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The time-dependent correlations of a one-component plasma in a uniform 
magnetic field are studied with the help of kinetic theory. The time correlation 
functions of the particle density, the momentum density, and the kinetic energy 
density are evaluated for large time intervals. In the collision-dominated regime 
the results agree with those found from linearized magnetohydrodynamics. 
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1. I N T R O D U C T I O N  

Recently (1~ time-dependent correlations for a one-component plasma in a 
magnetic field have been studied by using a linear response approach and a 
microscopic theory that is based on the hierarchy equations. In this way 
results have been obtained for the long-wavelength limit of the dynamic 
structure factor and for the time correlation function that describes cross 
correlations of the particle density and the momentum density. The time 
dependence of these correlations is governed by the fundamental frequen- 
cies of the so-called gyro-plasmon modes, which have been analyzed in 
recent years./2~) Since only the leading terms in the wavenumber expansion 
of the correlation functions are considered in ref. 1, the influence of the 
damping and dispersion of the collective modes on the time dependence of 
the correlations could not be determined. Furthermore, the treatment is 
confined to correlations of the particle density and the momentum density; 
correlations involving the energy density are not considered. 

1 Instituut voor Theoretische Fysica, Universiteit van Amsterdam, Amsterdam, The Netherlands. 
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An alternative approach to study time correlation functions is 
furnished by kinetic theory. In fact, in ref. 2 the mode spectrum of a plasma 
in a magnetic field has been obtained by starting from a formal kinetic 
equation for the one-particle time correlation function in phase space. The 
mode frequencies followed from the matrix elements of the memory kernel 
that occurs in the kinetic equation. The same method can be used as well 
to determine the time correlation functions of the particle density, the 
momentum density, and the kinetic energy density. (5,6~ Indeed, for long 
times the collective modes will dominate these correlation functions. An 
advantage of the kinetic method is that dispersion and damping effects of 
the collective modes can easily be incorporated in the theory, at least 
formally. 

The purpose of the present paper is to derive expressions for the time 
correlation functions by means of the kinetic methods described above. 
Furthermore, we wish to compare the results to those obtained by means 
of linearized magnetohydrodynamics. It is not obvious that the magneto- 
hydrodynamic approach will lead to correct results, since the occurrence of 
plasma oscillations at a finite frequency may welt be inconsistent with the 
hydrodynamic limit, which in principle implies a limit of zero frequency. 
Moreover, a second fundamental frequency, the Larmor frequency, shows 
up for a magnetized plasmal It has been shown in ref. 2 how the magneto- 
hydrodynamic equations may nevertheless be helpful in discussing the 
collective mode spectrum. Its utility for the study of the time correlations 
remains to be assessed. 

The expressions for the time correlation functions that we shall obtain 
in this paper are essential prerequisites for a kinetic treatment of the 
dynamic transport coefficients of a magnetized plasma. In fact, the long- 
time tails of the Green-Kubo integrands of the transport coefficients can be 
studied on the basis of a kinetic representation involving the time 
correlation functions that are the subject of this paper. 

The model adopted in our treatment is the classical one-component 
plasma. It consists of charged particles immersed in a neutralizing inert 
background. The interaction between the particles and with the back- 
ground is purely electrostatic. The magnetic field is supposed to be 
stationary and uniform in space. 

After a review of the kinetic theory for a magnetized plasma in 
Section 2, we derive the complete set of time correlation functions in the 
long-wavelength limit, both from kinetic theory (Section 3) and from 
linearized magnetohydrodynamics (Section 4). The static limit of these 
functions is studied in Section 5. 
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2. K I N E T I C  T H E O R Y  OF C O L L E C T I V E  M O D E S  

The time-dependent phase-space density correlation function C is 
defined by its Fourier-Laplace transform 

C(k, p, p', z) = - i  dtei'~'(6f(k,p,t) cSf(k,p',O) * ) (2.1) 

with Im z > 0 .  The canonical-ensemble average contains the fluctuating 
part 6f = f -  ( f )  of the phase-space density 

/ (k ,  p, t ) = - ~ V ~ e x p [ - i k . r ~ ( t ) ]  6 [ p -  p~(t)] (2.2) 

with r~, p~ the position and the momentum of particle ~, and V the volume 
of the system. 

The kinetic equation for the phase-space density correlation function is 
an integral equation with the formal structure (2/ 

[ - z -S (k ,  z)] C(k, z)=- (~(k) (2.3) 

where the momentum variables have been suppressed. Here (~(k, p, p') is 
the static phase-space density correlation function lim=~oo zC(k, p, p', z). 
The kernel S consists of a free-streaming term (po, a Lorentz-force term (pL, 
and a memory kernel (p, which is the sum of a static kernel (ps and a 
collision kernel (pC. Explicit expressions for (po, (pL, and (ps have been given 
in ref. 2; the collision kernel (pc may be written in terms of the Liouville 
operator and suitable projection operators. 

The time correlation functions for the particle density, the momentum 
density, and the kinetic energy density follow from C by writing 

(~v(k, z) = f dp dp' O~(p) C(k, p, p', z) 0v(P') (2.4) 

with #, v = 0 ..... 4. Here O,(p) are polynomials of the momentum variable: 

Pi ( i=  1, 2, 3) 0o(P) = 1, 0'(P) = (mkB T) 1/2 

1 3) 
(2.5) 

with m the mass of the particles and T the temperature. The functions 
Guy(k, z) are related to the matrix elements of the resolvent of Z', which are 
defined as 

( f  1 ) 
G~v(k, z) = I~ z -  Z'(k, z) v (2.6) 
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Here we used the notation 

(~jAIv> =f dpdp' ~(p)A(p,  p') ~:(P') fo(P') (2.7) 

with fo(P) the 
from (2.3) and (2.4) that one has 

G.:(k, z) = nG~,,(k, z)[1 + nh(k) 3+] 

with n the particle density and h(k) the equilibrium 
function in Fourier space. 

