
MOLECULAR PHYSICS, 1980, VoL. 40, No. 5, 1089-1105 

The retarded energy shift and pair polarizabilities of  
interacting atoms in an external field 

Application of r e s u m m e d  field-theoretical perturbation theory 

by L. G. S U T T O R P  and M. A. J. M I C H E L S +  

Inst i tuut  voor Theoret ische Fysica, Universiteit  van Amsterdam, 
Amsterdam, T h e  Nether lands 

(Received 17 December 1979 ; revision received 22 February 1980). 

The interaction energy of two atoms in the presence of an external electro- 
static field is evaluated up to sixth order with the help of covariant field- 
theoretical perturbation theory. The divergent Feynman diagrams entering 
the calculation are resummed according to a systematic procedure that has been 
developed in a previous paper. The pair polarizability and first hyperpolariza- 
bility that give the response of the interacting atoms to the external field are 
subsequently obtained from the energy shift by virtue of a Hellmann- 
Feynman theorem. The retardation effects showing up in the pair polariza- 
bility are discussed in detail. 

I. INTRODUCTION 

The response of atoms to externally applied fields is influenced by the inter- 
atomic interaction. This phenomenon manifests itself in the so-called pair 
polarizability and pair hyperpolarizabi]ities. Both the long-range dispersion 
[1-7] and the short-range overlap (see for example [8] and references therein)  
contributions to the pair polarizability have been studied. In the field-free 
case the interaction through the quantized radiation field entails retardation 
effects when the distance between the atoms is of the order  of a characteristic 
spectral wavelength [9]. As has been realized by Mackrodt  [10], analogous 
retardation effects are expected to occur in the pair polarizability. This  author 
considered the coupling of intermolecular interactions to a static field by means 
of non-covariant  Ray!eigh-Schr6dinger  perturbat ion theory. However,  such a 
t reatment  necessitates the evaluation of a number  of diagrammatic contributions 
which rapidly increases with per turbat ion order. In [10] the ensuing complex 
calculations have been avoided by considering in higher order only the subset of 
static interaction diagrams. An actual expression for the pair polarizability 
in the fully retarded limit has been reported by the present authors in a preliminary 
letter [11]. 

T h e  evaluation of the large number  of radiative processes that describe the 
interplay of the retarded interatomic interaction and the coupling to the external 
field becomes more feasible if a covariant field-theoretical perturbat ion theory is 
used. Even then the calculation is not straightforward, since Feynman diagrams 
are encountered that are divergent when considered separately. Recently we 
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have cast the field-theoretical perturbation theory in a form that systematically 
avoids these divergencies in any order [12-14]. In fact, by analysing the 
global block structure of the Feynman diagrams, a recipe could be given for the 
resummation of the divergent contributions. In the present paper we shall 
employ this resummed perturbation theory to evaluate the energy shift that 
arises up to sixth order from the coupling of the atoms with both the radiative 
and the external field. Subsequently it will be shown how the pair polarizability 
and the first hyperpolarizability follow from this energy shift. 

2. THE ENERGY SHIFT OF INTERACTING ATOMS IN AN EXTERNAL FIELD. 
EFFECTS OF ONE-PHOTON EXCHANGE PROCESSES 

To study the influence of a homogeneous electrostatic field E e on the 
retarded interatomic interaction we consider a pair of ground state hydrogen 
atoms a, b of which the nuclei are at fixed positions Ra, R b. The electrons are 
described by the relativistic Dirac theory, so that the energy eigenstates Is)  
of atom a have four-spinor wavefunctions ~ (x )  = ~b~(r) exp ( - iE~t) ; the overlap 
of the wavefunctions ~ ,  SB of the two atoms will be ignored. The total 
hamiltonian of the system can be split up into an unperturbed part describing 
the free atoms and the quantized radiation field At, and a perturbation involving 
the electric dipole coupling of the atoms with At and the external field Ae~= 
_g0t, r .  E e. Since the atomic ground level is degenerate one has to use de- 
generate perturbation theory; it can be formulated by means of an effective 
hamiltonian V that acts on the subspace of unperturbed ground states 1%)1 rio). 
We will be interested especially in the average AE of the energy shift over these 
ground states, so that only the trace of the effective hamiltonian is needed. In a 
preceding paper [12] expressions for V and Tr V have been derived in terms of 
time-ordered products of interaction operators, so that in the calculation of the 
energy shifts Feynman diagram techniques may be employed. 

The contributions to the averaged energy shift AE that depend on the 
interatomic radius vector R--- R a -  R b and the external field E e are of fourth and 
higher order in the coupling constant e. Fourth order perturbation theory leads 
to diagrams in which one photon is exchanged between the atoms, while two 
couplings to the external fields are present (see figure 1). The next contribu- 

tions to AE(R, Ee) are of sixth order and include both one- and two-photon 
exchange processes (see figure 2 and 3 ; radiative self-energy and vertex cor- 
rections are not considered here). The general method for calculating these 
processes through resummed adiabatic perturbation theory has been outlined in 
[13]. To elucidate it we shall briefly sketch in this section how the exchange of 
a single photon can be dealt with ; in the following section the more complicated 
two-photon exchange diagrams will be considered in detail. 

. . . .  

