q~(k) + vj.p(k) �9 g(k) (3.27) 

with the vector V~p(k) given by 

1 
v;.p(k) = c~ Ell + z~, z20+ [--icoB+a(z;.o)] 2 

x ({zxpEco p + b(zxp)] - E - i t08  + a(Zxp)] b'(z;.p)} [ •  

+ {z~pb'(z;~p)+ [-i~o,+a(z;.,)][Ogp+b(z~.p)]} ~ Al]) (3.28) 

where ~• = [--/~liB. The adjoints d;.p(k) have the form 

axe(k ) = N~p L ~ -  q~(k) + - -  %.p(k). g(k) (3.29) 
\m~/ 

with 

%(k) =fH,~LI + f - , ~ •  + L , ~  A (3.30) 

The normalization constant N;.p and the coefficients f~,;p, with i =  l I, L, t, 
can be determined from the orthonormality relation (3.6). We remark that, 
contrary to the case of the (magnetized) one-component plasma, the modes 
a;~p(k) differ from their adjoints dxp(k), even in lowest order in the 
wavenumber. The s modes ai(k) (i = 1 ..... s) with zero frequency in order k ~ 
are degenerate. They (and their adjoints) are linear combinations of the 
partial particle densities n~(k) (a # 1) and the energy density e(k). 
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Finally, we discuss the mode spectrum for the unmagnetized multi- 
component ionic mixture. The dispersion relation for this system has been 
studied before by means of related microscopic methods. (13-15) For the 
unmagnetized multicomponent ionic mixture the coefficients a(z), b(z), and 
b'(z) vanish because QLg(k) is of order k 1 for zero magnetic field. The 
dispersion relation for this system is 

z s + 2 [z 2 _ zc(z) - COp z ] = 0 (3.31 ) 

The two zero-frequency solutions which show up here in addition to those 
occurring in (3.21) correspond to the two transverse viscous modes: 

a,~,(k) = C~,l(k ) = -- ~ A g(k) (3.32) 
\ m y /  

- -  ~ A [~ A g(k)] (3.33) % ( k )  = a .2(k)  = \ m y /  

Apart from the s + 2 zero-frequency modes, there are two modes with a 
finite complex frequency zp(p= _+1) for vanishing wavenumber. With 
(3.20) it can be shown that, when z p = p z ' + i z "  is a solution of (3.31), 
z_p = - p z '  + iz" is also a solution. The corresponding modes are 

a p ( k ) = ~ - q v ( k ) +  ~ zo "g(k) (3.34) 

with the adjoints 

Z _p - -  Zp COp 

For the we11-poised unmagnetized ionic mixture the coefficient c(z) 
vanishes and one finds two oscillating plasmon modes with frequencies 
Z ~ -'~ (Dp.  

An alternative method to derive the mode spectrum is based on a 
formal kinetic equation for the one-particle time correlation function in 
phase space. In this way the mode spectrum has been derived for the 
unmagnetized and the magnetized one-component plasma. (4'5) The kinetic 
method can also be used to study the dispersion relation for the ionic 
mixture. For  the unmagnetized binary ionic mixture this has been done by 
Baus. O6) With the help of projection operator techniques one derives a 
formal kinetic equation for the one-particle time correlation function which 
is the equilibrium ensemble average of the product of the initial phase- 
spase density of species a and the phase-space density of species a' at 
time t. The kinetic equation contains a kernel X which consists of a free- 
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streaming term, a mean-field term, and a collision term. A matrix G,v is 
formed by matrix elements of S with respect to a "hydrodynamic" subspace 
in momentum space. This matrix satisfies an equation which contains a 
frequency matrix g2~v. The collective mode frequencies are found as the 
eigenvalues of the frequency matrix. 

For the one-component plasma the hydrodynamic subspace consists of 
the five functions in momentum space corresponding to the particle den- 
sity, the momentum density, and the kinetic energy density. To derive the 
dispersion relation for the binary ionic mixture, a hydrodynamic subspace 
has been used which consists of the ten functions corresponding to the 
particle density, the momentum density, and the kinetic energy density for 
each species separately. (16) The dispersion relation obtained by using this 
hydrodynamic subspace reads, in lowest order in the wavenumber, 

z ( z  2 -- f2 2) + i v ( z ) ( z  2 -- c@) = 0 (3.36) 

where factors which yield the four zero-frequency modes, i.e., the heat 
mode, the diffusion mode, and the two viscous modes, and relaxation 
modes have been left out. Here, the "mean-field" frequency s is given by 
f 2 2 = Z ~ n o e Z / m ~  and v ( z )  is a frequency-dependent coefficient. For the 
well-poised binary ionic mixture one has ~p ~--COp and (3.36) becomes 

[ z  + iv(z )  ] ( z  2 -- oo2) = 0 (3.37) 

This dispersion relation yields the two plasmon modes and a relaxation 
mode. Since the solutions of (3.36) and (3.37) should be connected con- 
tinuously, the dispersion relation (3.36) yields two generalized plasmon 
modes and a relaxation mode. The appearance of a relaxation mode in 
(3.36) is due to the fact that the hydrodynamic subspace contains the 
partial momentum densities, for which no simple balance equations are 
available. It should be noted that it is also possible to derive a dispersion 
relation for the binary ionic mixture by using a hydrodynamic subspace 
which consists of only the partial particle densities, the total momentum 
density, and the kinetic energy density. In this way one obtains a dispersion 
relation which has the same form as (3.31). 

The dispersion relation for the unmagnetized binary ionic mixture 
has also been studied by starting from the linearized hydrodynamic 
equations. (17-19) The appearance of two generalized plasmon modes in the 
mode spectrum is confirmed by this method. 