The matrix Gm,(k, z) satisfies the equation (2) 

normalized Maxwell-Boltzmann distribution. It follows 

(2.8) 

pair correlation 

[z 6~ - g2,a(k, z)] G;.~(k, z) = 3~ (2.9) 
2 

with the frequency matrix g2,~ given by 

O+,v(k,z)=LltlSIv>+t# ZO z l_ _OZ v 1 
- QSQ 

(2.t0) 

Here Q is the complement of the projector P, which projects a momentum- 
dependent function onto the space spanned by the states [/~). 

The frequencies of the collective modes are determined by the poles of 
G~v or G~,v, or, equivalently, by the eigenvalues of the frequency matrix 
s These follow from the eigenvalue equation 

(2.11) A(k, z )=  det[z 6~,,.- ~2~v(k, z)] =0  

The general form of g2uv(k, z) for small k has been derived in ref. 2. In 
leading order of k it reads 

0 vok~ voky vok~ 0 
vok~kx / k  2 0 io~ B 0 vokxb 1 

Q.:(k, z)= Ivok2Dky/k 2 -ico B 0 0 vok>,51 | 
~VOkok=/k2 0 0 0 vok=(5, + 5 2 ) ]  

vokxbl vok>.bl vokz(bl + 52) - ic I 

with Vo = (kuT/m) 1/2 the thermal velocity, 

(2.12) 

kD= (ne2/k~T) 1/2 the Debye 
wavenumber, and ~o~ = eB/mc the Larmor frequency in the magnetic field 
with strength B. The direction of the magnetic field B is chosen parallel to 
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the positive z axis. Furthermore, 6i(z) and c(z) are dynamical coefficients, 
which are defined by writing, for small wavenumber, 

z - QSQ 

= vok[[ci6~(z) +/}i/~ll/]2(z)] ( i=  1, 2, 3) (2.13) 

(41(pc14>+<4 x o  l ~ o z  4> 
z- QXQ 

= -ic(z)  - iv~kZ[d~(z) + [c[r d2(z)] (2.14) 

up to first and second order in k, respectively. To obtain these expressions, 
one uses the cylinder symmetry of the system; B and ~ are unit vectors in 
the direction of the magnetic field and the wave vector, respectively, and 
/~rl = 1~. B is the component of 1~ in the direction of the magnetic field. For 
vanishingly small z the coefficients b~(z) and c(z) satisfy the limiting 
relations 

limo 6,(z) : ~ \-~]. (2.15) 

lim 62(z) = 0 (2.16) 
z ~ i O  

( lira c(z) = i 1 (2.17) 
z~iO z 3kB] 

with P the equilibrium pressure and C v the isochoric specific heat per 
particle. 

The determinant A(k, z) occurring in the eigenvalue equation (2.1l) is 
found to factorize, up to second order in k, in the following way: 

2r v 
~(k, =)=3-~. [z- zT(z)] I] [z- z~.o(z)] (2.18) 

2p 

The functions zr(z) and z;.o(z ), with 2 = +1, p = _+1, determine the mode 
frequencies of the heat mode and of the four gyro-plasmon modes. The 
function zr(z) has the form 

(3kB~z_.3k.{c(z)+vZ Z [ d l ( z ) + ~ l d z ( z ) ] }  (2.19) z r ( z )=  1 2cv/  12Cv 

Because of (2.17) one finds for vanishing wavenumber as a solution of 
z r ( z ) = z  the trivial result z = 0 .  Up to second order of k the mode 

822/53/5-6.15 
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frequency is hence obtained by substituting z = i0 in (2.19), so that we get 
the mode frequency 

i - 
z T =-- zr(iO) = -- - -  k2(21 k2L + ,!,ll k~l) (2,20) 

nov  

with ~L=l~- /~ l iB the transverse component of l~, and 2• and 211 the 
transverse and the longitudinal heat conduction coefficients 

2 ~ = ~(nk 2 T /m)  d~(iO) (2.21) 

2il = 3(nk2  T / m ) [ d t ( i O )  + d2(i0)] (2.22) 

The fundamental gyro-plasmon frequencies are given by pw x, where 
w;, is defined as 

__ 1 2 1 2 + ( 2 ) 2  2 O p O B ] ~ l t )  1/2 (2.23) W2--  ~((Dp +(D2 + 2(DpfDBtflI)I/2 +~.~(60p 

with ~op = (ne2/m) ~/2 the plasma frequency. These frequencies satisfy the 
identity 

4 2 2 ( / ) 2 )  ..{_- 2 .2 s  = O (2.24) W 2 -- Wi~((.Op "-}- WpUJBr~li 

Up to second order in k the functions z : : ( z )  have the form 

z ~p( z ) = pw ;~ - ik 2 D ~o( z ) (2.25) 

The damping and dispersion functions read 

iv2 V Y 22(Z) 
2 2 - -  2 L " z + i c ( z ) J  D~p(z) = 2w~(2wx _ ogp - co 2) Nf~(z)  "t (2.26) 

The functions N ~ ( z )  and Nz)~(z), the explicit form of which is given in the 
Appendix, depend on the dynamic coefficients 6~(z) and on the seven 
dynamic viscosity coefficients of the magnetized plasma. The frequencies of 
the gyro-plasmon modes up to order k 2 follow by substituting z=pw;~ 
in (2.25): 

Z;.p =-- Z zp(pwz)  = pwx  -- ik  2 O~+p (2.27) 

with Dj_p =- D),p(pw).). 