1 2 3 

Figure 1. Fourth order diagrams with one-photon exchange. 
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Figure 2. Sixth order diagrams with one-photon exchange. The labelling of atomic 
states is as indicated in diagram 5 ; the vertices are always labelled in the same cyclic 
order along the electron lines, starting with the photon vertices. 
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Figure 3. Sixth order diagrams with two-photon exchange. The labelling of atomic 
states is as indicated in diagram 17 ; the vertices are always labelled in the same cyclic 
order along the electron lines, starting with the photon vertices. 
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When the usual Feynman rules are employed the total averaged energy shift 

AE~ (a)= g-2 Tr V (with g the level degeneracy) that is associated with figure 1 
can be derived straightforwardly ; in terms of the scalar polarizability % (B 3) of 
the non-interacting atoms it reads 

- -  1 

AElr(4)(R, Ee)= -%a%bEeEe : VV 4-Tr--R" (1) 

As may be expected this energy shift is non-retarded, although the full electro- 
magnetic field has been included in the perturbation. Indeed, as has been noticed 
already by Mackrodt [10], equation (1) may be understood as originating from 
the static interaction between the dipole moments induced by the external field 
E e �9 

We shall now consider the next one-photon processes contributing to AE(R, 
Ee) in the electric dipole approximation, which are of fourth order in E e. In 
[13] it has been shown that in general both connected and disconnected Feynman 
diagrams may contribute to the averaged energy shift. In the present case these 
two types have been drawn in figure 2 as diagrams 5-12 and 13-16, respectively. 
(Of course diagrams with a and b interchanged have to be added.) They arise 
by taking N =  1 and N =  2 in formula (6) of [13], which represents the trace of the 
effective hamiltonian. 

Let us first study the diagrams 5-12. Parity arguments show that in the 
electric dipole approximation the intermediate atomic states a, a" and /3 have 
energies different from that of the grohnd states (that is k~, k~,,, kp40). The 
state ~', however, may be either an excited state (k~. 4 0) or a ground-level state 
(k~,= 0). In the latter case a time ordering of the vertices can be realized such 
that at a fixed intermediate time the energy of the total system is equal to the 
initial energy. Correspondingly, the contributions of the diagrams 5-12 to 
the trace of the effective hamiltonian will be divergent in the adiabatic limit if 
k~, = 0. Similar divergencies occur in the diagrams 13-16, where s'  = s 0' always. 
It has been demonstrated in [13] how a cancellation of the divergencies can be 
obtained by a resummation of the diagrams. In particular, the terms with 
k,,=O from diagrams 5 and 9 have to be taken together with 13, which has an 
identical trace of products of dipole moments. In the following the contribu- 
tions Tr  V ~ (with k~, = 0) and Tr  V' (with k~, ~ 0) will be evaluated separately. 

The contributions with k~, = 0 of the diagrams 5, 9 and 13 follow by applying 
the Feynman rules ; when in 9 the labels (%, a) and (%', s") are interchanged we 
get 

Tr  V~ = lim E - ie6 J da xl "" da x6 e (-dtll..-eltnl)3(tmax)~o(X3) 
~---~0 ~o, ~o', ~o 

• 

x Ave(xa)Ape(xs)A~e(x6)[O(t45)+ 0(tlz ) - 1]. (2) 

with S F and D F the bound-state-electron and photon propagators. For the 
parts of the propagators S F with k~, = 0 a representation in terms of functions 
O(t) rather than their Fourier transforms has been substituted here. According 
to the resummation prescription of the field-theoretical perturbation theory 
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[13] we now write 

0(t45 ) + 0(tlz ) - -  1 = O(t45)O(t13) - O.(t54)O(t31). (3) 

In contr~ist to the terms at the lef~-hand side those at the right-hand side each 
lead to separately convergent time integrals in the adiabatic limit ; consequently 
we may put E=0 explicitly in (2). When the 0 functions in (3) are Fourier 
transformed, the expression obtained from (2) may be evaluated along the familiar 
lines, with the result 

Tr  V ~ - . . . 5+9+13---- E E d~o= Eed==" Eed='=" Eedpop" Ee 
~o, ,~o co, co', 

="' a • d=,,=o. (VV - ko,,,k~U ) . d:,poF~ ). (4) 

The radial function F~ contains the intermediate excitation energies k~, k=,, 
inside a contour integral ; evaluation of this integral gives 

1 
F~ = 3k'"~ ~ :o~ df2[{k=(1 - i0) + f2}{k:(1 - i 0 )  + ~}kfl]-l[(~ - -  i0) -2 

1 
- (f2 + i0) -~] 4rrR 

( O b )  l 1 
k k=.,kp4 R" (5) 

The parts of the diagrams 5 and 9 having k=, # 0 can be evaluated straight- 
forwardly. In that case the radial function becomes 

1 1 
F'(R) = 2(1 - 3k=..o ) k=k=,k=,,kp 4rrR" (6) 

Comparison of (5) and (6) shows a general feature of the radial functions that 
arise in the present problem ; for the diagrams with k=,= 0 the singular energy 
denominator k., -1 is replaced by a differentiation with respect to other, non- 
vanishing, excitation energies. 

The remaining groups of diagrams (6, 10, 14), (7, 11, 15) and (8, 12, 16) in 
figure 2 may be treated likewise, whereupon all diagrams can be added. As a 
natural extension to (1) the total averaged sixth order energy shift due to one- 
photon exchange then takes the simple form 

1 
AEI~,(6)(R, Ee)=--~(7o.%b+%.7ob)E~ ~ Eel:e: VV 4~r--R (7) 

with 70 the free atomic hyperpolarizability (B 7). As in the fourth order one- 
photon process the energy shift shows no retardation, as may be understood on 
general grounds. 