The modes and the mode frequencies of the magnetized and the 
unmagnetized multicomponent ionic mixture have now been derived in 
lowest order in the wavenumber. In the following the frequencies of the 
heat mode and the diffusion modes will be studied in second order in k. 
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4. F R E Q U E N C I E S  OF THE HEAT A N D  D I F F U S I O N  M O D E S  

The heat mode and the diffusion modes of a magnetized ionic mixture 
have zero frequency for vanishing wavenumber. In this section our aim is 
to derive the frequencies of the heat mode and the diffusion modes up 
to second order in the wavenumber k. We will find expressions of 
Green Kubo type for the transport  coefficients which appear in the 
frequencies. 

In order to calculate the frequencies of the heat mode and the diffusion 
modes in order k 2, one needs a basis set in terms of which the heat mode 
and the diffusion modes in first order in k can be built up. We start by 
writing this basis set in order k ~ in the general form 

~(q) q~(k) +cJg~.g(k)+ ~ cJ~ (4.1) aj(k) = c~)e(k) + ~j k 
a ' ( # l )  

with j = e , a  ( a r  The coefficients c~ '~ and c(~ ~') are of order k ~ since 
c~')= 1 and c~ ~')= 6~,~,. The other coefficients are of first order in k. By 
requiring that the matrix elements 

1 
- ~ ( b * ( k ) L a j ( k ) )  

- - 1  1 + b * ( k ) L Q z + Q L Q Q L a j ( k )  , j = e , a ( a # l )  (4.2) 

with bi(k) chosen from the set (3.7), are of second order in the wave- 
number  for z ~ i0, the coefficients can be determined. One arrives at 

h 
a~(k) = e(k) - "'~ qv(k) + c~ g) �9 g(k) - ,~"~~ • C ~g), "g(k) 

qv 

n o- 
a~(k) = n.(k)  - - -  q~(k) + co(g) �9 g(k) -= a~~ + e,~(g) �9 g(k) 

q~ 

(4.3) 

(4.4) 

Here h~ is the enthalpy per unit of volume(2~ 

h~ = u v + p 

= 3 q ~ - / ~  
@ 3q~ gn 

(4.5) 

where we used the equation of state p = uv/3 + n/(2/3). The combinations 
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a,(~ , and a~)(k) are introduced for convenience. The vectors e i(g) = 
c(g)f l  -t- o(g) J l l ~ - ~ J •  with j =  e or a ( # l ) are given by 

k {-cj-[ ~2 r(b ~-(2)p)bj + b'bj]} (4.6) c(g)= 
Jll qfcl t _iC.OB+ a 

e(g)_ ~pk [b j lk •  bj~/x ~]  (4.7) 
J• q~( - ico 8 + a) 

where the frequency-dependent coefficients a, b, and b', as given by (3.12) 
and (3.17), are to be taken at z=iO. The coefficients bj, bj, and cj are 
defined by 

bj(z)k• fl 1 ( 1 O)(k)) - ~/~ V g*(k) LQ QLa~ (4.8) rn~ z + QLQ 

cj(z) k 2 = fi q*(k) LQ z + QL~ QLa~ (4.9) 

in first order of the wave vector. In (4.6) and (4.7) the values of these coef- 
ficients at z = i0 should be inserted. 

In the previous section the generalized gyroplasmon modes were given 
in lowest order in k. Here we need these modes in first order in the 
wavenumber. Their general form is 

a~p(k)=c~'e(k)+ ill/2 q~(k) ( fi ) ~/2 " " k + ~ V;.p(k)'g(k)+ Z 
o-(~- 1) 

dTn (k) 
(4.10) 

(~) and cC ~ are of order k 1. By requiring where the coefficients c~.p _,.p 

' ) 
z: w + QLQ QLa,tp(k) - l  (b*(k) La~p(k))+l { 

1 =zxp ~ (b*(k)  a;.p(k)) + O(k 2) (4.11) 

with bi(k) again chosen from the set (3.7), the coefficients c ~  and ~.o~(~ can 
be evaluated. The explicit expressions are not needed here. 

With the help of the orthonormality relations (3.6), the adjoints of the 
basis set (4.3) and (4.4) for the heat mode and the diffusion modes can be 
determined. Up to first order in k, these adjoints read 

~i , (k)=(M ) , ~ ( k ) + c ,  k + c i - g ( k ) +  ~ (M-1)i~,n~,(k) (4.12) 
o-'( .r I ) 
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-(q) and - (g) with i =  e, a (a # 1). The coefficients c i e~ are of order k. The rows 
and the columns of the matrix M - 1 are labeled by e and a (with ~ ~ 1 ) in 
that order. It is the inverse of the matrix M: 

- Ou~/OB - ~?n~,/~] (4.13) 
M =  -On, /O~ On,/Ofifto,,] 

Here the partial derivatives are defined in terms of the independent set 
/~, qv, /~fio (a r 1), as introduced in ref. 20. In writing a partial derivative 
with respect to a variable of this set, the variables that are meant to remain 
constant are suppressed. The requirement of orthogonality of the 
generalized gyroplasmon modes (4.10) with the adjoints (4.12), up to first 
order in the wavenumber, yields four relations from which expressions for 
the coefficients gl q) and ~I g) can be obtained. However, we will see that 
these coefficients do not appear in the frequencies of the heat mode and the 
diffusion modes. 