3. DERIVATION OF T I M E  CORRELATION FUNCTIONS 
FROM KINETIC THEORY 

The particle-density time correlation function (t.c.f.), or dynamic 
structure factor, is defined as 

S~(k,z)=n ~fdpdp'C(k,p,p',z)=[l+nh(k)]Goo(k,z) (3.1) 
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The dynamic structure factor depends on the wave vector k only through 
its norm k and its component k u along the magnetic field, since the plasma 
is cylinder-symmetric. Additional constraints are obtained by employing 
parity invariance and the invariance under the combined effect of time 
reversal and of time translation. These symmetries imply 

C(k, p, p', B, z)= C ( - k ,  - p ,  - p ' ,  B, z) (3.2) 

C(k, p, p', B, z ) =  C(k, p', p, - ~ ,  z) (3.3) 

where the dependence on the direction of the field has been rendered 
explicit. From these relations it follows that S nn is an even function of k/i, 
o r  k l l  = kll/k" 

The matrix element Goo is obtained from (2.9) as 

Moo(k, z) 
Goo(k, z )  - ( 3 . 4 )  

A(k, z) 

with Moo(k, z) the minor determinant associated with the (0, 0) element in 
the determinant A(k, z) defined in (2.11). Using (2.12), we find 

, 2cv  , 2 
Moo(k, z) = - c o b [ z -  zT(z)] (3.5) 

in lowest order in k. Inserting this expression and (2.18) into (3.1) with 
(3.4), we arrive at 

S"n(k, z ) =  E1 + nh(k)]  z ( z 2 -  c~ (3.6) 
[z- 

It should be noted that the thermal mode has dropped out. We have 
retained terms up to order k 2 in the denominator, so that the positions of 
the poles in the complex z plane are correctly given by (3.6) up to that 
order. 

For large values of t the dynamic structure factor Snn(k, t) is 
dominated by the contribution of the poles that are closest to the real axis. 
These are the gyro-plasmon mode poles situated at z = z ~ . p ( p w j .  
Evaluating the residues, we obtain in the "pole approximation" the follow- 
ing asymptotic form for Snn(k, t): 

1 k 2 2 2 
w;~ - co B e iz~p, (3.7) s " ( k ,  2 

2w 2 - cop - co~ 

where we used that 1 + nh(k) = k2/k~ in leading order of the wavenumber. 
The amplitude in front of the exponential function is given here only in 
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lowest order of k; higher-order terms are considered in the Appendix, Since 
t gets large, it is expedient to retain nevertheless terms up to order k 2, as 
given in (2.27), in the exponent. 

The expression (3.6) may also be employed to study the dynamical 
structure factor for arbitrary finite t. To that end, we drop all terms of 
higher order in the denominator, so that it gets the simple form 
[I~p ( z - p w ~ ) .  Upon using a partial fraction decomposition and perform- 
ing the inverse Fourier transform, we get the expression 

1 k 2 2 2 
~2p W ). - -  (1) B e _ ipw~ d 

S"(k ,  t ) =  ~ k-~D Y-----2.-~-- 2w~. - % - co~ 
(3.8) 

which gives the structure factor for arbitrary t in lowest order in k. Hence, 
in the long-wavelength limit the dynamic structure factor is governed by 
the gyro-plasmon modes for all t. The result obtained here agrees with that 
derived in ref. 1. 

The time-dependent cross correlations of the particle density and the 
components of the momentum density are analyzed conveniently by 
introducing three reduced t.c.f.'s in the following way: 

f dp dp' p' C(k, p, p', z) 

= k l i S ~ ( k , z ) + k ; S ~ g ( k , z ) + k  A BSTg(k, z) (3.9) 

with k H = k.  BB and k l  = k -  klj. The functions St i  'g depend on k,/~H, and 
z; parity invariance implies that they are even in ~tl" Using (3.3), we can 
derive an analogous expression for ~ dp dp' pC; it differs from (3.9) by a 
minus sign in front of the last term. 

Kinetic expressions for the reduced t.c.f.'s are obtained straight- 
forwardly with the help of (2.9), (2.12), and (2.18). In leading order of the 
wavenumber we get, upon employing the pole approximation, the 
asymptotic expression 

�9 1 , ~ ,  pf~).p Sng(k, t ) = - x n t % 1 2 - , -  ,,, ~--'~.,2 : ,  
Z ;~p W ~ Z W ; t  - -  COp - -  COB) 

with the abbreviations 

e -'z~p' (3.10) 

fH,~p = w ~ -  ~ (3.11) 

f • = w~ (3112) 

f t,;~o = --ico BPW ;~ (3.13) 
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As before, the heat mode does not contribute in lowest order of k. 
Expressions for STg that are valid for arbitrary t and for vanishing 
wavenumber can be derived on a par with (3.8). These differ from (3.10) in 
containing pwz instead of z~,p in the exponential function. Substitution in 
(3.9) yields a result that corroborates the findings of ref. 1. In the Appendix 
the t.c.f.'s STg are studied up to order k 2. 

The expressions (3.7) and (3.10) are connected by an identity that 
follows from particle conservation. In fact, since 

Ot d p d p ' C ( k , p , p ' , t ) = - i  d p d p ' k P ' C ( k , p , p ' , t )  
m 

(3.14) 

one has the relation 

i m n ~  S~(k ,  t )=k~lS~(k ,  t) + k~ S~g(k, t) (3.15) 

which is easily checked to be satisfied by (3.7) and (3.10). 
The correlations between the components of the momentum density 

can be expressed in terms of reduced t.c.f.'s that are introduced by writing a 
linear combination of all independent second-rank tensors depending on 
and B. Using the properties (3.2) and (3.3), this linear combination can be 
cast into the form 

f dp dp 'pp 'C(k ,p ,p ' , z )  

= US~g(k, z) + Ell lit sgg(k, Z) 

+ (1~141~ + 1~ ~ll) Sf(k, z)+ ~• ~• S~g(k, z) 

+ ~. 1~• sgg(k, z) + ~. f3sgg(k, z) (3.16) 

with [il=/~liB, ~ the Levi-Civita tensor, and U the unit tensor. The 
functions Sgi g depend on k, kll, and z, and are even in kll. The kinetic 
expressions for these reduced t.c.f.'s that follow from (2.9), (2.12), and 
(2.18) read in the pole approximation and in leading order of k 

1 TS" gi, 2p 
sfg(k, t) = 5 nmku ~ 2w~. - co~ - co~ 

with the coefficients 

e ~z~t (3.17) 

2 2 (3.18) g l , ; . p  = w;~ - -  ~ p  

__ 2 4 1 , 2 (  .2  ( 0 2 ) +  2 2 g2, ;.o - cop[wx - ,;tu, p + co4]/[w~(w 2 -  cop - coB) ] (3.19) 



1246 Schoolderman and Suttorp 

g3,;~p = g4,xp = aOp 2 (3.20) 

g s,;.p = - ipa~ BCOp/W ~ (3.21) 

g6,~p = ipw i( w2 - a~Zp)/cs s (3.22) 

Again the contribution of the heat mode is of higher order in k. 
Expressions valid for all t and k = 0 follow from (3.17) by replacing z;~p by 
pw;~ in the exponential. In the Appendix the t.c.f.'s S gg are studied up to 
order k 2. 