3. THE SIXTH ORDER ENERGY SHIFT FROM TWO-PHOTON EXCHANGE 

The radial dependence of the fourth and sixth order interaction energies 
obtained so far is governed by the electrostatic dipole-dipole tensor VV(4rrR) -1. 
A more complicated radial function may be expected when different types of 
processes are included, namely those in which two photons are exchanged 
between the ground state atoms ; for the field-free case such processes are known 
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to lead to retardation effects [9, 15]. The first field-dependent contributions 
to the averaged energy shift involve sixth order perturbation theory. The 
relevant Feynman diagrams are those drawn in figure 3 and their crossed 
counterparts ; they result from formula (6) of [13] by putting N -  1 (d!agrams 
17-22) and N~-2 (diagram 23). The diagrams 17, 18 and 23 are divergent for 
k~, = 0 and have to be taken together in order to ensure a finite answer ; in the 
diagrams 19-22 no such divergence can occur, since parity arguments imply k~, 
k~,,, kp#0.  

The three singular diagrams 17, 18 and 23 are dealt with as in the preceding 
section. We first consider the part Tr  V~ having k~,=0. If in diagram 
18 the labels (%, a) and (%', a") are interchanged all three contributions can 
be added. The part of the electron propagator S F that is associated with 
ground-level intermediate states a' = %' leads to/9 functions that may be grouped 
together in the following way 

0(t61 ) + 0(t35 ) -- 1 = O(t61)O(t35) -- O(tte)O(t53). (8) 

This equation is completely analogous to (3) ; again each of the terms at the 
left-hand side leads to divergences in the adiabatic limit, while the two terms at the 
right-hand side can be treated separately for e-~0. Along the same lines that 
led to (4) we then get from the diagrams with non-crossing photon lines 

Tr V~ - E E d~o~' eod.~,. Eed~,~.. (VV-k~okpU). d#op 

-",~ x d...o. (V'V'-k~,,kpU). dp#oF~ R'). (9) 

For book-keeping reasons we formally introduced here two different radius 
vectors R and R' ; they are to be put equal after the operations V and V' have 
been performed. The radial function F~ R')  is obtained by carrying out the 
integrals over the four-momenta ks and k'~ with the help of appendix A 

F~ ~ ~ 16~3k~(k~,,+kp)RR ' 

• [sgn (E~,,)P(Ik~,,R+k~.,R' I )+sgn  (E~)P(lkpR+kpR'  [ )], (10) 

with P(x) defined in (A 5). 
The parts of the non-crossed diagrams 17 and 18 with k~, # 0 pose no problem 

in the adiabatic limit. The result for Tr  V'iv, n e has the same general form as 
(9), albeit with a different radial function and different coefficients in front of 
the two tensors U. The latter now read (k~,-k~,,)kp and -k~, ,kp respectively ; 
the radial function is again a double four-momentum integral, which may be 
calculated with the help of (A 8) 

1 
F'(R, R')=(1  - 3k,,0 ) 16rr 3 k~k:,;(k~,,+kp)RR' 

• (11) 

The term Tr  V'ls,~ e is equal to Tr  V'I~,~, apart from an interchange of the labels 
and ~". 

The contributions Tr  V ~ and Tr  V' of the diagrams 17, 18 and 23 with crossing 
photon lines may be derived along the same lines as followed above. When all 
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products of atomic dipole matrix elements are written in their rotation-invariant 
combinations Dai m (B 5) and Db (2) (B 2), it turns out that the crossed and non- 
crossed contributions only differ by a number of minus signs and can simply be 
added. The trace of the total effective hamiltonian arising from the diagrams 
17, 18 and 23 then becomes 

Tr  V17+18+23 

= _ g ~  E E ( ' )  

+ E e . {VV + a(k~,-  k~,,,)kpO}. {V 'V ' -  ak~,&pU}. Ee(Daii (4) + DaiiX(4))] 

x Dbt~)F,~(R , R') + ( ~ " ) } ,  (12) 

with 

F~(R,R ' )= (1--3k,,,0)~-~,+~3k,,, 0 ~ ~ 16~3k~(k~'"+ak,8) RR' 

x [sgn (E~,,,)P([k~,,R + k~,,R'] ) + a sgn (Ep)P(IkpR + kpR'] )]. (13) 

Formulae similar to (12) with (13) hold for the remaining diagrams 19-22 of 
figure 3 ; however in these diagrams no singularities are met for k~, = 0 and 
accordingly the derivatives with respect to k~ and k~,, are missing. The deriva- 
tion of these formulae is straightforward and will not be given here. 

