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The atomic pair polarizabrlity for hydrogen atoms is calculated within the framework of covarumt quantum electro- 
dynamics. Retardation effects arc shown to change the dependence on the intcrdtomic scpdration R from KG to R-’ 
for R large compared wrth a characteristic wavelength of the atomic spectrum I’or harmonic oscillators the pair polarirabd- 
rty 1s proved to be mdcpendcnt of the interpartrclc interaction. 

The polarizabrlity of a pair of atoms is non-addittve, 

owing to the interactions between the atoms. This 
phenomenon, which manifests itself m the densrty de- 
pendence of the Clausius-hfossottr function, has been 
discussed extensively in the htcrature. In fact, both 
the long-range drspcrsion [l-7] and the short-range 
overlap [8,9] contributions to the pair ?olarizabrlity 
have been studied. On the basis of a perturbatron- 
theoretical treatment of the instantaneous electrostatic 
interaction between the atoms, the long-range pair 
polarizability has been found to fall off as an inverse 
sixth power of the mteratomic separation R [I, 21. 
However, at distances comparable with a characteristic 
wavelength of the atomic spectrum retardation effects 
may be expected [IO], in close analogy wrth those 
showing up in the interatomic pair potential; for the 
latter case the radial dependence at very large separa- 
trons is grven by Rs7 rather than Rm6 [I 11. Such re- 

tardation effects may be obtained in the pair polariza- 
bility if the exchange of virtual photons is included in 
the interaction, as will be shown m the present letter. 

The induced electric-dipole moments (d) of a set 
of atoms m the presence of an external electrostatic 
field E. are interrelated by the equation 

(da) =aa * 
[ EO - bgaj lab s(d~) 

1 
9 (1) 
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with a the atomic polarizability and Tab E 0, V, 

(1/4nRah) the statrc dipole-dipole propagator. Fol- 
lowing ref. [ I] we also introduce tensors R by writing: 

(da) =ba -& ; (21 

from (1) and (2) the relationship between dt and 6 is . 
found to be: 

Silence, to derive the polarizability one may as we11 
start by evaluating 6. 

We shall consider a pair of hydrogen atoms, with 
fixed nuclei, of which the electrons are dcscrrbed by 
a relativistic Dirac hamiltonian HD. h the presence of 
a quantized radiation field Ap and a static external 
field A;, with -VA: = E. and A, = 0, the total ham- 
iltonian of the system can be split up into a free 
part and a part that takes into account the interaction 
of the atoms and the total electromagnetic field 
Ap + At. In accordance with (l)-(3) this interaction 
wrll be treated in the electric-dipole approximation. 
Perturbatron theory then leads to an expression For 
v(R, Eo), which is the interatomic potential energy 
averaged over the degenerate ground states of both 
atoms independently. Subsequently, the polarizability 
follows through the relation $, + Db = -Z12 V/i3EoilEo, 
for E. = 0. 

In lowest, i.e. Second-order perturbation theory, 
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$is the po~arrz~~bIlity of a free atom, which can be 
Written JS: 

(41 

here the sum over 01 runs over both posittve- and neg- 
ative-energy excited atomic states LY, while k, is the 
energy difference between these states and theg-foid 
degenerate ground states cro. Rotation-invariance ai- 

guments permitted us to introduce in (4) the Invariant 
part 

n(2) =-:_g-” c Id,,,/2 P 
QO 

(5) 

of a product of dipole transitron matrix elements. 
fn fourth order the intcra~tion energy J’(JZ,Eo) IS 

due to the exchange of one photon between the atoms. 
It may be calculated in the framework of covariant 
perturbation theory by USIRg the connection with the 
scattering matrix, viz. 