The conservation of particle number gives rise to three relations 
among the t.c.f.'s (3.10) and (3.17): 

0 
i m - ~  S~lg(k, t) = Sgg(k, t) + ffc~lggg(k , t)-F fcz ggg(k, t) (3.23) 

0 
im -~ s~g(k, t) = Sgg(k, t) + lC~l sgg(k,  t) q- ]c 2 Sg4g(k, t) (3.24) 

0 
im -~ sTg(k, t) = fc~l Sgg(k, t) - sg6g(k, t) (3.25) 

Let us turn now to the correlation functions involving the kinetic 
energy density. Since the potential energy is not a one-particle property, the 
kinetic approach used here cannot be employed to obtain correlation 
functions for the total energy density. The cross correlations of the kinetic 
energy density and the particle density are described by the t.c.f. 

�9 p2 
s'k'n"(k, z) = f dp dP'~m m C(k, p, p', z) (3.26) 

It can be expressed in terms of the matrix elements G~ of the resolvent 
of X: 

s ~ k m " ( k , z ) = ~ n k B T [ l + n h ( k ) ]  Goo(k, z) + G4o(k, z) (3.27) 

Evaluating G4o in the same way as G0o in (3.4)-(3.5), we get up to second 
order in k 

3 .  
sek'nn(k, z) =-~ nk B T-~D [ l l - ~ z -  p(z)] 

[ 2 , ~ , / 2 3 k ,  2 -  2 2~2 - 2 2 ~2 b l ( z ) ( z  - csBk u) + b2(z)(z  - osB)ku~ 
+ k "~} 2C-"~v fop ~ ~ ( z ) ] - ~ - - - ~ r ~ -  ] (3.28) 
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The asymptotic expression for S'kmn(k, t) valid for large t is obtained by 
using the pole approximation as before. In this way we find 

23 k2 ~ 1 [ffP~ e_eZr, s~km'(k, t) = . k .  T--k~ D t - 

1 w 2 c,o 2 
~2p 2--  B "" 5 - ~ . 2 - -  2 

.-}- ~ e ,z,tp t 
2w; - ogp - o9 B 

1 ( ~ ) 1 / 2 ~  pw.~(W~--~)  

+~ . ~o~(2w~- ~ , ~ -  ~o~) 

X ~ 5 , ( p w ; )  (W2 -- ~P e (3.29) 
pw ~ + ic(pw ;~) 

We have employed (2.15) and (2.16) to evaluate 6;(z) at z - - i  0, as it 
occurred in the heat mode contribution. The gyro-plasmon mode con- 
tributions contain these dynamic coefficients, and c(z) as well, at the finite 
frequency z = p w a .  Since /3i(z ) and c(z) are not known explicitly for 
arbitrary z, it is not possible to establish a general expression for S~k~~ t) 
that is valid for arbitrary t, not even in leading order in k. 

To analyze the correlations between the kinetic energy density and the 
components of the momentum density, we introduce reduced t.c.f.'s as 
in (3.9): 

p2 
f dp dP'~m p'C(k, p, p', z) 

kin gkin  A kin 
=kliS~E g ( k , z ) + k • 1 7 7  g ( k , z ) + k A B S ~  g(k,z) (3.30) 

The left-hand side is a linear combination of the matrix elements Goi and 
G4i ( i=  1, 2, 3). Upon evaluating these matrix elements with the help of 
(2.12), we get for small k 

with 

~km 3 2 { h'~(z) 
S; g(k, z )=-~n(kBT)  1-[j.p[z-z;.p(z)] 

(~)1/2 3kB h;'(z) } 
+ 2cv 1-[;.p[z - z;p(z) ] [z - z T(z)] 

(3 .31)  

hll = z 2 - o3~, h'l = z 2, h~ = -iooBz (3.32) 
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and 
hi] = b l ( z ) z ( z 2 - o o ~ ) + b 2 ( z ) z ( z 2 - c o 2 - @ f c ~ )  (3.33) 

h~ =/Sl(z)z 3 +/)2(z) ZCOp2/~l (3.34) 

h;' = - i co~h~/z  (3.35) 

The t.c.f.'s for large t foUow by using again the pole approximation. 
The results are, in lowest order of k, 

S~ g(k, t )=  n(kBT)Z~' f , .xp  wx(2w~ 2 2 
- -  ( j ) p  - -  C O B )  2p 

+ co 2(2w2 _ 7p~ _--7~B) Ep~-~ ~ 
(3.36) 

with the same fi.;.p as in (3.11)-(3.13). The heat mode contributions are of 
higher order in k, since the residues are proportional to zr.  As before, the 
evaluation of the t.c.f.'s for arbitrary t is hampered by the tack of 
knowledge on the dynamic coefficients bi(z) and c(z) as functions of the 
complex frequency z. 

Because of particle conservation, the t.c.f.'s given in (3.29) and (3.36) 
satisfy the relation 

~? 
kiiS H g(k, t ) + k • 1 7 7  g{k, t) (3.37) im ~ S'k'"n(k, t) = -2 --gkin - - -  2 g k i n  . 

The heat mode contribution in (3.29) drops out upon taking the derivative, 
since it leads to a term of higher order in k. 