Having determined the basis set for the heat mode and the diffusion 
modes in first order in the wavenumber and the associated adjoint basis 
set, we can evaluate the frequencies of the heat mode and the diffusion 
modes in order k 2. These frequencies follow from the eigenvalues of the 
matrix JZ, the elements of which are 

1[  1 * 
z ) =  ~ - (k)  L a j ( k ) )  

+-V  a*(k)  LQ--QLai(k)z+QLQ , i, j E { e , ~ r ( ~ - ~ l ) }  

(4.14) 

for z ~ i0. By inserting the basis set for the heat mode and the diffusion 
modes and the corresponding adjoints in order k I as given by (4.3), (4.4), 
and (4.12), one easily checks that the expression between square brackets 
is indeed of order k 2. With the help of the explicit expressions for the 
vectors e~ g) ( j =  a, o'), as given in (4.6) and (4.7), the coefficients CI q) and 
~zlg) can be eliminated from the matrix elements (4.14). One arrives at 

(M 1),. 2 
n 

B( - i~ + a) (bnbj + b'nbj) 

for z --* i0. The summation 

1 O)(k)/ 
z + QLQ QLa~ 

(4.15) 

runs over e, ~ (or # 1). The first term within the 
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square brackets has the form that one could have expected on account of 
(4.3)-(4.4). In addition, however, a second term appears. It contains the 
coefficients a, b j, and b}, which depend on z, as before. The eigenvectors of 
J/" for z--+ i0 are the heat mode and the diffusion modes. They are linear 
combinations of (4.3) and (4.4). 

For the unmagnetized ionic mixture the coefficients a, bj, and bJ 
vanish, so that the additional term in (4.15) disappears. In this case the 
elements of the matrix ~ / r e a d  

1 1 f o) , ~,(~:,z)= S (M-~)~.~ao~5- ~ [a~ (k)] L Q - -  
n 

z + QLQ QLa~~ 

(4.16) 

again for z--+ i0. From rotation invariance it follows that dr 0 is actually 
independent of 1~ in the absence of a magnetic field. When the expressions 
for al~ given by (4.3) and (4.4) are inserted, one observes that the 
elements of the matrix d/ /for  the unmagnetized ionic mixture are combina- 
tions of the functions 

P~/~(~, z) = ~i~n0 ~ 5 [Qk . j=(k) ]*  - -  Qk ' j~(k)  (4.17) 
z + QLQ 

where j~ and j~ are the energy-current density j~ or the partial momentum 
density g~. In Appendix B it is shown that these functions are finite for 
z ~ i0 if the functions 

F~(~,z)=2im0 1 1 t 1 1 ~ 5 ~  [Qk. j~(k) ]*  z ~ L  Qk. j~(k)  (4.18) 

are finite for z ~ i0. If this condition is satisfied, the elements of the matrix 
._///obey the limit relation 

lim o~)(~, z) 
z ~ i O  

= ~ (M ')i. lim lim 1 1  /F.(O),k,_l, 1 ) (4.19) 

For the magnetized ionic mixture one checks by inspection of the 
definitions of the coefficients a, by, and bj given by (3.12) and (4.8) that the 
elements (4.15) of the matrix Jr  not only on F~B(~, z), but also on 
the functions 
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po~7(~ ,z )= lim v t [ Q g ~ ( k ) ]  * 1 ) ' k ~ o z + QL~ Qg~(k)  (4.20) 

P~i~(~, z )=  lim 11 ( 1 Qk'j~(k))  (4.21) 
' k ~ o k P  [Qg~ i ( k ) ]*z+QL~  

As shown in Appendix B, these functions are finite for z ---r i0, if, apart from 
(4.18), also the functions 

F~i~7(l~,z)=lim 1 t 1 ) ' k ~ o - V  [Qg~i(k)]* ~ Qg~7(k) (4.22) 

1 / 
F~(~ ,  z )=  lim - - -  [Qgoi(k)]* Qk.j~(k) (4.23) 

�9 k + o k V  

are finite for z---, i0. If that is the case, one can prove that in the limit 
z ~  i0 the matrix .~,j is again given by (4.19). No additional terms like 
those occurring in (4.15) appear in the limit relation (4.19). 

5. L O N G - T I M E  TAILS 

In the previous section the frequencies of the heat mode and the diffu- 
sion modes for the unmagnetized and the magnetized ionic mixture have 
been derived in second order in the wavenumber. We concluded that the 
transport coefficients which appear in these frequencies are finite if the 
functions F~(~, z), F~i,~(l~, z), and F<~(I~, z) are finite for z ~ i0. In this 
section we will determine the long-time behavior of the inverse Laplace 
transforms of these functions by means of mode-coupling theory. From the 
long-time behavior one can determine whether these functions are indeed 
finite for z ~ i0. 

For the unmagnetized ionic mixture we determine the long-time 
behavior of the time correlation functions 

1 1 
F~(~, t )=  lim ( [Qk"  j~(k)]* e'CtQk" j~(k)) (5.1) 

where j~ and j~ are the energy-current density j~ or the partial momentum 
density g~. The projected energy-current density and the projected partial 
momentum density are 

Qk -j~(k) = k �9 j~(k) - h-5~ k. g(k) (5.2) 
m y  

Qk. g~(k) = k. g~(k) _n~m~ k-g(k) (5.3) 
m y  
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According to mode-coupling theory the long-time behavior of a time 
correlation function F~(~, t) is dominated by contributions which stem 
from the coupling of the projected current Qk.j~ (and Qk.j~) with the 
product of two collective modes ai(k) and aj(k) [and their adjoints ds(k) 
and 8j(k)]. The mode-coupling expression which gives F~(I~, t) for long 
times reads 