A common feature of (12) and the expressions for the other diagrams is the 
presence of three types of terms, with four, two and no differential operators 
acting on the radial function. When in the leading one of these, with the 
product of operators VVV'V', the summation over a is carried out, the radial 
function contains the following combination of P functions 

1 
g~,o(R, R ' ) =  8~3(k 2_kp2)RR , [kp sgn ( E~)P([ k~R +k~R'[ ) 

-k~  sgn (ED)P([kpR+kpR' I )]. (14) 

By substituting for P(x) its Laplace transform (see (A 5)) we get the integral 
representation 

k~kp e--u(R+R') 
j du (15) g~#(R, R') = 8~r3 RR' o (k~2+u2)(kp2+u 2) 

which for the case k~=0 is defined by taking the limit k~$0. In fact, the 
function g~p(R, R') plays a central role here, in the sense that it determines the 
radial dependence of all terms in Tr  V. To show this one first has to make (12) 
and the analogous expressions homogeneous in V and V' with the help of the 
differential equations (A 6) for P(x). Subsequently the part of Tr  V that can 
not be written in terms of g~p(R, R') (14) may be seen to vanish as a consequence 
of the sum rules (B 9)-(B 11) for the dipole matrix elements. As a result the 
averaged sixth order energy shift AE = g-2 Tr  V due to all two-photon processes 



1096 L . G .  Suttorp and M. A. J. Michels 

is finally found to be 

AE2~(6)(R, Fe) 

= - E e 2 ( V V - U A ) : ( v ' V ' - U A ' )  Z [DaI(a)GI+DalI(4)GII 

+ DaHI(4)Gm]Db (~)- E e . (VV-UA) .  (V 'V ' -UA' ) .  Eo Y~ 

x [(DaIi(*)+ DaIII(4))GI + (D.III(4)+ DoI(4))G.  + (Dai(4)+ D~I~(4))GIH] 

• Db(2)+(a,~--~b). (16) 

Here we have added the contributions from diagrams in which the external field 
acts on atom b instead of a. The  radial functions G i are linear combinations of 
the canonical functions g~(R, R') 

[ 1 ( ~  ~)l(h@,.g~p+~g~.,~ ) G I =  (1 - 3a.,,o) ~-~ + �89 + (17) 

1 1 
GII=(k~,-k~)k~. g~P+ k~(k~.-k~,) g~'p 

1 1 
+ (k~,-k=,)k=,, g~"P-~ k~,(k~,-k~,,,) g="P (18) 

1 1 
GIII (k~,-k~,)(k~,,-k~) g~-~ (k~-ko,,)(k~,,,-k~,) g*''p 

1 1 
+ ~  g='P-~ (k~,-k~,,,)(k~,-k~,,,) g~"# (19) 

The  two-photon exchange contribution (16) to the averaged energy shift is 
much more complicated than the one-photon exchange terms given in (1) and 
(7). In particular, the radial function occurring here is not a simple power of R ; 
instead it is governed by the functions g ~  defined in (14). Precisely the same 
function shows up in the expression for the retarded dispersion energy of two 
atoms without  external fields [9, 15] ; indeed, the latter also involves the ex- 
change of two virtual photons. It should be noticed, however, that the present 
result (16) contains static terms as well, as is seen by substi tuting in (18) and (19) 

1 
g~,~(R, R')  = (1 - 3k.,,0)g~,p(R , R')  + 3k.,,0 167r 2 kpRR' (20) 

since P(x) = ~'/2 for x = 0 (k~, k~,, and k~ are always non-zero). The  precise role of 
these terms, and the detailed form of the retarded contributions at long and short 
interatomic distances, will be discussed further in the next section, in relation 
with the atomic pair polarizability. 

4. THE ATOMIC PAIR POLARIZABILITY AND PAIR HYPERPOLARIZABILITY 

The energy shifts that have been calculated in the preceding sections can be 
employed to obtain the polarizability and hyperpolarizability of a pair of atoms 
as a function of their separation. We start by considering the expectation value 
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of the dipole moments induced in the interacting atoms ; they can be written in 
terms of the applied external field Ee with the help of susceptibilities 13, 

<r162 Eo§ EeEeE , (21) 

where effects of higher non-linearity are ignored. The state ] ~b) is an eigenstate 
of the hamiltonian of the interacting ground state atoms in the external field, 
which satisfies ] 4 )  = P] r  with P the projector on the perturbed states. For 
such a state a (generally non-unitary) one-to-one mapping W= P W P  o exists onto 
an eigenstate [ r  P0[ 4 )  describing the free atoms (P0 is the projector onto the 
unperturbed states). (In particular, one may choose W=PPo(PoPPo) -1 and 
W-I=Po P, see [12].) As a consequence the left-hand side of (21) is equal to 
the matrix element between J C) and (4] = (4] W * W  of the transformed dipole 
operator W -1 ClaW. Since in the case of relativistic hydrogen atoms the set of 
ground states ] 4 ) =  [%)]fio) is degenerate we have to consider off-diagonal 
dipole matrix elements as well. For that reason (21) is generalized to an equation 
fo r  W -1 da W, with susceptibility operators 13a and ~i a connecting states ] 4 )  and 

<41 
w-1 doW=13o. Ee+ Sai EoEoEo. (22) 

The total dipole moment d a + d b follows from the hamiltonian H through the 
derivative - OH/~E e. Furthermore the identities W -1 W =  Po and W W  - I = P  
entail for the transform of this derivative 

which is a n operator form of the familiar Hellmann-Feynman theorem [16]. The 
transformed hamiltonian W -1 H W  itself differs from the effective hamiltonian V 
by a trivial term HoPo = EoP o. Consequently the susceptibility operators are 
related to V and W by 

-~E--~ +~V [ ~W] (24) (13a+13b). E e + l ( ~ a + ~ b )  " EeEeEe= V, m - l - ~ e  . 