Finally, we consider the autocorrelations of the kinetic energy density, 
which are determined by the t.c.f. 

p2 p, 2 

s~km~k'"(k, Z) = f dp dp' ~mm 2--mn C(k, p, p', z) (3.38) 

Expressing it in terms of the matrix elements Guy and evaluating these with 
the help of (2.12), we find 

9 ku 2 2 2 2 .2 . 2 ~ 2  Z (Z l ~ p  [ m B )  + UdpWBr',.]l 
s~k~n"k~"(k, z) = ~ n(kB T) 2 --cv ~--~p [ - ~ - ~ ~  - zr(z) ] (3.39) 

for small k. The pole approximation yields the asymptotic expression valid 
for large t: 

sakingkin(k, 9 2 k B  i t t) = ~ n(kB T) - -  e - -'r (3.40) 
Cv 

The gyro-plasmon modes drop out because of (2.24). 
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The complete set of t.c.f.'s that are accessible in a straightforward way 
by means of kinetic theory has now been derived. We have found that some 
of these, namely those describing correlations between the kinetic energy 
density on one hand and the particle density or the momentum density on 
the other, contain dynamic coefficients with finite frequencies already in 
leading order in k, whereas the remaining t.c.f.'s do not depend on these 
coefficients in lowest order in the wavenumber. If higher terms in the 
expansion in powers of k are included, dynamic coefficients show up in all 
t.c.f.'s, as is shown in the Appendix. 

In a strongly coupled plasma the collisions are expected to dominate 
the collective behavior. In that case both the plasma frequency and the 
Larmor frequency are small compared to the collision frequency. The coef- 
ficients /)i(z) and c(z )  may then be assumed to vary slowly for frequencies 
up to w~., so that both can be replaced by their values near zero frequency. 
Using (2.15)-(2.17), we obtain for the collision-dominated plasma the 
t.c.f.'s (3.29) and (3.36): 

S~k,nn(k, 3 ~k 2 ( _  l__~_ ( c~ P'] 
t ) = 2 n k B T t r  ( n c v \ ~ r / ~  e 

izTt 

w~. - a) B iz~o' (3.41) 
+~  ~-~n +1 5----5-- 2 e 

2 w ~  - -  cop - -  a )  B 

~P 

• ~ PZ, xp -,z~, (3.42) 
, w~.(2w~ -- o) 2 -- co~) e , 
,,.p 

Thermodynamic quantities have taken the place of the dynamic coefficients 
in these expressions. We shall show presently how these results can be 
derived from magnetohydrodynamics as well. 

4. DERIVATION OF T I M E  CORRELATION FUNCTIONS 
FROM M A G N E T O H Y D R O D Y N A M I C S  

The linearized magnetohydrodynamic equations for a one-component 
plasma in a uniform static magnetic field read 

& 3n(r, t ) + n  V. v(r, t ) = 0  (4.1) 

0 
nm ~ v(r, t ) + V 6 P ( r ,  t ) -V-q:Vv(r ,  t) 

= neE(r, t )+  nmcoBv(r, t)/x ~ (4.2) 
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0 
c~t &(r, t) + (e + P) n V" v(r, t) 

- I ( 3 )  ] 1 V'~ , 'V  6e(r , t)+ ~kB -n--~r 6n(r,t) =0  (4.3) 
n s  V 

The local fluctuations of the particle density n, the hydrodynamic pressure 
P, and the energy density e have been written as 6n(r, t), 3P(r, t), and 
6e(r, t), respectively. The hydrodynamic velocity is denoted by v(r, t). The 
local electric field E satisfies the Maxwell equation 

V" E(r, t) = e 6n(r, t) (4.4) 

with e the particle charge. Furthermore, ~c r is the isothermal com- 
pressibility. The structure of the thermal conductivity tensor ~ and of the 
viscosity tensor q has been discussed in ref. 2. 

To derive the t.c.f.'s, a Fourier-Laplace transform is applied to 
Eqs. (4.1)-(4.3). The determinant of the resulting set of linear equations for 
6n(k, z), v(k, z), and &(k, z) determines the magnetohydrodynamic collec- 
tive modes. As in kinetic theory, the mode spectrum consists of one heat 
mode and four gyro-plasmon modes. In the present case the coefficients of 
damping and dispersion of the gyro-plasmon modes depend on static 
magnetohydrodynamic transport coefficients. 

The time-dependent correlations of the particle density fluctuations 6n, 
the momentum density g=nmv, and the energy density fluctuations & 
follow by solving the linear equations for these quantities in terms of their 
initial values at t = 0 and using the static correlation formulas, which have 
been established previously/v's) The determinant of the set of linear 
equations is a fifth-order polynomial in z, with frequency-independent coef- 
ficients. As a consequence, a partial fraction decomposition may be 
employed to write the magnetohydrodynamic t.c.f.'s as linear combinations 
of contributions from the five collective modes. The ensuing expressions 
can be compared to the kinetic results of the previous section. 

In leading order of the wavenumber the t.c.f.'s involving the particle 
density and the momentum density only can be obtained straightforwardly 
by solving the reduced set of equations that follow from (4.1)-(4.4) by 
discarding terms of higher order in k. In Fourier language this set reads 

-~ 6n(k, t) = - ink"  v(k, t) (4.5) 

nm ~ v(k, t) = -ineZ(k/k z) 6n(k, t) + nmcosv(k, t)/x g (4.6) 
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Solving these equations, we obtain 8n and v as linear combinations of the 
gyro-plasmon modes: 

k D  --ipw;.t (4.7) 
k ~-n 6n(k' t)= E 

~ ]  v(k, t ) = 2 a ~ p v L e  ,pw~, (4.8) 
s 

with the auxiliary vector (3) 

i 0) p 0) B 
p w ; 0 ) p  ~ •  + p 0 ) p  ~[t _."77-7,2 ~ A B (4.9) 

"~  = w ~ -  4 w~ w~ - 0 ) .  

and with coefficients a~.p that are determined by the initial conditions. 
Using the relations 

�9 . 2 ( 2 w ~  - 0)2 _ 0)~)  6 ~ ,  6pp, ( 4 . 1 0 )  
V2p V),p, = - - 1  -~- ~ 2 

W 2 - -  0) 2 

we easily find 

= ~ ; . -  0)8 6n(k, O) + v(k, O) (4.11) 
a~p 2(2w?---~-720)]) \ k B T /  v;.p- 

Inserting (4.11) into (4.7) and (4.8) and using the static correlation 
formulas, we recover the expressions (3.8), (3.10), and (3.17) (the latter two 
with z~. v replaced by pw~.), which have been established with the help of 
kinetic theory. Expressions for the t.c.f.'s containing terms of next to 
leading order in the wavenumber follow by using the full set (4.1)-(4.4) 
instead of (4.5)-(4.6). These are discussed in the Appendix. 