�9 1 1 
F~(~, t)-~ ~xm ~ k ~ 2  ~ 2 A}(k, q)[A~(k, q)]* 

z,J q 

• exp{ - i[-z~(q) + zj(k - q)] t} (5.4) 

where the summations are extended over all collective modes and over all 
values of the wave vector q of these modes. The mode-coupling amplitudes 
A~(k, q) and -~ Au(k, q) are given by 

1 
A~(k, q) = ~ ( [Qk. j~(k)]* a~(q) aj(k - q)) (5.5) 

1 
A}(k, q) = -~ ( [Qk" L(k)]* ~g(q) 6j(k - q)) (5.6) 

Since the unmagnetized multicomponent ionic mixture is isotropic, the 
time correlation functions (5.1) for this system will not depend on the 
orientation of the wave vector k, so that we may write them as F~(t). To 
determine the contributions of the different possible couplings of two 
modes a i and aj, three-factor fluctuation formulas are needed in leading 
order in the wavenumber. These three-factor fluctuation formulas represent 
the equilibrium ensemble averages of the product of a current, i.e., k "j~(k) 
or k.g~(k), with the momentum density g(k) and one of the densities 
k lq~(k), n~,(k), e(k). The derivation of these fluctuation formulas for the 
multicomponent ionic mixture, which is analogous to that for the one-com- 
ponent plasma, (1~ can be found in Appendix C. Here we give the results for 
small but nonvanishing wave vectors k, q, and I=  k -  q: 

1 1 
( [k.  g~(k)]* g(q) 7 q~(l)) 

m~ ~?n~ 
= l - y  0qv k (5.7) 

1 
( [k" g~(k)]* g(q) n~,(l) > 

rno Dn~ k (5.8) 
p D/~, 

822/58/5-6 [5 
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1 
( [ k .  g,,(k)]* g(q) ~(!)) 

_ m,~l- c3n~ n,~J k (5.9) 

1 1 
( [k" j,(k)]* g(q) ~ q~(l)) 

q~ ( k - k .  qq), (5.10) 

1 
( [k .j~(k)]* g(q) n~(l)) 

1 / 0n~ c~no ) q~ 0n~ = - ~ q ~ q  +f lv -n~  k + ~ - ~ q  ( k - k ' q q )  (5.11) 

1 
=- ([-k. j,(k)]* g(q) e(l)) 
v 

1 (6q~fi~p ,~,,2 @ On ~n ) 
-2f l  3 ~ q  - , u p  ~-fi-3qoff~q +3fl~--fl-3n k 

3q.( + 
+2-~5 2flOq ~ ~-q ( k - k - q Q )  (5.12) 

where the partial derivatives are defined in terms of the independent set/~, 
qv, fl/~ ( a r  1). The operator D/Dflf~ is defined in (A.9). 

Slowly decaying contributions to the mode-coupling expression for the 
time correlation function F=~(t) arise if the damping coefficients of both 
modes i and j vanish for small wavenumber. Hence, the generalized 
plasmon modes can be excluded from the sum over the modes, since they 
decay exponentially fast, even in the long-wavelength limit. Turning to 
the other modes, one easily checks that a pair of viscous modes does 
not couple to the current densities L. Furthermore, the mode-coupling 
amplitude for two modes both chosen from the set of diffusion modes and 
the heat mode is at least of first order in the wavenumbers. Finally, if one 
of the modes is a viscous mode and the other the heat mode or a diffusion 
mode, the mode-coupling amplitude is of zeroth order in the wavenumbers. 
The latter coupling leads to a contribution to (5.4) with the slowest decay. 
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This follows by writing the summation over the wave vector q in the mode- 
coupling expression (5.4) as an integration and using the identity 

odq q2n exp( _q2 Dt) = ~ ~ (4Dt) ~- 1/2 (5.13) 

In this way one finds that the long-time behavior of the time correlation 
functions F~(t) for the unmagnetized ionic mixture is governed by a long- 
time tail which decays like t-3/2. Hence, the transport coefficients occurring 
in the frequencies of the heat mode and the diffusion modes are all finite 
for an unmagnetized ionic mixture. 

The reasoning presented here is not conclusive for all types of 
unmagnetized ionic mixtures. In fact, if the mixture is well poised, the 
plasmon modes are not damped for small wavenumbers, so that these 
modes can play a role in the long-time behavior. The mode-coupling 
amplitudes for the coupling of the energy-current density with a plasmon 
mode and a viscous mode contain a term of order q 1, which arises from 
(5.10). As a consequence, the long-time behavior of the energy-current 
autocorrelation function F~(t) is given by 

F~(t) -~- f dq 1 -- 3fl2 (27r)3 q2 ~ exp{-iEzp(q)+z~(q)] t} (5.14) 

Inserting the mode frequencies zp(q) and z,(q) of the two plasmon modes 
and the viscous modes, respectively, up to second order in the wavenumber 
and employing (5.13), one ends up with an expression of the form 
t -1/2  COS(C0p/-k-O), with O a phase factor. Hence, a slowly decaying tail of 
the same form as found previously for the (unmagnetized) one-component 
plasma (6~ is obtained: in this respect the well-poised ionic mixture closely 
resembles the corresponding one-component system. It should be noted 
that the other time correlation functions F~r for the well-poised mixture 
have oscillating long-time tails proportional to t-1 or  t -3/2. Since the tails 
are oscillating, the Laplace transforms of all functions F~(t), with the 
inclusion of F~(t), are finite as z ~ i0, so that the transport coefficients 
occurring in the heat mode and the diffusion modes are finite even for an 
(unmagnetized) well-poised ionic mixture. 

