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The atomic pair polarizability for hydrogen atoms is calculated within the framework of covanant quantum electro-
dynamics. Retardation effects are shown to change the dependence on the interatomic scparation R from R %wRrR7
for R large compared with a characteristic wavelength of the atomic spectrum I'or harmonic oscillators the pair polarizabil-
1ty 1s proved to be independent of the interparticle interaction.

The polarizability of a pair of atoms is non-additive,
owing to the interactions between the atoms. This
phenomenon, which manifests itself 1n the density de-
pendence of the Clausius—Mossotti function, has been
discussed extensively in the literature. In fact, both
the long-range dispersion [1—7] and the short-range
overlap [8,9] contributions to the pair nolarizability
have been studied. On the basis of a perturbation-
theoretical treatment of the instantaneous electrostatic.
interaction between the atoms, the long-range pair
polarizability has been found to fall off as an inverse
sixth power of the interatomic separation R [1,2].
However, at distances comparable with a characteristic
wavelength of the atomic spectrum retardation effects
may be expected [10], in close analogy with those
showing up in the interatomic pair potential; for the
latter case the radial dependence at very large separa-
tions is given by R—7 rather than R—6 [11}. Such re-
tardation effects may be obtained in the pair polariza-
bility if the exchange of virtual photons is included in
the interaction, as will be shown 1n the present letter.

The induced electric-dipole moments {d) of a set
of atoms 1n the presence of an external electrostatic
field E are interrelated by the equation

d)=a,- [EO - b(Z#%) T, -<d,,>] : Q)
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with a the atomic polarizability and T, = Vv,
(1/4nR ;) the static dipole—dipole propagator. Fol-
lowing ref. [1] we also introduce tensors B by writing:

(d)y=B,-Ey; (2)

from (1) and (2) the relationship between & and B is
found to be:

Hence, to derive the polarizability one may as well
start by evaluating B.

We shall consider a pair of hivdrogen atoms, with
fixed nuclei, of which the electrons are described by
a relativistic Dirac hamiltonian H,. In the presence of
a quantized radiation field A# and a static external
field AL, with —VAg = E, and Ay =0, the total ham-
iltonian of the system can be split up into a free
part and a part that takes into account the interaction
of the atoms and the total electromagnetic ficld
AF + Af. In accordance with (1)—(3) this interaction
will be treated in the electric-dipole approximation.
Perturbation theory then leads to an expression for
V(R,E,), which is the interatomic potential energy
averaged over the degencrate ground states of both
atoms independently. Subsequently, the polarizability
follows through the relation B, + B, = —32V/dEy3E,.
forEy=0.

In lowest, i.e. second-order perturbation theory,
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Bis the polanizability of a free atom, which can be
written Js:

Q) =q? = ? 2k;'1pPu; @

here the sum over a runs over both positive- and neg-
ative-energy excited atomic states o, while k is the
energy difference between these states and the g-fold
degeneratc ground states og. Rotation-invariance ar
guments permitied us to introduce in (4) the snvariant
part

DR =g ! ? ‘daoulz )
0

of a product of dipole transition matrix elements.

In fourth order the interaction energy V(R,Ep) 1s
due to the exchange of one photon between the atoms.
It may be calculated in the framework of covariant
perturbation theory by using the connection with the
scattering matrix, viz.

S =_oms(E.- E) VD, (6)

where the delta function expresses encrgy conservation
between the final and initial states f and i of the sys-
tem; in fact V(R, Eg) 1s the averaged eigenvalue of the
matrix Vt(i4)- The one-photon exchange processes are
represented by the Feynman diagrams of fig. 1, which
can be evaluated by means of the standard rules of co-
variant quantum electrodynamics. The first diagram
for instance leads to the following contribution in

B

—g-2 25 2023 Jak exp(ik- RY(k2k kg1
agafoB

X dy gy s Kk + kkgU): dog dgg )

with k the momentum of the exchanged photon. The
leading product of dipole moments in (7) is due to
the interaction with the static extemal field, while the
last factor of (7) contains two terms, arising from the
interaction with the time and space components of
the quantized radiation field, respectively. Upon car-
rying out the integration over k, using rotation invari-
ance for the dipole matrix elements and adding the
contributions of the other diagrams one gets:
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Fig. 1. Diagrams for one-photon exchange.