This result shows how the total susceptibilities 13 and 6 can be obtained from 

6nergy level perturbation theory. If one is interested only in the averages 
and 8 over the chosen set of reference states 145 the trace of (24) has to be taken ; 
the commutator term then drops out, while Tr  V equals (Tr Po)AE, so that one 
gets 

(25) (~a+~b). Ee+~(~a+~b)! EeEeEe = c~Ee" 

The susceptibilities of an individual atom can be found from (24) and (25) by 
differentiating V, W an(t AE only with respect to the external fields that are 
connected to dipole matrix elements of that particular atom. 

The susceptibilities 13 and li differ from the atomic polarizability Qt and 
hyperpolarizability y, which are determined by the response to the local fields. 
The effect of the latter is expressed by writing 

W -1 daW~ot a . (Ee -Tab .  W -1 dbW)+~'~a i (Ee-Tab �9 W -1 dbW ) 

• (Ee-Tab . W -1 dbW)(Ee-Tab.  W -1 dbW ) (26) 
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with Tab the electrostatic dipole-dipole propagator VaVbl/(4rrlRa--Rbl). 
Relations between the polarizabilities 0t, y and the susceptibilities [3, 8 then 
follow immediately upon substitution of (22) into (26). In perturbation theory 
the tensors a, [3, y, 5 may be written as series in powers of the coupling constant e ; 
the leading terms in ~, ~ and y, ~ are of order e 2 and e 4, respectively. Upon 
insertion of these series expansions one can solve for ~ and y in successive orders 
of e. Up to order e 6 one finds 

cta(~) = [3a(~), ( 2 7 )  

(Xa(4)--~ p a  (4) Jr- ~ a  (2) . Tab. [$b (2), (28) 

~a(6) ----. ~a(6) + ~ a  (4) . Tab. ~b (~) + ~ a  (2) . T a b .  fib (4) 

+[3a (2) . Tab. ~b (e) . Tao. {Bb (2), (29) 

ya (4) = ~ia(4), ( 3 0 )  

~ a  (6) ---- ~a (6) _~_ 3 8 a ( 4 )  " Ta b . ~b(2) _~_ pa(2) , T a b .  ~b (4), (31 ) 

where in the second term at the right-hand side of (31) we used the fact that by 
definition ~ is symmetric in its last three indices (cf. (21)). 

In the following we shall be interested only in the averages ~ a -  g-~ Tr 0c a 
and Ya _-g-2 Tr Ya of the polarizability and hyperpolarizability over the un- 
perturbed energy eigenstates of the pair of atoms. These averages may be 
obtained in successive order of e by taking the traces of (27)-(31). Inspection 
of these formulae shows that one needs expressions for [3at~), [3at4), ba ~4) and 

for the averages ~a t6) and ~a t6). Whereas according to (25) the latter follow 

directly by taking the derivative ~AE/~[~, the former involve an additional term, 
namely the commutator in (24). However, when ~a and Ya are calculated up to 
order e 6 this commutator may be ignored. In fact, it is at least of order e 4 and 
starts in this order with a term proportional to [ a ,  so that it contributes only in 
the tensors fit4). These contributions turn out to depend exclusively on the 
variables of one of the atoms, and are multiplied in (31) by the polarizability [3 t2) 
of the other atom. In evaluating ~a(6) the average can therefore be taken over the 
ground states of each atom independently, which implies that the commutator 
contributions drop out. 

Let us now first evaluate the averaged polarizability ~ with the help of 
(27)-(31). The tensors [$(2) and ~(4) follow from the part of the effective- 
hamiltonian matrix V~opo,~o.po. that is quadratic in E~ and at most of order e 4. It 
may be evaluated along similar lines as in w 2, with the result 

[Voy(2)]ccoflo, cco'flo' = --  E ka -1 d~o~. Eeda~o' �9 EeSpo.~o' + (a*-*b), (32) 
cr 

EVlr  (4)] ~opo,~,o,po , =  ~ k~ -1 kp-z E e . (d~o~d~,~ o, + d~,~,o,d~o~,) �9 Tab.  (dpopdppo, 

+ d~,po,dsop ) . E e. (33)  

The susceptibilities pa  (2) and ~a (4) of atom a are obtained from these expressions 
by differentiation with respect to the externpl fields E, that are contracted to the 
dipole matrix elements of that atom. When the ensuing formulae are inserted 
into (27), (28) and the invariant D (~) is introduced by means of (B 2), the averaged 
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polarizabilities a~ (~) and a~ (~) are found as 

~a(2) = otoO , (34) 

aa (4~ = 0, (35)  

with % the free polarizability (B 3). The expression (29) yields upon introduc- 
tion of D (4~ (B 5) 

a a ( 6 ) = ~ a  (6 ) -  E ~k.,,ok~ -1 k~ "-1 kf l - l [U(  v �9 V ' )2 (Da l I  (4) -~DaI I I  (4)) 

1 
+ VV'V.  V'(2Dai(4)+Dan(4)+Daln(4))]Db(~)4zr~ RR" (36) 

The averaged tensor ~a (n) in (36) follows by differentiation from the sixth 
order two-photon-exchange energy AE2~, (6) given in (16) with (17)-(19). Upon 
substitution it turns out that the terms with (RR') -1 given explicitly in (36) are 
exactly cancelled by the static terms in ~a<n) that have been discussed at the end of 
w 3. As a consequence the polarizability tensor ~a (e) has a form slightly different 
from that for ~(6) 

a~(6)(R)=2(VV-UA)i (V'V'-UA')U E (DaI(4)G'I+DaH(4)G'n 

+ DaH~(~>G'H~)Db(~)+ 2(VV-- UA). (V'V' - UA') 

r 

x [(Dan(4)+ Dan1(4))G'i + (Dan/4) + D.I(4))G'n 

+ (Dai <4) + DaII(4))G'IH]Db (2). (37) 

