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The spinor Bethe-Salpeter equation describing bound states of a fermion-antifermion 
pair with massless-boson exchange reduces to a single (uncoupled) partial differential 
equation for special combinations of the fermion-boson couplings. For spinless bound 
states with positive or negative parity this equation is a generalization to nonvanishing 
bound-state masses of the equations studied by Kummer and Goldstein, respectively. 
In the tight-binding limit the Kummer equation has a discrete spectrum, in contrast to the 
Goldstein equation, while for loose binding only the generalized Goldstein equation has a 
nonrelativistic limit. For intermediate binding energies the equations are solved numerically. 
The generalized Kummer equation is shown to possess a discrete spectrum of coupling 
constants for all bound-state masses. For the generalized Goldstein equation a discrete 
spectrum of coupling constants is found only if the binding energy is smaller than a critical 
value. 

1. INTRODUCTION 

Relativistic bound states of two particles with spin & interacting by the exchange 
of massless bosons may be described by a spinor Bethe-Salpeter equation [l, 21. In the 
ladder approximation this Bethe-Salpeter equation is equivalent to a set of coupled 
partial differential equations. The values of the coupling constants that determine the 
strength of the interaction necessary to build a bound state of a given mass are given 
by the eigenvalues of the differential equations. 

In the case of strong binding, with binding energy equal to the sum of the masses of 
the constituent particles, symmetry arguments in momentum space may be used to 
reduce the partial differential equations to ordinary differential equations; moreover 
the equations become partly uncoupled. A discrete series of isotropic solutions 
describing spinless bound states with positive parity has been obtained recently [3,4]. 
The corresponding coupling constants depend continuously on the parameters 
characterizing the type of fermion-boson interaction. For spinless bound states with 
negative parity, however, the situation is completely different: in the strong binding 
limit no isotropic solutions that form part of a discrete series exist for that case. This 
property of the spinor Bethe-Salpeter equation, which was discovered by Goldstein 
[5], has been discussed extensively in the literature [6-l I]. 

The solutions in the strong-binding limit for which the bound-state mass (2~~) 
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vanishes have a physical meaning only if they can be considered as the limits of the 
solutions for small but finite Ed . The behavior of the coupling constants in that limiting 
process may be investigated with the help of perturbation theory methods [12-141. 
For larger values of Eg , however, such a perturbation approach does not give accurate 
results for the coupling constants. 

For general values of the bound-state mass the coupling constant spectrum of the 
Bethe-Salpeter equation can be obtained only by solving the complete set of coupled 
partial differential equations to which it is equivalent; owing to the complex structure 
of the equations no general solutions have been found as yet. However, for special 
choices of the fermion-boson interactions the coupled differential equations reduce 
to a single equation, as has been shown previously [14]. In fact, the equation which 
one may obtain in this way for 0-b bound states is a generalization of that considered 
by Kummer [15], while for 0- states one is led to a generalized Goldstein equation. 
Both these equations are found to have a structure analogous to that of the equation 
for bound states of bosons in the Wick-Cutkosky model [16, 171. It is the purpose of 
the present paper to determine the eigenvalue spectra of the generalized Kummer and 
Goldstein equations and to compare them with that of the Wick-Cutkosky model. The 
results will show how the discrete spectra of the generalized fermion equations behave 
when the strength of the binding forces is varied. 

To study the eigenvalue spectra use will be made of both analytical and numerical 
methods. Earlier numerical investigations of the bound-state solutions of the Bethe- 
Salpeter equation have been concerned mainly with the boson case [ 18-221. Numerical 
studies of the fermion equation are rather few in number. Some of these [23, 241 
introduce cut-off or regulator parameters in the equation and find eigenvalue spectra 
depending on these parameters; furthermore the Bethe-Salpeter equation has been 
considered in the framework of nonlinear spinor theory [25]. 