The correlation functions involving the energy density & cannot be 
compared directly to those found in the previous section, since the latter 
apply to the kinetic part of the energy density. In lowest order in k the 
magnetohydrodynamic equations and the static fluctuation formulas yield 
the following expressions for these t.c.f.'s in leading order in k: 

k 2 [ __1 (~___P) e_,=~, 
s~'(k, t) = ~k. v ~  i -  nk B \ S T  J. 

1 P+e  ~ 2 2 e-iz:~Pt~ I + - - ~  w~-0) , ,  
(4.12) 

n k . T ~  2 w 2  - 0)~ - 0) 2 j 

1 Pfi,~.p e -i~a€ (4.13) s~g(k, t) =-~ k .  T(P + e) ~" wx(2w2 0)2) 
2p - -  0 ) 2  _ _  
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with fi.~.p given in (3.11)-(3.13), and 

S~(k, t) = nkB TZ c ve-iz~' (4.14) 

The t.c.f.'s (4.12) and (4.13) satisfy a conservation law analogous to (3.37). 
The time-dependent correlation functions for the kinetic part of the 

energy density can be studied as well in the framework of magnetohydro- 
dynamics. In fact, we may define the hydrodynamic analogue of the 
microscopic kinetic energy density fluctuation as a linear combination of 
particle density and temperature fluctuations: 

3 
fiekin'h(r' t) - 3  2 B T fin(r, t) + ~ nkB fiT(r, t) (4.15) 

Alternatively we may write: 

-3k T[ ' (ae  (4.,6) 
fiek'"'h(r, t ) - -~  B Ln--~v\~/ + 1-nc.vT] c--~v 

As a consequence, t.c.f.'s involving fiekin,h can be obtained as linear com- 
binations of known functions. It turns out that we recover in this way the 
expressions (3.40)-(3.42), which have been derived with the help of kinetic 
theory. It should be borne in mind, however, that the latter two formulas 
could be found only for the collision-dominated plasma. The general 
expressions (3.29) and (3.36) contain dynamic coefficients, which are not 
encountered in a magnetohydrodynamic treatment. 

5. STATIC  L IMIT  OF T H E  T I M E  C O R R E L A T I O N  F U N C T I O N S  

In the previous sections the leading terms in the small-wavenumber 
expansions of the time correlation functions have been derived on the basis 
of kinetic theory and of magnetohydrodynamics. For vanishing t these 
expressions should reduce to the static correlation functions in the long- 
wavelength limit. (7'8) In the following we shall verify whether this 
constraint is satisfied. 

In deriving the kinetic expressions for the t.c.f.'s in Section 3 we have 
concentrated in particular on the asymptotic behavior of these functions for 
large t. The contributions that dominated this behavior have been obtained 
by considering the poles that are close to the real axis in the Laplace trans- 
forms. Obviously, expressions derived with such a pole approximation are 
of little use for the discussion of the static behavior. However, an essential 
simplification in the Laplace transforms of the t.c.f.'s that do not involve 
the kinetic energy density could be achieved by substituting the long- 
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wavelength expression Z;.p = pw~. for the gyro,plasmon poles. In that case 
expressions like (3.8), which are valid for arbitrary t, can be established. By 
substituting t = 0  in (3.8), and likewise in (3.10) and (3.17) (with the 
replacements z;~p ~ pw;.), we arrive at static limiting forms that are con- 
sistent with the equilibrium fluctuation formulas for the particle density 
and the momentum density. 

The analytic structure of the Fourier-Laplace transforms of the t.c.f.'s 
that involve the kinetic energy density is less trivial since these depend on 
the dynamic coefficients St(z) and c(z). In leading order in k, (3.28) gives 

3 k 2 i ~  ~176 dze izt ~ 2(22-0)2) 

) ( z  - + - -}- (~) 1/2 ('02 ~----'~p ( Z ~ W ~ / - - ~ Z " ~  J (5"1) 

where we have used (2.19) and (2.25). Upon using a partial fraction decom- 
position, the contribution of the first integral is easily evaluated for 
arbitrary t. The second integral can be calculated for t = 0 by using the 
inversion formula for the Laplace transform at t = 0. If we assume that 
both /~i(z) and c(z) are bounded for z-~ +ce +i0, we can deduce, by 
closing the integral contour in the upper half-plane and using the 
analyticity of /)i(z) and [ z+ ic ( z ) ]  -1 in that region, that the second 
integral vanishes for t = 0. Hence we have found 

�9 3 k 2 
S k'~ (5.2) 

in agreement with the static formula. 
The expressions (3.31) for the t.c.f.'s of the kinetic energy density and 

the momentum density can likewise be employed to derive static results in 
the long-wavelength limit: 

S k'ng(k, t = O) = 0 (5 .3)  

for i =  II, L, and t. 
Finally, we consider the autocorrelations of the kinetic energy density. 

From (3.39) we obtain for vanishing wavenumber 

3 i ~m+io e -izt 
dz (5.4) s~ki"~ki"(k' t)=-2 n(kB T)22-~_o~+io z + ic(z) 

where we used (2.19), (2.24), and (2.25). Writing ( z+ ic )  -1 as the sum of 
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z i and -ie[z(z+ic)] 1 and assuming as before c(z) to be bounded for 
z ~ + oe + i0, we prove easily 

S~km~k~n(k, t = 0) = ~ n(kB T) 2 (5.5) 

which corroborates the static fluctuation formula. 
It should be noted that an erroneous result would have been found by 

substituting directly t = 0  in (3.40). Indeed, the latter is an asymptotic 
expression which is valid for large t only. The fact that asymptotic 
expressions for time correlation functions involving the kinetic energy may 
yield wrong results at t = 0 has been noted before, both for neutral fluids (9) 
and for unmagnetized plasmas. (6) It is related to the lack of conservation of 
the kinetic energy, as we shall see below. 