We now turn to a discussion of the magnetized ionic mixture. In 
this case we have to consider the long-time behavior of three types of 
functions, F~(I~, t), F~t,~(l~, t), and F~i,~(l~, t). As we have seen, the 
two generalized plasmon modes and the two viscous modes of the 
unmagnetized ionic mixture merge into a set of four generalized 
gyroplasmon modes when a magnetic field is switched on. If the mixture is 
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not well poised, these gyroplasmon modes are exponentially damped, so 
that they cannot contribute to slowly decaying tails. Only the heat mode and 
the diffusion modes may contribute to the tails. Since the basis functions 
for these modes and their adjoints, given in (4.1) and (4.12), both contain 
q~(k)/k and g(k) with coefficients that are of order k, it follows by 
inspection of (5.7)-(5.12) that the product of mode-coupling amplitudes 
connecting the projected currents (5.2)-(5.3) with a pair of modes chosen 
from the set of the heat mode and the diffusion modes is of second order 
in the wavenumbers. Hence, the long-time tail of F~(~, t) is proportional 
to t -5/2. To discuss the long-time behavior of the other two functions, viz. 
F~i,~(~, t) and F~i,~(~, t), we need three-factor fluctuation formulas con- 
taining the full currents g~(k) instead of their components ~.g~(k) along 
the wave vector k. These follow trivially from (5.7)-(5.9) by replacing at 
the right-hand sides the vectors k by the unit tensor U. Employing these 
three-factor formulas, we easily arrive at the conclusion that the tails of the 
functions Foi,~).(~, t) and F~i,~([~, t) are likewise proportional to t -5/2 
Hence, all three types of functions yield convergent Laplace transforms in 
the limit z ~ i0, so that the finiteness of the transport coefficients occurring 
in the heat and diffusion mode frequencies of a magnetized ionic mixture 
is guaranteed. 

Once again well-poised ionic mixtures are exceptions to the general 
rule. The gyroplasmon modes are no longer damped in the long-wave limit, 
so that they may contribute to the long-time behavior. As a matter of fact, 
they give rise to a slowly decaying tail in the function F~(~, t), as can be 
seen from the expression 

dq 1 
F~(~,, t ) ~- 2/~2 j (2rc)3 ~ 2 N;.pN;,p, 

2p,2'p' 

x 1~" (U - ~ ) "  [v;.p(q) + v~,p,(-q)]l 2 

x exp{ - i[z;.p(q) + z;,o, ( - q ) ]  t} (5.15) 

Choosing 2 '=  2 and p ' =  -)~p, the sum of the mode frequencies in the 
exponent vanishes in lowest order of the wavenumber. Using (5.13), as 
before, one arrives at an expression for the long-time tail that is propor- 
tional to t-1/2, without an accompanying oscillating factor. The other func- 
tions have long-time tails that decay faster. Hence, the transport coef- 
ficients appearing in the frequencies of the heat mode and the diffusion 
modes for a well-poised magnetized ionic mixture are divergent. This 
conclusion generalizes that obtained for a magnetized one-component 
plasma/1~ For both cases magnetohydrodynamic theory loses its meaning, 
at least if dissipation effects are to be included in the theory. 
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A P P E N D I X  A. F L U C T U A T I O N  F O R M U L A S  

In the main text we have used fluctuation formulas for the multicom- 
ponent ionic mixture that are valid in leading order in the wavenumber. In 
ref. 21 the following fluctuation formulas have been derived: 

1 
-~ ( [q~(k)]* q~(k) ) = fl-lk2 (A.1) 

1 
-~ < [go(k)] * g~,(k) ) = fl-I6oo,n~m~ U (A.2) 

1 Dno 
< [n~(k)]* n~,(k) ) - Dflfi~, (A.3) 

1 63u v 
< [e(k)]* e(k)  ) - 63fi (A.4) 

1 1 63//a k2 ( [q~(k)]* n~(k)) = ~ ~q~ (A.5) 

1 3 (  63p -~ < [q~(k)]* ~(k)> = ~  \2/~ (a.6) 
63q~ Oq~J 

1 63no 
( [no(k)]*  e(k)) - 63fl (a.7) 

1 ~n 
( [~(k)]* ~.  z(k)> = - ~  (A.8) 

op 

Here U is the second-rank unit tensor. The operator D/Dflfi~ is defined by 

D --(1-- t~a,  1) 63 e~, 63 
Dflfi~ ~ - - 6 ~ , i  E (A.9) 

The partial derivatives are defined in terms of the independent set fi, 
q~, fl#~, (a # 1), as introduced in ref. 20. In writing a partial derivative with 
respect to a variable of this set, the variables that are meant to remain 
constant are suppressed. Furthermore, u v is the internal energy per unit of 
volume and p the thermodynamic pressure. 

A P P E N D I X  B. G R E E N - K U B O  R E L A T I O N S  

In this Appendix we will first determine the relation between the 
elements of the matrix ~ '  in order k 2 and the functions (4.18) for the 
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unmagnetized ionic mixture. Subsequently, we shall generalize the results 
for the magnetized mixture. 