In Section 2 the Bethe-Salpeter equation for a fermion-antifermion pair with 
massless-boson exchange will be used as a starting point to establish the generalized 
Kummer and Goldstein equations. Some of their properties will be derived and 
compared with those of the Wick-Cutkosky model in Section 3. The solutions of the 
Kummer and Wick-Cutkosky equations in the strong-binding limit will be sum- 
marized in Section 4, while in Section 5 it will be shown that the generalized Kummer 
equation does not reduce to a Schrodinger equation in the nonrelativistic limit, in 
contrast to the Goldstein and Wick-Cutkosky equations. Finally, in Section 6 the 
results of a numerical investigation of the eigenvalue spectrum of both the fermion 
and boson equations will be presented. 

2. THE SPINOR BETHE-SALPETER EQUATION AND THE EQUATIONS OF 
KUMMER AND GOLDSTEIN 

The spinor Bethe-Salpeter equation for the wavefunction x(q) that describes bound 
states of a fermion and an antifermion exchanging massless bosons reads in the ladder 
approximation: 
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Cd + &I” - 1) x(q)(d - p - 1) 

= -i(2,rr)-2 2 hi J- d4q’ (q - q’)-2 yv(q’) ri. 
i=l 

Here P” is the momentum four vector of the bound state, which may be written as 
(2% ? 0) in its rest frame; the mass of the constituent fermions is chosen as the unit of 
mass. The interactions characterized by the matrices P, with P = 1, P’ = y@, 
r= = ,y, rA = yLlys, and P = iy5, have a strength determined by the coupling 
constants Xi . 

The wavefunction may be expanded in a complete set of Dirac matrices. The scalar 
structure functions that are the coefficients of the various matrices in such an expansion 
satisfy a set of coupled integral equations. Upon performing a Wick rotation, one 
may transform these equations into partial differential equations, which are difficult 
to solve for general values of the binding energy. Much simpler uncoupled equations 
may be obtained, however, if the coupling constants hi are chosen so as to satisfy 
special constraints [14]. In particular, if the coupling constants fulfill the relations 

A, + AA = $(& + A,), hT = $@S - b'), (2) 

the wavefunction for a spinless bound state with parity + 1 may be expressed in terms 
of a single scalar structure function xK(q) that is determined by the equation 

q ,[(N/D)xl = fix * (3) 

The numerator and denominator functions are given by 

N = (1 - 6a2 + qy + 4Qq42, 

D = DK = 1 - l B2 - q2, 

in the rest frame of the bound state, while the coupling constant A is defined as 

A = A, = 4(h, - hp + A, - AA). 

(4) 

(5) 

(6) 

Equation (3) with (4)-(6) is a generalization for arbitrary bound-state mass (2~~) of 
the equation studied by Kummer [ 151. 

For spinless states with negative parity bound by boson-exchange interactions with 
coupling constants Xi satisfying 

A" + AA = -#, + &), xT = t& - b), (7) 

an equation of the same form (3) may be derived. The numerator function is again 
given by (4), while the denominator function DG and the coupling constant Ao read 

D = D, = 1 + eB2 + q2, (8) 

A = A, = 4(h, - hp - A, + A*). (9) 

In this way a generalization for EB # 0 of the equation of Goldstein [5] is found. 



260 L. G. SUTTORP 

It will be instructive in the following to compare the generalized Kummer and 
Goldstein equations with the boson Bethe-Salpeter equation for the Wick-Cutkosky 
model [16, 171. That equation is likewise of form (3), with the numerator function 
given by (4); the denominator Dw is equal to unity in this case. 

The bound-state function x(q) which is a solution of the partial differential equation 
(3) should satisfy a normalization condition [7,26-281. The finiteness of the integral 
occurring in this condition sets bounds on the behavior of x(q) for small and large 
values of q, viz., 

‘j$j q2x(4) = 0, $2 q”x(4) = 03 (10 a 

with p = 3 for the boson and p = 2 for the fermion cases. Although the normalization 
integral will be finite if these requirements are met, it is not necessarily positive. 
Indeed one may show that the Bethe-Salpeter equation has solutions with a negative 
norm, corresponding to “ghost” states. For tightly bound states (i.e., for +, + 0) one 
may prove (see Section 4) that the non-ghost-state solutions of (3) are characterized 
by a value + 1 of the quantum number ~c ; the latter is defined by writing ~(4, -q4) = 
wx(q, c14). Furth ermore, only the 7c = + 1 solutions have a nonrelativistic limit, as 
will be discussed in Section 5. For these reasons we will confine ourselves in the 
following to a study of the solutions with vc = 1. 