‘S[~~ = -2at6 (Ef - Ei) Y&4) , (61 

where the deita function expresses energy conservation 
between the fiual and initiaI states f and i of the sys- 
tem; in fact V(R,&) IS the averaged eigenvalue of the 
matrrx rk4). The one-photon cxchangc processes arc 
represented by the Feynman diagrams of Fig. 1, which 
can be evaluated by means of the standard rules of co- 
vailant quantum electrodynamics. The first diagram 
for instance leads to the following ~~?ntrjbutjor~ in 
$“4’. 
a - 

__ IT -z .$PoD 2(2njm3 Jdk exp(lfc-R)(k2k,kp)-t 

with k the momentum of the exchanged photon. The 
leading product of dipole moments in (7) is due to 
the interaction with the static external field, while the 
last factor of (7) contain5 two terms, arising from the 
interactron with the time and space components of 
the quantized radiation field, respcctlvcly. Upon car- 
rying out the integration over k, using rotation invari- 
ance for the dipole matrix elements and adding the 
contnbutlons of the other diagrams one gets: 
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FIN. 1, Diagram5 for one-photon exchange. 

@c4’ = - z 4 (k,kp)-*D;2)D&2’Tab . 
a 

4 

When both (8) and (4) are substituted into (3) we find 
d4) = 0, so that in fourth order the potanzability is 
not influenced by the interatomic interaction, as was 
already known for the case of electrostatic interactions 

rt1- 
Sixth-order perturbation theory leads to the two- 

photon-exchange diagrams of fig. 2, together with those 
having crossing photon fines. The co~tributron of 
each diagram contains two dipole matrix elements for 
one atom and a product of four for the other; upon 
employing rotational invariance the former may be re- 
iated to the invariant Df2) defined in (S), whereas the 
latter gives rise to three types of invariant contribu- 
tions, viz. 

with Ci/ = Q 8~. - &,. The quantities thus defined arc u 
connected by sum rules. In fact, the closure relation 
for the atomic states may be used to prove the identi- 
ties 
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rig. 2. Diagrams for two-photon cuchange. 

Furthermore the vamshing of the repeated commuta- 
tor [d, [HD, d] 1 implies: 

c (2k, - k;) D$ = 9 (2k,, - k, - kd’) D$? 
CY 

(11) 

which are generalizations of the relativistic Thomas- 

Reiche-Kuhn sum rule Z,k,Dc2’ = 0. 
The general formulae for fl,(‘? and =L6) that are ob- 

tained by evaluating all diagrams of fig. 2 are rather 
lengthy and will not be given here. The dependence 

on the interatomic separation turns out to be governed 
by the function P(x) = cl(x) sin x - si(x) cos x, with 

x = 21 k,l R. The same function also occurs m rhe dis- 
persion energy and indeed gives rise to retardation for 

very large interatomic separations. In particular, if 
R 3 lk,l-1 the asymptotic sixth-order polarkability 

is found to be: 

The nonrelativistic limit of the expresslone arrived 
at may bc obtained by making a Foldy -Wouthuysen 

transformation of the atomic operators. The asymp- 
totic expression for the retarded pair polarizability 
tbcn retains the same form as in (I 2), except that the 
sums are extended over positive-energy-mtermedmte 

states only. In the electrostatic approximation, i.e. for 
R 4 k,' , the nonrelztlvistic formula of Jansen and 

Mazur [I ] is recovered. 

In ref. [ I] the results for the electrostatic pair po- 
larizabihty were applied to a pair of harmonic oscilla- 
tors. It was found there that in this special case &) 
vdmshcs; it could be proved even quite generally that 
the polarirability of a set of identical harmonic oscrl- 

lators is not influenced by the interparticles interaction 
(cf. also ref. [ 121). The same result may bc S~OWE to 

hold true for the retarded pair polarirability. In par- 
tlcular this may bc verified for the sixth-order expres- 

sions derived here, but again a general proof may be 
given. The hamdtoman for a set of identical harmonic 
oscillators in an external field and a quantired radia- 
tion field reads: 

with k the wave number of the harmonic oscillators. 
The Ehrcnfest equations for an eigcnstate of the total 
hamiltonian yield (W/&J = 0. Since in the dipole ap- 
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protimation the vector potential A, of the radiation 
field is independent of r. ane recovers in this way For 

da -3 -ef& the relation (I) witha, = (e*/mk*) U the 
free pofarizablrty of a harmonic oscilfator. 
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