B = &Ea 4(kkg) ' DPDPAT (8)

When both (8) and (4) are substituted into (3) we find
ai¥ =0, 50 that in fourth order the polanizability is
not influenced by the interatomic interaction, as was
already known for the case of electrostatic interactions
[].

Sixth-order perturbation theory leads to the two-
photon-exchange diagrams of fig. 2, together with those
having crossing photon lines. The contribution of
each diagram contains two dipole matrix elements for
one atom and a product of four for the other; upon
employing rotational invariance the former may be re-
lated to the invariant D{?) defined in (5), whereas the
latter gives rise to three types of invariant contribu-
tions, viz.

a_
Dfl=g-1 Z{f (€i18418 mn  €28kmB1n * €138 10 1m)

X dk

I m_n
aoadaa'da'a” da"ao s €3]
with ¢;; = ¢ 8;; — 35. The quantities thus defined are
connected by sum rules. In fact, the closure relation
for the atomic states may be used to prove the identi-
ties
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Fig. 2. Diagrams for two-photon exchange.
4 YR 4 4
20 - 0= 2200 - P}

= 208 - =o. (10)

Furthermore the vanishing of the repeated commuta-
tor (d, [, d]] implies:

2 (Zka - k:x) Dl(z‘?? = ? (2ka' - ka - ka")Dg?
a

-3 ke - k) D=0, an

which are generalizations of the relativistic Thomas—
Reiche—Kuhn sum rule Eakqu =0.

The general formulae for Ba(ﬁg and a{® that are ob-
tained by evaluating all diagrams of fig. 2 are rather
lengthy and will not be given here. The dependence
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on the interatomic separation turns out to be governed
by the function P(x) = c1(x) sin x — si(x) cos x, witl:
x =2k, |R. The same function also occuss 1n the dis-
persion energy and indeed gives rise to retardation for
very large interatomic separations. In particular, if
R> |kml‘l the asymptotic sixth-order polarizabiity
is found to be:

a®= 2 5 kakarkg)™!

o, o,
X[ -8, o)kz! (Df;f{ + D},‘g +D)

— 18y okt +&7H DA DR (6u + 7{2[2)/4:7:3)1{7 :
12

The nonrelativistic limit of the expressions arrived
at may be obtained by making a Foldy —-Wouthuysen
transformation of the atomic operators. The asymp-
totic expression for the retarded pair polarizability
then retains the same form as in (12), except that the
sums are extended over positive-energy-intermediate
states only. In the electrostatic approximation, i.e. for
R<k, 1, the nonrelatwistic formula of Jansen and
Mazur [1] is recovered.

In ref. [1] the results for the electrostatic pair po-
larizability were applied to a pair of harmonic oscilla-
tors. It was found there that in this special case a(®?
vanishes; it could be proved even quite generally that
the polarizability of a set of identical harinonic oscil-
lators is not influenced by the interparticles interaction
(cf. also ref. [12]). The same result may be shown to
hold true for the retarded pair polarizability. In pas-
ticular this may be verified for the sixth-order expres-
sions derived here, but again a general proof may be
given. The hamiltomian for a set of identical harmonic
oscillators in an external field and a quantized radia-
tion field reads:

=23 [m~(p, +ed,)? +} mkzr3 +er, Epl
a

+ Zg-;e%a-rab-r,, H_y, (13)
a,

with & the wave number of the harmonic oscillatoss.
The Ehrenfest equations for an eigenstate of the total
hamiltonian yield (dH/dr,) = 0. Since in the dipole ap-
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proximation the vector potential A, of the radiation
field is independent of r, one recovers in this way for
d, = —er, the relation (1) witha, = (e2/mk?) U the
free polarizability of a harmonic oscillator.
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