3. GENERAL PROPERTIES OF THE KUMMER, GOLDSTEIN, 
AND WICK-CUTKOSKY EQUATIONS 

The differential operator 0, occuring in (3) is a negative-definite operator in the 
space of functions x satisfying (10). Inspection of the numerator and denominator 
functions N and D shows then that the eigenvalue spectrum of the Goldstein equation 
is negative definite, like that of the Wick-Cutkosky equation, while both signs may 
occur in the spectrum of the Kummer equation. 

A change of the coupling constant fl will result in a change of the bound-state mass 
2~~ . The derivative a~,~/afl may be found by differentiating the Bethe-Salpeter 
equation with respect to Ed [12-14, 291. For nonghost normalized states with qc = 1 
one may derive in this way: 

A?& Pd3 P J d4q g I x 12, (11) 

with p equal to 1, - 1, and -a for the Kummer, Goldstein, and Wick-Cutkosky cases, 
respectively. The integral in (11) will be finite only if the wavefunction satisfies the 
requirements 

1;s q2x(4) = 0, l& 4p+1x(4) = 0, (12) 

where the same parameter p as that in (10) has been employed. Clearly the conditions 
found here impose stronger bounds on the asymptotic behavior of x than those 
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following from (10). Since a finite value of the derivative &n”/&‘l is expected on 
physical grounds, only wavefunctions satisfying (12) will be considered in the 
following. 

The positive-definite character of the functions N and D for the Goldstein and 
Wick-Cutkosky equations implies in view of (11) that the sign of &e,z/%l is negative 
(and hence that of a~,~/&‘l positive) for the non-ghost-state solutions with qc = 1. 
The sign of a~,~/&l for the solutions of the Kummer equation may be obtained by 
writing (11) with (3) in an alternative form [3, 301: 

A2 a%” __ = (2.rr)3 p j d%J ($ x*) 0, (+ x)- 
afl (13) 

Clearly the sign of &Z/&l is the opposite of the sign of p; in particular it is negative 
for the non-ghost-state solutions with rlc = 1 of the Kummer equation. 

An auxiliary integral relation for the solutions of the three equations contained in 
(3) can be derived by making use of the homogeneous form of the potential for 
massless-boson exchange in the ladder approximation. In fact, if the Bethe-Salpeter 
equation (3) in its integral form, viz., 

s 
d4q’ 

(q _ q’)2 X(4’)> 

is acted upon by the operator qQ/aqu - 2 and a partial integration is performed at 
the right-hand side, one finds 

[(v j& - 2) +] x + ; 4” 6 x = - $5 1 (q 2iy2 9’” -g$ x(4’). (15) 

Multiplying this equation by x*(q), integrating over q@, and using (14) once more, one 
arrives at the result [14] 

s [( 4” 6 - 2) +I I x 12 d4q = 0. 

This relation is of special interest when it is applied to the solutions of the Goldstein 
equation; in that case one has 

( q’.L42)+2 (1 - EB2 + q2)[(1 - 3Eg2) q2 + 1 - Eg4] + 4Qq2q42 
w (1 + q2 + %12j2 

(17) 

Since the right-hand side is negative definite for t B2 < 9, the auxiliary relation (16) 
for the Goldstein case can be satisfied only for loosely bound states with l B2 > $: 
strong-binding solutions of the Goldstein equation do not exist (see also Section 4). 
For the Kummer and Wick-Cutkosky cases, relation (16) does not give rise to similar 
conclusions. 
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The integral form (14) of the Bethe-Salpeter equation may be employed to show 
that the spectrum of inverse coupling constants n-l is bounded for the Goldstein and 
Wick-Cutkosky equations. In fact, defining #(q) = [N(q)/D(q)]1/2 x(q), so that 
4(q) is square integrable in view of (I 1) and (12), one may write (14) as 

s M(% 4) NJ’) d4q’ = -@9%) (18) 

with the integral operator 

WA 4’) = -t~-2[wl) W)lw?) Ncf)1”” (CI - 02. (19) 

The boundedness of this operator may be proved with the help of the theorem [31]: 