The radial functions G' i are obtained from G i by suppression of the k=, = 0 con- 
tributions in the terms with g=,p ; in the expressions (17)-(19) this amounts to the 
replacement 

g~,p ~(1 - 3~,,,o)g~, p. (38) 

The results (34), (35) and (37) give the first few terms of the expansion of 
the atomic polarizability in powers of e 2. In fourth order the polarizability is 
not influenced by the interatomic interaction, as was already known for the case 
of electrostatic interactions [1]. A change in the atomic polarizability due to the 
interaction with a neighbouring atom is found only if at least sixth order per- 
turbation theory is employed. Before discussing in detail this pair polarizability 
we want to study first the hyperpolarizability y, which is connected to the 
processes of fourth order in the external field s The leading terms in powers of 
e have been written in (30) and (31). 

The part V0~ ~4) of the effective hamiltonian that is of fourth order in both IE~ 
and e may be evaluated by employing the same methods as used in w 2 ;  the 
result is 

[V07(4)]~o~o.~o'flo' = -- ~. ~..E,- (1 - ~/c...o)k~. -1 At- ~k~..0 < k~ -1 k~ ,,-1 

x d~o ~ . E e d ~ , .  E~d~,~..  Eeda.~o,.  Ee3po,~ o, +(a~--}b). (39)  
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As discussed before the contribution of 5a(4) that is associated to the commutator 
term in (24)drops  out ;  hence the non-linear susceptibility is obtained by 
differentiatior~ of (39) with respect to the fields '=e contracted with dipole 
matrix elements of atom a. The expression for 8a (4) found in this way is in- 
dependent of the variables of atom b so that upon averaging (30) and (31) only the 
average ~(4) of 8 (4) plays a role. This average follows directly from (39). Upon 
introduction of the invariants D (4) (B 5) one recovers for ~a (4) = ~ta(4) the diagonal 
f o r m  

"~a (4) = ~/0 U(4) (40) 

with Yo the scalar hyperpolarizability (B 7) and U (4) the fourth-rank unit tensor 
(B 6). 

The sixth order average hyperpolarizability ~a (6) follows by inserting into 
(31) the expressions for ~(2), ~(a) and for S (6). The former have been derived 
already, while the latter is found by differentiating AEly (6) (7) with respect to the 
external fields I: e that in the underlying Feynman diagrams are connected to 
atom a. The result for ~a (6) is 

[~a(6)]ijk! = [2yOa~Ob(SijVkV 1 q- ~ikVjVl q- 8i lVjVk)  
1 

+ �89176 + O~oaYOb)(~klViVJ + ~jlViVk + ~jkViVl)]  4"TrR" (41) 

In (31) all these terms are precisely cancelled by the terms containing Tab , SO that 
one ends up with the identity 

ya  (6) = 0. (42) 

Hence we conclude that sixth order perturbation theory is not enough to detect 
effects of the interatomic interaction on the hyperpolarizability. This conclusion 
is analogous to that reached for the case of the polarizability, where we fouffd 
&a (4)= 0 ; two-photon-exchange processes had to be included in order to obtain 
a non-vanishing pair polarizability. Similarly one expects a non-vanishing pair 
hyperpolarizability if two-photon-exchange processes of eighth order are 
evaluated. Such a calculation will not be undertaken here. 

The pair polarizability ~a (6) depends on the interatomic separation through 
the radial functions g~p defined in (14). These functions, which also occur in 
the field-free dispersion energy, give rise to retardation effects for very large 
interatomic separations, 

For large R and R' one may write g~# as 

1 
g~p(R,R')=Scr3k~k~RR,(R+R,), R,R'>>Ik~I-1 , Ikp[ -1 (43) 

since P(x) = x -1 for x >> 1. As a consequence the functions G'r get the form 

C L 
G'r R ' )=4w3RR,(R+R,) ,  ( i= I ,  II,  I i I )  (44) 

with the coefficients 

e L = [ ( l _ 8  k 0)~+13~. , .  ( ~ _ ~ + ~ ) ]  1 (45) 
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Upon insertion of (44) into (37) the radial differentiations can be carried out 
straightforwardly. The averaged polarizability for large interatomic separations 
then becomes 

Qta(6)L(R)=~Oa% b 3 6 U + 7 - ~ -  192rra RT. (46) 

So we have found that the atomic pair polarizability depends on the atomic 
properties through the product Y0% of the free atomic polarizabilities only ; it 
falls off as an inverse seventh power of the separation R [11]. This result shows 
a close analogy between the asymptotic forms of the pair polarizability and the 
interatomic dispersion energy, since the latter is proportional to  OtOaotOb R-7  [9]. 