For the unmagnetized ionic mixture we wish to show that the matrix 
elements 

t (  1 QLa~O~(k)> 
,~(k, z)=-~ [al~ * LQ z+ QL~----Q (B.1) 

in order k 2 a r e  finite for z + i0, if the functions 

�9 1 1 Q k - j p ( k ) >  
F=a(~, z )=  ~lrno k ~  ( [ Q k .  j~(k)]* (B.2) 

are finite for z ~ i0. With the help of the operator identity 

1 1 1 1 
z+QL z+L+z+L PL-z+QL (B.3) 

we write (B.1) as 

1( 1 > 
A 0 ( k , z ) = A i j ( k , z ) + ~  [al~ * L Q ~ a ~ ( k )  

n 

x-- [-~n(k)]* L Q - -  QLa~ (B.4) V z + QLQ 

where the summation is over the collective modes an(k) of the 
unmagnetized ionic mixture. Furthermore, we used the notation 

Aij(k, z)=-~ [a}~ * LQ ~ QLa~~ (B.5) 

Since our aim is to analyse (B. 1) in order k 2, only the generalized plasmon 
modes have to be included in the second term of the right-hand side of 
(B.4). This term reads, in second order in k, 

1 I[al~ 1 fl1/2 I z +-----~ k -  q~(k) .7tq:,j(k, z) (B.6) 

where the subscript q~ indicates that al~ in the matrix element A~j is 
replaced by flt/2k-lq~(k). By using Q(z + L) i=z-I[Q-Q(z + L) -ILl, 
we rewrite the first factor of (B.6): 
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V z + ~  k q~(k) 

1 
= - - - A i ,  q~(k  , z )  

z 

1 a(O) 1 /~1/2 \ 
1_~_~([ (k']*LQ~+-La"(k))vl[~"(k)]*L--k-q~(k)) 

(B.7) 

When the second term at the right-hand side is evaluated in order k 1, one 
arrives at 

l l t z Ai, q~(k,z) (B.8) V [alO~(k)], LQ 1 ~1/2 z+L ~ q~(k) - 2 2 - 2 fOp 

With the help of this relation we find for (B.4) in second order in k 

z A, q~(k, z) Aqo,j(k, z) (B.9) A,j(k, z ) = A u ( k , z )  z2 2 , 
- -  ( j ) p  

By taking, for al~ the combination Y~o(,I) (e~-elmo/ml)a~)(k) one 
can prove from (B.9) 

E z ] l  2q~,j(k, z)= Aq~,j(k, z) 1 +z~Aq~,qL.(k, z) (B.IO) 

in second order in k. Upon inserting this relation in (B.9), we arrive at 

ftij(k, z)= Aij(k, z) 

I z 1' Z Aiq,(k,z) Aq~,j(k,z ) l+_~___~..2Aq~,q~(k,z ) 
Z 2 0 ) p 2  ' ' Z - -  (Dp 

(B.11) 

valid in order k 2. From this relation we conclude that the matrix elements 
Aij are finite for z---, i0 if all Aij in order k 2 are finite as z ~ i0 or, alter- 
natively, if the functions F ~  given by (B.2) are finite. In the limit z ---, i0 the 
matrix elements 4 0. and Ar coincide. 

For  the magnetized ionic mixture the second term on the right-hand 
side of (B.4) yields, apart from (B.6), a second term, since Lg• contains 
a contribution of order k ~ In second order in the wavenumber one finds 
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Aij(k, z) = Aij(k, z) 

+ l  ([al~ LQ 1 fll/2 ) 
z + ~  k -  q,(k) .~q~,j(k, z) 

1 fl g •  " Ag• z) + [ a l ~  (B.12) 

The subscript g• indicates that al~ in A0.(k,z) is replaced by 
(fi/m~) ~/2 g~(k). The evaluation of the first factors of the second and the 
third terms on the right-hand side of (B.12) proceeds in a way analogous 
to the calculation of the first factor of expression (B.6). One arrives at the 
relations 

V (  1 ~ q~(k)) [-al~ * LQ z~/~1/2  \ 

Z 
= - -  2 2 r E ( Z 2 -  ( .02)  Ai, q~(k, 7.) 

=74 _ 2"2((.02 -~- (2) 2 )  -1- (J)p(J)BKII 

+ og,(z[• -- iogB[ A B)" A/,g• z)-] 

1 ([_alO)(k)j,LQ__~l ( f l ~ l / 2 g •  
\ z + C \ m , /  

(B.13) 

Zogp [ (z 2 _o92 ) Ai, q~(k, z) 
(Z 2 __ O 9 2 ) f z 4  __ Z2(( j )2  _~_ (.02) _.~ Oj po9Bkll]2 2 ~2 

+ og,(zl~• - iog~ ^ ~)-  A~ ~(k, z)](z~• + iog~ A ~) 

1 
z2 _ ~ [zAi, g• (k, z) + iogBAi, g• (k, z) A B] (B.14) 

valid in first order in k. 
By inserting (B.13) and (B.14) in (B.12), one obtains the equivalent of 

(B.9) for the magnetized ionic mixture. Analogous relations, valid in order 
k ~ or k 1, can be derived by replacing al~ and/or a)~ in (B.12) by 
k lqv(k ) or g• With the help of these relations one can show that the 
contribution of order k 2 of ,40(k, z) is finite for z -+ i0 if the k: contribution 
of Ao.(k, z), the k I contributions of Ai, q~(k , z) and Ai, g• z), and the k ~ 
contributions of Aq~,q~(k,z), Aq~,g• and Agz,gz(k, z) are finite for 
z--, i0. This conclusion is equivalent to the requirement that the functions 
F~p(k, z), Fr z), and F~i,~(k, z) given by (4.18), (4.22), and (4.23) are 
finite for z ~ i0. 
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With the help of the relations derived in this Appendix, one can prove 

lira lim Ag• z ) =  lira 1 + 
z ~ i O k ~ O  z ~ i O  

z.~olim lira ~ lc ~g~'i(k' z) : z~iolim 1 ~ . /  ~ Ag• z) 

(B.15) 

(B.16) 

and, finally, 

, , ] lira .~j(k, z) - -  (bibj + b~bj) 
: ~ io ~5 fl( -- i o ,  + a) 

1 
= z~iolim ~ ~ Ai;(k, z) (B.17) 

Using the last relation, one easily checks that the matrix elements ~A(~s([, z) 
for the magnetized ionic mixture, given by (4.15), can be written as (4.19). 