II MII G sup j I My, &)I Ms’Ms)l d4q’, 
(Pu) 

(2Q) 

valid for arbitrary positive-definite g(q). The integral is majorized if (q - q’)-2 is 
replaced by (q - q’)-2 in M(q, q’). In the case of the Goldstein equation a convenient 
choice of the weight function g(q) is 

go(q) = &(q) II2 [N(y) 1 q2 + 1 - +2 
(q2 + a2)(q2 + lP2 ’ 

(21) 

with arbitrary constant a. (The use of a nondefinite weight function in Ref. [31] is not 
justified.) After evaluation of the integral (20) one gets then 

(22) 

with q = j q I . This result is valid for all a > 0 so that one may take the limit a + 0. 
Then (22) gives an upper bound for 1~ Mo /I ; since I(1;’ I < II Mc /j , this leads im- 
mediately to an upper bound for I Llo’ / , viz, 

with e(x) the unit step function. In an analogous way an upper bound for the spectrum 
of the Wick-Cutkosky equation may be obtained. In fact, upon choosing the weight 
function 

&h(4) = [Nq)l-1’2 (!I2 + 1 - EB2)(42 + lY’2 
q2 + a2 , 

one derives the inequality 

(24) 

(25) 
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Since the integral operator Mw2(q, q’) = J M,(q, q”) M,(q”, q’) d4q” for the 
Wick-Cutkosky equation has the Hilbert-Schmidt property, the boundedness of 
M,(q, q’) implies its compactness so that it has a discrete spectrum&! for all Eg . For 
the Goldstein equation one may prove in the same way as in Ref. [31] that the part of 
the spectrum ofLl;l satisfying the inequality I L’&’ j > &z-Z is discrete for all Ed . 

An alternative form of the differential equation (3) is obtained by writing 4 = 
(N/D) x, with I$ satisfying the equation 

(D/W 4 = fl-l El,+. 

The requirements (12) may be translated to conditions on 4: 

$2 @Y(4) = 03 l& qV9K4) = 0 

(26) 

(27) 

with Y = 0 for the boson and r = 1 for the fermion cases. Form (26) is suitable for a 
comparison of the eigenvalue spectrum of the Kummer, Goldstein, and Wick- 
Cutkosky equations. The denominator functions D, , DG , and D, fulfill the identity 

DK + DG = 2Dw. (28) 

If the spectrum of eigenvalues fl-l has an infimum /l;’ for all three equations (at a 
fixed value of cg2), these will satisfy the inequality 

Since&’ and A;; are negative definite, one may write this inequality as 

A& < [ AL:, / - 2 I Ai&/ /. (30) 

This relation will be used as a check for the numerical results in Section 6. 
Additional information about the possible values of the coupling constants that 

yield bound-state solutions is obtained by considering the differential equation that 
follows from (26) in the limit of large q2: 

(sq-%#I, =/l-l G,$, (31) 

with (s, U) equal to (2, -l), (2, I), and (4, 1) for the Kummer, Goldstein, and Wick- 
Cutkosky cases, respectively. This asymptotic equation for & is isotropic in the four- 
dimensional q&-space and may be separated by introducing four-dimensional polar 
coordinates. The wavefunctions & for spinless bound states will have the form 
Elfi C?(q4/q). If for large q2 the function #I (or &) is dominated by a contribution 
of the form q”C,l(qJq) (with m < 0 for the boson and m < - 1 for the fermion 
cases, according to (27)), the indicial equation of (3 1) gives for the boson and fermion 
cases 

(m ~ Z)(m + 1 + 2) = 0, (32) 

(m ~ I)(m + 1 -L 2) = all, (33) 
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respectively. The relation (32) with m < 0 shows that m = --I - 2 for the Wick- 
Cutkosky equation; in particular one has m = -2 if the bound-state wavefunction is 
isotropic in the limit of large q2. For the Kummer equation one gets from (33), with 
u = - 1, and the restriction m < - 1 the inequality A, < (I + 1)“. Negative values 
of the coupling constant are found only if m < --I - 2, and hence m < -2 for the 
isotropic case. For the Goldstein equation, relation (33), with u = 1 and m < - 1, 
implies that A, > -(I + 1)“. Since the Goldstein equation has a negative-definite 
spectrum, the eigenvalues A, are restricted now by an upper and a lower bound: 
-(I + I)” < A, < 0, corresponding to values of m satisfying the inequalities -I -- 2 
< m < -1. For bound-state wavefunctions that are asymptotically isotropic one 
gets in particular - 1 < A, < 0 and -2 < M < - 1. 