Let us turn now to the magnetohydrodynamic expressions for the 
correlation functions. In the derivation of Section 4 the static fluctuation 
formulas are used as initial conditions. As a consequence, these formulas 
are recovered necessarily by substituting t = 0 in the magnetohydrodynamic 
expressions. In particular, we may check that (4.12)-(4.14) yield for t = 0  

T [ 1 
S~n(k, t = 0) = 3nkB ~nk~TxT 

S ~ ( k ,  t = 0 )  = 0 

S~'(k, t=O)=nknT2cv 

k 2 

(5.7) 

(5.8) 

In Section 4 we also considered correlation functions involving the 
fluctuation of the magnetohydrodynamic kinetic energy, as defined in 
(4.15). It was found that the t.c.f.'s for this kinetic energy fluctuation have 
the same form as (3.40)-(3.42). As the latter are now interpreted as 
magnetohydrodynamic formulas, we may substitute t = 0 so as to get 

�9 3 k 2 
s'k''hn(k, t = 0) = ~ nkB T--~n (5.9) 

~kin hrt 
s ,  ' (k, t = 0) = 0 (5.10) 

9 kB sekin'h ekin'h (k,  t=O)=-~n(kBT) 2 -  (5.11) 
Cv 

Comparison with (5.2)-(5.5) shows that for t = 0  the magnetohydro- 
dynamic t.c.f, for the autocorrelations of the kinetic energy density differs 
from its kinetic counterpart. For large t, however, these functions do agree, 
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as we have seen in the previous section. This somewhat peculiar state of 
affairs can be understood by returning to the microscopic definition of the 
kinetic energy density fluctuation in Fourier space: 

p2 
&ki"(k) = ~ ~ exp(--ik -r~) (5.12) 

In kinetic theory one treats the autocorrelations of this microscopic quan- 
tity. The magnetohydrodynamic kinetic energy fluctuation (4.16) may 
likewise be given as a microscopic quantity, in terms of the fluctuations of 
the microscopic particle density and the microscopic total energy density, (7) 

~n(k) = y, exp( - ik" r~) (5.13) 
c~ 

1 ~;, eZq �9 (k - q)  
- - - -  z_, _-Z. . . . .  72 Y. e x p ( i q ' r ~ , - i k - G )  (5.14) 6e(k)=Oekin(k) 2Vq(#O,#k) q ( k - q )  ~/~ 

The kinetic energy density fluctuation ~kin  can  be written now as the sum 
of a linear combination of cSn, 6e, and a remainder ~ i  kin that is 
"orthogonal" to both 6n and &, i.e., 

1 
-~ ( [6n(k)]* ~Sgki"(k)) = 0 (5.15) 

1 
-~ ( [6z(k)] * 6,~kin(k) ) = 0 (5.16) 

Upon evaluating 6g kin, it is found that the linear combination of 6n and & 
occurring in &kin is precisely the "hydrodynamic" fluctuation (4.16) with 
(5.13) and (5.14) inserted, so that we have 

~gkin(k) = &kin'h(k) + ~gkin(k) (5.17) 

As a function of time, t~e kin'h will change rather slowly, since it is a linear 
combination of quantities that are conserved in the long-wavelength limit. 
In contrast, ~Sg kin may decay rapidly through relaxation processes. 
Although &kin and &kin.h are different for t = 0, they will tend to the same 
limit as t goes to infinity. Correspondingly, the t.c.f.'s involving these quan- 
tities will in general be different for t = 0, but they must agree for t ~ oe. A 
particular case is the cross-correlation function of the kinetic energy density 
and the particle density. As a consequence of (5.15), one has 

S~k~""(k, t) = S~km'""(k, t) (5.18) 

both for large t and for t = 0. For intermediate values of t the two functions 
do not necessarily coincide. 
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APPENDIX. HIGHER-ORDER CONTRIBUTIONS IN THE 
TIME CORRELATION FUNCTIONS 

In Sections 3 and 4 we have studied the asymptotic form of the 
dynamic structure factor Sn'(k, t) for large t. The result (3.7), valid for 
small k, contains contributions from the four gyro-plasmon modes. The 
weights of each of these exponentially decaying contributions has been 
determined in leading (second) order of k. In this Appendix we will show 
how the terms of order k 4 c a n  be obtained from kinetic theory. It will turn 
out that in that order the thermal mode contributes as well. Moreover, the 
weights of the gyro-plasmon contributions will be found to depend on 
dynamic coefficients. Finally, we will give the general form of the t.c.f.'s $7 g 
and S gg up to order k 2. 

To derive the higher-order terms in S " ( k ,  t) we shall start by giving 
explicit expressions for the damping and dispersion functions (2.26) which 
determine the gyro-plasmon mode frequencies (2.25) in order k 2. From 
ref. 2 we obtain the following formulas for Nf;. and N2; "" 

nkB TN~z = --pw~(09BH 1 -- KF ~ ) -- iw2(co2 H2 + r H3) 

�9 2 2 ~ 2  q-pw;o)BfC~l(OgZpH4--COBK~i)q-l(.OpCOBkliH 5 (A.I) 

N2;= 2 2 -  + t i : / ~ ) 2 +  2"2-2  w,l[OOp(bl co~k• bl] 

2 2 ~2 -2  ~2 - copcoBkll [b 1 k• + (61 + 62) 2 ]~l ] (A.2) 

The functions Hi(fc~l, z) in (A.1) are polynomials in ]~1 that depend on the 
seven anisotropic viscosity coefficients rh(z),... , r/5(z), fly(z), and ~(z) of a 
magnetized plasma: 

H1 = -2(r]4 + r/5)s 2t/4 (h.3) 

g 2 =  rll  - -  4r/2 -t- 2r/3 - -  r / v  -t- 2 ~ k~l---~rll-t-4~2+tIv--2 ~ (A.4) 

2 
- -S t / l+2q2+r /w--2f f  (A.5) 

H4 = -2(04 + 2r/s)/~l + 2(774 + t/s) (A.6) 

~2 5 
H s = ( 3 r l l - 4 r l 2 + r l 3 + 6 ~ ) k l l - - - ~ r l ~ + 4 r l 2 + q 3 + r l v - 2 ~  (A.7) 
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The dynamic viscosity coefficients are determined by the cylinder- 
symmetric decomposition of the matrix element 