A P P E N D I X  C. T H R E E - F A C T O R  F L U C T U A T I O N  F O R M U L A S  

We derive the three-factor fluctuation formulas (5.7)-(5.12) for small 
but nonvanishing wave vectors k, q, and 1= k - q  in this Appendix. The 
expressions for q~(k), g~(k), no(k), e(k), and j~(k) have been given in 
Section 2. The partial derivatives are defined in terms of the independent 
set fi, q~, /?fi~ (a ~ 1), as in Appendix A. In the course of this Appendix 
frequent use is made of results of refs. 20 and 21. 

To obtain the first three-factor fluctuation formula (5.7), the expres- 
sion (2.3) for g~(k) and qv(k)=5]~eon~(k) ,  with no given by (2.1), are 
inserted. After performing the average over the momenta, one can write 

? 7qM) =-TFLe~+}] no, e~,h(~,(l) k (C.1) 
o-~ 

The Ursell functions h (m) (k kin) are defined by O'1 ,..., o-ink 2 ~ ' " ,  

no, . . .no  h(~, ) ~ (k 2 ..... km) rn l ,--., m 

: I__V {~l~',..., m exp[ik2-(rol~ 1-ro2~ 2) + ' "  + ikm'(r~L~ 1 - r  . . . .  ) ]1  

(C.2) 

for k~r ( i = 2  ..... m) and ~ m  k~r The prime on the summation i = 2  
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symbol denotes the restriction ae7~r ( i r  The two-particle Ursell 
func t i on  h (2) may be expanded as 

O- 10- 2 

With the help of 

h(2) k .(0/ -4- a (x} k 2 + a~)~2k 4 + . . .  (c.3) 

E n .o a ( O ) =  _e,71 (C.4) 
" " 0-2 ~ 0 -  2 0-10-2 

O- 2 

~ n o -  1 

no-lEno%a(J)~ =Z ' (C.5) 

one finds for (C.1) the result (5.7) in leading order in l. 
The derivation of (5.8) proceeds in a way similar to that of (5.7). After 

expanding the two-particle Ursell function, one finds in leading order in the 
wave vectors 

1 no-m0- 
-~ ( [k.  g~(k)] * g(q) n~,(l) ) = ~ - -  (6o~, + n0-,a~),) k (C.6) 

With the help of 
Dn 0- i 

.~o~ (C.7) n0-xt'l~r2t%l~r2 Dfifi,~: / / / 0 -160 -1~  

we recover (5.8). 
To derive (5.9), we separately consider the kinetic and the potential 

parts of the energy density. The contribution of the kinetic part of e(l) is 
found by averaging over the momenta and expanding the appearing two- 
particle Ursell function: 

1 n~m0-( (~ (C.8) ( [k" go-(k)]* g(q) 6kin(l)) : ~ 5 -I- 3 ~ n~ao-o-~ 
O-1 

in leading order in the wave vectors. After performing the average over the 
momenta, the contribution of ~pot(/) c an  be expressed in a two-factor 
fluctuation formula which has been evaluated elsewhere(21): 

1 
( [k.  go-(k)]* g(q) ~pot(l) ) 

mo 1 
- < [no-(t) ]*  ~p~ > k 

~ V  

no-mo- 
= n,,~tao-0-~ + --3 - - - 7  E . (ol flq~eo~a~l],) k (C.9) 

o- I 
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With (C.5) and 

0n~ 2 0n~ 
n0-i ~ n a ~~ = - 2 q ~ - - +  /~ (C.10) 0̀2 ~ 0-t~2 c3q~ ~ ~ - + n ~  

one finds, by adding (C.8) and (C.9), the result (5.9). 
Now we turn to the derivation of the three-factor fluctuation formulas 

containing the energy-current density. For the contribution of the kinetic 
part of j~(k) to (5.10) one finds, with the help of (C.4) and (C.5), 

[k ' j~in(k)]* g(q) qjl)  - 2 !3 3 aq, 

in leading order in the wave vectors. The potential part of the energy- 
current density gives a contribution 

�9 j, (k)]* g(q) 7 q j / )  

qv (2) 

GI G2 

q-#V] 1 ~_, ~1 [k ,_  k'. (k_- k ' ) (k-  k') l  
k'(~o, ~k) (k--  k') 2 J ~ ~0̀ 2 n~176176 

/[e0̀ 1-0̀ 1~2"- h(2) (k'], e0`h~)(l--k')+Zn0`eoh(3)~o(--k',l)12 3 3 (C.12) X L q'- 1 2 I 2 3 

0-3 

where a term that vanishes in the thermodynamic limit has been omitted. 
To proceed, we expand h (2~ in the first term on the right-hand side and o" 10-2 

use (C.4) and 

(1) =13 1 (C.13) ]//0̀ 1 na2e~rl eo2a Gl 0 ` 2  

G 10" 2 

which follows from (C.5). The sum over the wave vectors k' in the second 
term on the right-hand side of (C.12) is written as an integral and, after 
expanding the integrand for fixed 1 around k = 0, one finds for the right- 
hand side of (C.12) 

q~ 1 f dk'  1 
/3-7 E / - / ' q ~ ] ] + ~  (2~z)3k,2 [ k - k ' ~ ' ~ ' ]  ~, n0 l̀no2e0 l̀e~,2 