4. TIGHTLY-BOUND-STATE SOLUTIONS OF THE KUMMER AND 
WICK-CUTKOSKY EQUATIONS 

For tightly bound states the mass 2~~ is negligibly small, compared with 1. Their 
wavefunctions may be obtained from (3) or (26) by putting Q, = 0. Of course this 
limiting case is nonphysical. Nevertheless it is useful to study the bound-state wave- 
functions in this limit since they may be considered as zeroth-order approximations 
of the wavefunctions in a perturbative scheme that treats Ed as a small parameter. 
Such a perturbation treatment may be set up only for wavefunctions with a behavior 
for small and large q that fulfills condition (12) or (27). 

When Ed vanishes, the partial differential equation (26), with (4) and (5) or (8) 
inserted, becomes isotropic in four-dimensional qU-space. Choosing polar coordinates 
one can reduce it to a hypergeometric differential equation for both the fermion and 
boson cases. This equation has to be solved with boundary conditions (27). 

The Kummer equation is found to have the following solutions for spinless bound 
states [15, 31: 

Here the parameters r and I are nonnegative integers, while t.~ is given by 

p = r + $ + (2r2 + 2rl + Z2 + 4r + 31 + $)1’2. (35) 

The coupling constants A corresponding to solutions (34) are 

(1, = -4(p + Mp - I), (36) 

in agreement with (33) for m = -2~ ~ 1. Evaluation of the normalization integral 
shows that the solutions with odd I correspond to ghost states, while the even I 
solutions may be properly normalized by adjusting the constant CL,, [14]. By cal- 
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culating the perturbation integral (11) for the normalized wavefunctions an expression 
is obtained for the derivative (1-%I/&*, viz., 

[2$ + ~,L(I - 1) + 4P + 61 + 31(2p + 1 - 1) 
i1 - 4 “sn) 2(2p - 2r - 3)(2p + 21 + 2r + 3)(2p + 21 + 2r - 1) ’ 

(37) 

of course it applies only to the non-ghost-state solutions with even I. When (35) is 
substituted, it turns out that /&‘&&/&B* is positive; since ilk is negative, one gets 
&I,/&,* < 0, in accordance with the general result proved in Section 3. 

The hypergeometric equation to which the Goldstein equation may be reduced for 
cB = 0 is found to have no solutions that are compatible with conditions (27). This 
is no surprise, since it was proved in Section 3 that the Goldstein equation does not 
possess bound-state solutions for E B* < 4. In the literature it has been stated that the 
Goldstein equation for Eg = 0 leads to a continuous spectrum of eigenvalues .!I. This 
paradoxical situation, sometimes referred to as the Goldstein problem, results indeed 
if one tries to solve the equation under the weaker boundary conditions (10). How- 
ever, since for Eg = 0, the solutions make sense only insofar as they may be used in a 
perturbation scheme for small E B , one is obliged to impose the stronger conditions 
(12) or (27), thereby dismissing the continuous spectrum of eigenvalues. 

The Wick-Cutkosky equation possesses solutions for Eg = 0 that have the same 
structure as those of the Kummer equation, viz., 

$b$(9) = c,*z(l + 9y-1 qG2:.+3:* (&$I czl pq, 
9 

with r = 0, 1, 2 ,... and I = 0, 1, 2 ,...; the corresponding coupling constants are 

(1, = -4(1+ r + l)(Z + r + 2). (39) 