( i ] ( p C l j > + l i  Z Q 1 Q Z  j t  ( i , j = 1 , 2 , 3 )  (A.8) 
z - OSO 

[cf. (2.13) and (2.14)], as given in ref. 2. 
The dynamic structure factor up to order k 4 follows from (3.1) with 

(3.4) by retaining the next to leading terms both in the minor Moo(k, z) 
and in the determinant A(k, z). The latter has been given already in (2.18) 
with (2.19) and (2.25). The minor reads, up to second order in k, 

2Cv 
M o o ( k ,  z )  = - - z T )  

ik 2 
"q- - -  (Z "q- i r  jr. izCOBH2 + CO~B3) 

nm 

�9 "~u2k2{--Z2162"{ - (261 "1-62)/72s -t-(-02(61-1-52)2/~1} (A.9) 

The functions /7i(/~1, z) are 

H 1 = H 5 (A, 10) 

/12 = - - H  1 (A. 11 ) 

H 3  = H 2  - H5 (A. 12) 

Upon dividing Moo(k, z) by A(k, z), we obtain the asymptotic form for 
S"(k,  t) by using the pole approximation, as discussed in Section 3. The 
thermal mode then contributes through the last term of (A.9). Introducing 
the velocity of sound Cs through the thermodynamic relation 

Cs = nZmcv(ce -- cv) \OTJ ,  (A.13) 

with cp the isobaric specific heat per particle, we find the thermal mode 
contribution to S"(k,  t) as 

k c s c V _izT t 
2 2 1 -  e (A.14) 

k D COp 

The derivation of the contributions of the gyro-plasmon modes is rather 
more laborious. Taking the residues, we encounter derivatives OD~p/Oz at 
z =  pw~. These can be evaluated explicitly by using (2.26), (A.1), and (A.2), 
As a consequence, derivatives of the dynamical viscosities contained in H, 

822/53/5-6-16 
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and of the dynamical coefficients /~i(z) and c(z) show up. We prefer to 
present the result for S"n(k, t) in the form which still contains D~ o and its 
derivative: 

k c, cv 
S~(k, t) = ~ 1 - e -izr' 

kDCOp 

l k 2 p 

04) + 2 k 2 , wx(2w 2 - oo~ - 

x {pwx(wZx-~o2) ( l  + i k 2 ~ p  

with 

k 2 

n k n ~ T k ~ )  

+ ik2( 2 x + ik2 
- 3wx + coB) D;.p (w2/41 + ipw)ooBR 2 + (02/43) 

nm 

-w216~ + (26~ + 62)52/~ ] + 002(6~ + 62)2k~1"~ e -izi'ot + v~)k 2 
pw~ + ic 

(A.15) 

~;.p = ~ (D;,p - D;. _p) 

P 
-1 2 2 [2w~ D~p 

2w~ - e)p - co~ 

- w _ ; . ( D _ ) . p - D  ;., p ) ] - - -  

- w ~ ( D _ x p + D _ ~  p) 

~Dxp 
& (A.16) 

In all z-dependent functions, i.e. D).p, c3Dxp/c3z, hi, c, and /4i, one should 
substitute z = p w ; .  The term containing the isothermal compressibility 
arises from the static structure factor 1 + nh(k), which reads, up to fourth 
order, (7,8) 

k 2 1 k 4 
1 +nh(k)=k--rb nkuT~:rk  4 t- ... (A.17) 

The result (A.15) is rather complicated. Its main features can be sum- 
marized as follows. In fourth order Sn'(k, t) contains contributions both 
from the heat mode and from the gyro-plasmon modes. The amplitude of 
the heat mode term is determined by thermodynamic quantities. The 
amplitudes of the gyro-plasmon mode contributions depend on dynamic 
coefficients evaluated at the fundamental gyro-plasmon frequencies pw~o. 
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These dynamic coefficients can all be expressed in matrix elements of the 
frequency matrix, as given in (2.13), (2.14), and (A.8). These matrix 
elements are also encountered in the damping and dispersion parts of the 
mode frequencies. 

The t.c.f.'s which describe the cross-correlations of the particle density 
and the components of the momentum density, $7 g and S gg, can also be 
obtained up to order k 2 from kinetic theory. We give here only the general 
form of these t.c.f.'s: 

1 V pFi, ;.p 
S T g = s n k B r  z-,w~.(2w2~. 2 2 

e -  iz;.pt 

2 p - -  (l) p - -  (J) B ) 

1 pG i, ~.p -- iz2p t 
s g g = ~ n m k ,  r ~ w ; ~ ( 2 w  ~ 2 ~2B) e 

2p - -  (D p - -  

( i :  II, ~,  t) (A.18) 

( i=  1,..., 6) (A.19) 

In second order of k the heat mode does not contribute yet. The functions 
Fi, xp and Gi,~.p, which depend on z = pw;~, have the form 

F~, ;.p = fi,~.p(1 + ik 2 ~.p)  + ik2~,~p D;.p 

ik~ Ni ~p 
+ -  fffii,~p + vZ k 2 '~ 

nm pw;. + ic 
(A.20) 

Gi ,2p  = pw;. g,,;.p(1 + ik 2 ~ ; . p )  At- ik2~i~.p D;.; 

k 2 ik 2 
+ ~5..  + - -  ~ ~ + ~ k2 - -  

nkB T~c vk 2 nm '" 
"~i, 2p 

pw~ + ic 
(A.21) 

The coefficients ~,;.p, ~,~xp, and ~,i~p are simple functions of pwx, ~Op and 
~oe. Furthermore, ~,~p are linear combinations of the seven dynamical 
viscosity coefficients. Finally, ~'i,;~p are quadratic functions of the dynamic 
coefficients/~i. All z-dependent functions are to be evaluated at z = pw;. 

As a special case we may consider the collision-dominated regime. It 
may be verified that the kinetic expressions (A.15), (A.18), and (A.19) 
reduce in that case to the formulas that can be derived from the magneto- 
hydrodynamic equations of Section 4. 
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