When the interatomic separation is small compared to the characteristic 
atomic wavelength ]k I-1 the function g~# may be replaced by its short-range 
asymptotic form 

sgn (E~EB) R, R' ~ I ka[-1, [kill-1 (47) 
g~z(R, R ' ) =  16~([k~[ + Ikal )RR"  

which follows by inserting in (14) P(x)=rr/2 for x=O. It should be borne in 
mind, however, that the short-range asymptotic condition ]klR ~ 1 cannot be 
satisfied simultaneously for all energy states occurring in the sums over a, a', ~", t3. 
In fact, for the negative energy states one has [k I ~ 2m and hence ]k[ R >> 1 for all 
R that correspond to non-overlapping atoms. As a consequence the pair 
polarizability for small interatomic separations will contain both limiting forms 
(43) and (47) of the functions g~z" Since the occurrence of negative energy 
intermediate states is a direct consequence of the use of a relativistic description 
for the electrons the short-range pair polarizability will simplify upon taking the 
non-relativistic limit. For the dipole matrix elements d~ ,  this limit is found by 
performing a Foldy-Wouthuysen transformation and retaining only the leading 
terms in powers of m -a. (Actually the correct order parameter is the fine- 
structure constant, since one has p/m ~ 1/mr ~ o~ and k/m,,, a S.) When these non- 
relativistic approximations for d~ .  are inserted in D (~) and D (4), the contributions 
of negative energy intermediate states to the pair polarizability (37) turn out to 
be at least a factor a 4 smaller than the terms with positive energy intermediate 
states, so that they play no role in the non-relativistic limit. The short-range 
asymptotic form of the pair polarizability follows by inserting (47) in the radial 
functions G'i, which then become 

Ci s 
G'i 16rr z RR'  

with 

ci iS=( 1 _ 3k.,.o) 1 I 1 

(48) 

1 

+ k~)k~,, 

-F (k~,, +l-k~)k~], (49) 

1 ] 8 1 
(k~,, + k # ) k ~  - k.,,o k~k~,. 

.(&+ (50) + 
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1 1 1 
ClIIS = ( 1 -  3k '"~ + (k~ +kB)(k~,,+ka) ] k~,+k D 

k~+k~,,+k# (51) 
- 3k,,,o k~,k~,,,(k~, + kp)(k~,,, + k~)" 

When the radial differentiations in (37) are performed the non-relativistic pair 
polarizability becomes in the short-range limit 

[(DalC4u + Dali(4)Cli S + Dalii(4u (Zq2U ~a(e)S(R) E ~r r162 r n,  k /3(k > 0) 

+ {(Dali (4) + DaliI(4))ci  s + (Dali i  (4) + Dai(4))cii  s + (Dai(4)+ Dai i  (4)) ( ,,)]1 
XCIIIS}Db (2) 2 U + 6 - ~  ~--~. (52) 

This asymptotic form for the pair polarizability coincides with the result that has 
been found by Jansen and Mazur [1] and later by Mackrodt [10] ; these authors 
limited themselves to the electrostatic part of the interaction diagrams and 
applied non-relativistic Rayleigh-Schr6dinger perturbation theory. 

5. CONCLUSION 

In this paper we have studied the effect of an externally applied field on a 
pair of hydrogen atoms that interact via the quantized radiation field. This 
problem, which is almost forbiddingly complicated in standard non-covariant 
perturbation theory, could be handled by  virtue of a field-theoretical method, 
which involves a resummation of Feynman diagrams. So the present calculation 
serves as a good illustration of this powerful method, which can be used quite 
generally. The  resulting expressions for the polarizability a and the hyper- 
polarizability y up to sixth order in e are given in (34), (35), (37) and (40), (42), 
respectively. It is seen that the one-photon exchange processes give no con- 
tributions to Qt and y. In contrast, the exchange of two photons leads to a true 
pair polarizability that shows retardation when the interatomic separation is of the 
order of a characteristic atomic wavelength. In fact, the radial dependence 
changes from a short-range R -6 (52) to a long-range R -7 (46) behaviour, just as 
was found by Casimir and Polder for the field-free dispersion interaction. 

This investigation is part of the research programme of the Stichting voor 
Fundamenteel Onderzoek der Materie (FOM), which is supported financially 
by the Nederlandse Organisatie voor Zuiver-Wetenschappelijk Onderzoek 
(Z.W.O.). 

APPENDIX A. FEYNMAN INTEGRALS FOR THE TWO-PHOTON PROCESS 

The diagrams with two-photon exchange that have been considered in the 
main text lead to the following Feynman integrals : 

- i  
I(R, R')=(27r)---- 5 I d '  kd'k'3(k~ 'o) exp ( ik .  R + i k ' .  R') 

1-1 x {E~(1-iO')-E~o+,~kO}(kO~-k2+iO)(k'O~-k'~+iO) (A 1) 
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with A~ = + 1 and k =  ]k]. To evaluate these integrals one starts by making an 
expansion in partial fractions 

. .  {E~(1 - i 0 ) - E ~ o +  A~k ~ 
r162 

[ ? = ~ {E~(1-iO)-E~o+h~k~ } Y. (kp-h~hpk~,) (A2) 
~=1 /3(r 

with k~ = E~ - E~o. The  integral over k ~ in (A 1) with (A 2) may be carried out 
by closing the integration contour in either the upper or the lower part of the 
complex plane. If these contours are used in a symmetric way one gets : 

I dk~ {E~( 1 - i0) - E~o + h~k~ ~ - k 2 + i0)(k ~ - k '2 + i0)] -1 

C sgn (E~) 1 1 ] 
= ~ri [2(k~, 2 _ - ~ ) - ~  _ k'3) 2k(k~ - A~k)(k 2 - k '2) 2k(k~ + A~k)(k 2 - k'2) " 1 

sgn (E~) ( 1 
"B'i k__k,]+(k~k ' )  (A 3) +k '  

where (kok ' )  stands for the terms resulting from the preceding ones by an 
interchange of k and k' ; k~ sgn (E~) could be replaced by [k~[, since E~o is the 
lowest positive energy level. 