The eigenvalue spectrum is degenerate for I + r 3 1. As is well known [29], the 
polar coordinates used here do not lead to solutions that can be considered as the 
limit of the solutions for Eg f 0. The correct zeroth-order solutions are obtained by 
solving the Wick-Cutkosky equation in bipolar coordinates; in these coordinates the 
equation separates for all Eg . A convenient set of coordinates (z, t) which is closely 
related to the bipolar coordinates is 

t = (9’ - 1 + EB*)[(l - 6B2 - @)* + 4q2(1 - EB2)]-112, 

= = 2(1 - EB2)1’2 (1 - 6B2 + 4*)-l 94 , (41) 

with - 1 < t < 1, - 1 < z < I. When a wavefunction & of the form 

&vct, z) = [(I - :F2 - tl.h(t)“f&> (42) 
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is substituted into (26), a pair of separate equations for fi and fi is found. The first 
equation is a Chebichef differential equation with solutions fi(t) = Un(f), for n = 
0, 1,2,... The equation forjZ?(Z) becomes 

(1 - z")f;(z) - 2zfi(z) 

- [(n + 1)” (1 - 9-l + &l,(l - 6B2 + Eg2Z2)-1] f2(z) = 0. 

It has not yet been solved for general values of eB . For Eg = 0 its solutions are 

f2(z) = (1 - Zy2)(n+l) c;+“‘“(z), 

with r = 0, 1, 2,... The eigenvalues A, are found to be 

A, = -4(n + r + l)(n + r + 2). 

(43) 

(44) 

(45) 

The solutions (42) with (44) for Eg = 0 are indeed the limits of those valid for Eg # 0. 
The evaluation of the normalization integral shows that the non-ghost-state solutions 
are characterized by even r [29]; in view of (41), (42) and (44) these correspond to 
wavefunctions even in q4 (with rlc = 1). From the perturbation integral (I 1) one may 
derive then for the non-ghost-state solutions 

n;!?!$ = -2 (n + r) 2 + 3(n + r) + n” + 212 + 2 . 

B [2(rz + r) + 11[2(n + r) -1 51 ' (46) 

hence the derivative %&v/&B2 is positive, as has been proved generally in Section 3. 

5. THE NONRELATIVISTIC APPROXIMATION 

The nonrelativistic approximation of the boson and spinor Bethe-Salpeter 
equation studied here may be obtained by starting from the integral equation 
(14) and taking the limit of no retardation, i.e., replacing (4 - q’)-2 by (4 ~ 4’))” 
[32, 331. By integrating over q4 , one arrives then at an equation for the nonrelativistic 
wave function #(q) = Jdq,x(q) ( wlic IS nonvanishing for functions x even in q4), 1 h 
VlZ., 

(47) 

The wavefunction x(q) may be recovered from its nonrelativistic counterpart 4(q), 
since one has 

x(q) = $ (j- 4 $I-’ gL(d. (48) 

The Wick-Cutkosky equation in the nonrelativistic limit follows by inserting 
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expression (4) for N and D = 1 into (47) and evaluating the integral at the left-hand 
side by complex contour integration; the result is 

(1 + qz)1’2 (1 + q2 - EF12) &v(q) = - g J 4’ (qyy)2 . 

In the nonrelativistic limit the momentum transfer q2 between the constituent particles 
is small compared to their masses (which have been put equal to unity) so that the 
factor (1 + 4 ) 2 lj2 may be suppressed. One is left then with the momentum-space 
representation of the Schriidinger equation for particles bound by a potential equal 
to &rQ\ x 1 in coordinate space. For bound states with vanishing angular momentum 
the coupling constant is given by A, = -8~l(n + l)( 1 - l g2)rj2 with n a nonnegative 
integer. 

In an analogous way one may derive the nonrelativistic limit of the Goldstein 
equation: 

(1 + 42)--1/Z (1 + 4” - EB2) bA7) = - g 1 47’ (q+$!)2 , (50) 

which for q2 Q 1 again reduces to the nonrelativistic Schrodinger equation with a 
spectrum rl, = --4~l(n + l)(l - •n~)l/~ for isotropic bound states. 

The Kummer equation leads to a completely different equation if the same line of 
reasoning is followed, viz., 

(1 + q2p2 q-y1 + q2 - %a21 &&J = 2 j 4.7’ (q5$!)1. (51) 

In view of the presence of the extra factor q-2 at the left-hand side one must conclude 
that the Kummer equation does not reduce to an ordinary Schrodinger equation in the 
nonrelativistic limit. This anomalous behavior of the Kummer equation will be 
corroborated by the numerical results of Section 6. 