O- 10-2 

Fo hi2), , . , ,  , ] 
1 2 o-3 3 3 1 2 3 

(C.14) 
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Here the principal value excludes k ' = 0  from the integral From the 
perfect-screening relation for the three-particle Ursell function 

(eo,+eo`2) h~2(k)+~n~,3e,,3h~3~2,~3(k,O)=O (C.15) 
0" 3 

it follows that the integral in (C.14) vanishes for != 0. Hence, this integral 
is of second order in the wave vectors k and I. In leading order one finds, 
by writing k - q instead of !: 

( ~ )=/-~q~ [ k - k ' ~ ] ]  (C.I6) [k 'L(k) ]*g(q)  q~(l) 

so that (5.10) is proved. 
The evaluation of the three-factor fluctuation formula (5.11) is similar 

to that of (5.10). The kinetic part of the energy-current density gives a con- 
tribution 

, 5E ] 
--V ( [k-j~'ki~(k)]* g(q)n~( / ) ) -  3[/2 3q~ ~ q  -/~ ~-3-- 3no  ̀ k (C.17) 

When a term which vanishes in the thermodynamic limit is omitted, the 
contribution of the potential part of the energy-current density can be 
written as 

1 
( [k  "j~~ g(q) n o ( l ) )  

qv 0n~ 
- [ k -  k .  ~3 /~2 ctqv 

1 f dk'  1 

(27r)3 k'2 ò1 

F~ ~<2)'k" 1)] (C.18) gl f f2~ .~72  O_10_20. ~ - k ,  , ,  ~ + e , , h ~ , ( l - k ' ) + ~ - "  h (3) l ' 

o" 2 

For small ! the dependence of the integrand on ~' gets simpler and, with 
the help of the relation 

f dk 1 + n,~2e0-2h~o2~3 ( , 0)] (2re) 3k2 ~ n~,e~,[26~2~3e~3h~)3(k ) (3) k 
0-10- 2 

- 6 y'  no~[-/~ 1 c0) ~1) (C.19)  a ,~o. 3 + qve,71a ,~l,r3] 
cr I 
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and (C.5) and (C.10), one finds 

--V < I-k "L'P~ g(q) n~(I)) = 3qv ~ q  - 2 /~-~- -  3no k 

,a 

Jr- ~ Ona [k- k" ~1 (C.20) 

in leading order in the wave vectors. Addition of (C.17) and (C.20) gives 
(5.11). 

The last three-factor fluctuation formula (5.12) is split up into four 
contributions containing the products of the kinetic and the potential parts 
of the energy-current density and the energy density. For the purely kinetic 
contribution one finds with (C.10) 

1 5 [ 3 q ~ q  ~ 5n lk  "L (k)] g (q )~ ;k in ( l ) )= - -~  Off ~ ( k  .~i~ , an _ f l ~ _  (C.21) 

in lowest order in the wave vectors. 
The mixed potential-kinetic contribution 

terms which vanish in the thermodynamic limit, 
becomes, upon omitting 

1 --~ ( I-k" j~p~ g(q) 8 k i n ( / )  ) 

3 q~ #n 
[ k  - k .  qq] 

2 fi3 aq~ 

1 f dk' 1 [ k - k ' ~ ' ~ ' ]  ~ nr162162 2 

L2  " ' "~"  " z 2 ,~ 
(C.22) 

For small I the integral can be expressed in thermodynamic functions when 
one uses (C.19) and 

f dk 1 m2) 
(2~) 3 k2 ~ nr162 (k)  

o" 1 (7 2 

= 2u v -  3fl in 

4fl3( . . . .  6q~fl ~ zp  - = - x - 3 q ~ - - 5 n j  (C.23) 
oqv op va..q~ / 
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In leading order in the wave vectors one finds 

1 -~ ( Ek "jp~ g(q) 8kin(t)) 

1[ a, o, ] = ~  6q~8~q-2fl ~--fi+9q~q -88~- f i - lYn  k 

3 q~ On 
q 2 83 Oq~ [k - k .  ~ ]  (C.24) 

After averaging over the momenta, we can express the mixed kinetic- 
potential contribution to (5.12) in a well-known two-factor fluctuation 
formula: 

1 
-v ( [k .j~.k~ (k) ], g(q) epot(1) ) 

5 1 
2fl 2 V 

- - -  -- ( En(l)]* eP~ k 

5 3n] k (C.25) 2fl 3 [3qv On 2 On 
= E-8 - 

Finally, we consider the purely potential contribution to (5.12). As in 
the case of the corresponding three-factor fluctuation formula for the one- 
component plasma, (1~ this contribution can be expressed in three integrals 
over combinations of two-, three-, and four-particle Ursell functions in 
such a way that the sum of two of these integrals is proportional to the 
two-factor fluctuation formula 

1 3 2 Op On_ 48 On 
~ (E8p~ 8P~ - 2fl2 I2fl ~ + 3 q v  0qv ~--fi--n] 

The remaining integral is proportional to the fluctuation formula 

(C.26) 

One finds, in leading order in the wave vectors, 

1 E ] ~([qv(k)3, epOt(k))=_~k 2 fl Op On 0q v ~q~ (C.27) 
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1 ( I-k" jP~ g(q) sP~ 

2[  On 1 2p 2 Op en - ~ + 3 q ~ q - 4 f l ~ - n  k 

By adding (C.21), (C.24), (C.25), and (C.28), we arrive at (5.12). 

(c.28) 
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