When the trivial angular integrations in (A 1) have been performed, the term 
( k - k ' )  -1 may be used to extend the integral over (k +k ' )  -t  to negative values of 
k'. Complex contour integration in the k' plane then yields 

dk dk' [ 1 ( 1 1 , )  ] 
~ ~ ~ - ~ - ; e x p ( i k .  R + i k ' .  R') Ik=l +k k+k' k--k +(k,-->k') 

= rrP(Ik.R + k~R'] ) 
(h  4) 

RR' 

Here the function P(x) is defined as 

co s in t 0~ e -xt 
P (x )=  0I d t x + t =  0~ d t ~  (x>t0)', (A5)  

it obeys the differential formulae 

dP(x) d 2P(x) _p(x )+~  (x>0)  (A6)  
dx =-Q(x ) ,  dx 2 = 

where Q(x), on a par with P(x), is given by 

oo cos  t oo t e -xt 
Q(x)= I d t - - =  S d t - -  (x>0) .  (A7)  

o x+t  o l + t  2 

The functions P(x) and Q(x) are related to the sine and cosine integrals [17]. 
Collecting the results we have found for the Feynman integrals 

sgn (E~) e(lk~R+k~R']) (A 8) 
I(R, R')= ,=~ 16rr 3 H (kp- h~hpk~) RR' 

~( r ~) 
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APPENDIX n. INVARIANCE PROPERTIES AND SUM RULES OF DIPOLE MATRIX 
ELEMENTS 

For an atom that interacts twice with the electromagnetic field the ensuing 
product of dipole matrix elements d ~ , = - e ( a  I r la ' )  may be writte.n in an 
invariant form as 

g-a E E dao~ k d ~ o / =  E Da(2) $kt 
~o ~(k~ const.) a(ka eonst.) 

with the abbreviation 

(B 1) 

Da(2) = �89 E I d~o~l ~ (8 2) 

In particular, (B 2)-occurs in the averaged polarizability tensor a0U of a free 
atom, the scalar part of which reads 

% = 2  E ka -1 Da(2)" (B 3) 

Similarly, the product of four dipole matrix elements can be expanded in 
terms of rotational invariants 

g-1 ~ ~ d~o~k d~, t  d~,~,m d~,, on eL 0 co, ~', ~ 
(kc,, ks ' ,  k~. const.) 

= E (Dai(4) ~kt~mn + Daii(4) ~km~ln + Daiii(4) ~kn~lm) ; (B 4) 
(kc,, k~,, kze const.) 

the three invariants Dai(4) have the form 

Da~ (4) = g-1 ~ (cii ~kZ3mn + Ciii 3kmSl~ + Ciin 3k~St,n) 
ot~ 

x d~o~k dr ~ do~,a,, m d~,,~o ~ (B 5) 
--1 1 with the coefficients c l j - g 3 i j - ~ .  These fourth order combinations enter in 

the averaged hyperpolarizability 70 U(4), with U (4) the fourth-rank unit tensor 

Uijkt (4) = �89 + 3ik3jl + 8.3ik) (B 6) 

and 7o the scalar hyperpolarizability 

( III ) [ ~_]_1 ( ~---~" ) 1 (87) 70 =24 ~ ~ Dai (') (1-3k,,,0)k~" ~Sk~,,0 7 k +  ~ 1 
oq ~', a" i = I kakoj," 

It may be remarked that for the non-relativistic hydrogen atom both the polariza- 
bility and the hyperpolarizability are known exactly [18, 19]. 

Both Da (2) and Dai (4), as defined in (B 2) and (B 5), satisfy sum rules. Some 
of these may be derived from the double-commutator identity [[H~t, r], r] = 0, 
with Hat the atomic Dirac hamiltonian. Upon taking the matrix elements of 
this double commutator between <c~ I and l a") and insertin~ a complete set of 
states [a') one finds 

~(k~+k~, , -2k~, )d~,d~,~ , ,=O.  (B8) 

From this relation one immediately obtains the sum rules 

~.  k ~ D a  (~) = 0 (B 9) r162 
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" ~  (4)  E (2k~-k~ ' )Uai  = E (2k~,-k~-k~, , )Da~ (4) 
cr r 

= • (2k~.-k~,)D~i(4)=O. (B 10) 

A different type of sum rule for Dai (4) follows f rom the commutator  identity 
[r, r] =0 ,  viZ 

~,,~ (Dazi(4)-Dazzi(4))= ~,, (Dai(4)-Dal i (4))= ~, (Dali(4)-DaIi i (4))=O: (B 11) 

T h e  spherical tensor formalism may be employed to derive general expressions 
for Da (2) ~nd Dai (4) in terms of the reduced matrix elements d j j ,  of the dipole 
moment.  For  the relativistic hydrogen atom the ground states have Jo =  �89 ; if 
the intermediate state ]a'> is chosen to be one of the ground states one can prove 
f rom rotational invariance the identity 

. ~k.,,o[Oaii(4)q-Oaiii(4)]=O. (B 12) 

(k~, k.- const.) 

This  relation has been used in [11] to give a different form for the asymptotic 
long-range pair polarizability (46) with (B 2 ) a n d  (B 7). 
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