6. NUMERICAL SOLUTION OF THE KUMMER AND GOLDSTEIN EQUATIONS 

A suitable starting point for a numerical solution of the Bethe-Salpeter equations 
considered in the preceding sections has been given in Eq. (26), which may be written 
in a slightly different form by introducing the new veriables 4” = (1 - •~~)-l/~ q”, for 
Eg # 1: 

(D/N) 4 = /r-l q ,- 4. (52) 

Here the abbreviations 

m = (1 + G2)” + 4&$2q42, (53) 

DK = 1 - 42, DG = 1 + 2&2 + 42, &= 1, (54) 

595/113/2-3 
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with ?a2 = l n2/( 1 - en2), have been introduced; furthermore A equals fl for the spinor 
cases, whiled = (1 - l n2)-l(1 for th e b oson equation. (In the following the bars over 
q, N, and D will again be omitted.) 

A convenient method of obtaining numerical estimates for the coupling constants 
of the Bethe-Salpeter equation consists in the use of a variational principle [18, 20-22, 
251. In fact, the inverse coupling constant a-l will be approximated by determining 
in accordance with the Rayleigh-Ritz variational principle the stationary values of the 
quotient 

(55) 

The numerator is finite for functions 4 satisfying (27); nonvanishing results for 6-l 
will follow if the integral in the denominator is finite as well. 

An alternative form for the Rayleigh-Ritz quotient is found by transforming the 
denominator to an integral in coordinate space. In fact, introducing J(x) as 

J(x) = (24-2 J- d4q e-Q’“+(q), 

one gets from (55) the variational quotient 

J- d4q (DIN) I 4 I2 
j- d4x V-l(x) / c,8 I2 ’ 

(56) 

(57) 

with V-‘(X) = x2 the inverse of the potential function in coordinate space. In this 
form the variational principle has a wider applicability than that given in (55); it is 
often called Schwinger’s variational principle in the literature [18,20,21]. 

The stationary value of the variational quotient will be determined in the usual way 
by inserting for d(q) (and its Fourier transform q(x)) a linear combination of trial 
functions. An optimal value of /f-l is obtained then by solving a generalized matrix 
eigenvalue problem of the type A . x = hB . X. 

A useful set of trial functions may be found by inspection of the (en = 0)-solutions 
(34) and (38) for the Kummer and Wick-Cutkosky equations; the following functions 
have been employed in the numerical calculations: 

p’(q) = 971 + q2)-u-1-n G1(q,lq). a.1 
Here n is a nonnegative integer; for 1, even integers have been selected since that choice 
leads to wavefunctions 4 that are even in q4 . Indeed the non-ghost-state solutions of 
the Bethe-Salpeter equation in the tightly bound limit are even in q4 ; furthermore 
only such wavefunctions have a nonrelativistic limit. 

Linear combinations of up to 42 trial functions of form (58) have been employed in 
the numerical work. For each even I (with 0 < E < 10) the values of n are chosen in the 
range 0 < n < M1 . The upper bound MI is taken to be a linearly decreasing function 
of 1, viz., ML = MO - I, so that I < MO . By varying M,, the matrix size is modified; in 
practice the values MO = 7,9, or 11 have been used. The convergence properties of 
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the variational quotient for increasing matrix size gives an indication of the error 
resulting from truncating the infinite set of trial functions (58) to a finite subset. 

The exponent p in (58) is a freely adjustable parameter, which determines the 
asymptotic behavior of the wavefunction for large q. In fact, if a linear combination 
of the trial functions (58) is adopted as an approximation for 4, one finds that for 
large q it is dominated by its isotropic part with I= 0, so that &(q) cc q-2wC,,1(q4/q). 
From (32) and (33) with m = -2~ it then follows that for the Wick-Cutkosky case 
one must choose p := I. For the Goldstein equation ,u should satisfy the inequalities 
4 < p < 1, while for the Kummer equation one has TV > 4 (and t.~ > 1 for solutions 
with A < 0). In principle relation (33) may be employed for the fermion cases to fix p 
in a self-consistent way: a choice of p leads through the variational principle to a 
value of A from which p can be determined with the help of (33). However, since 
a finite number of trial functions has to be used, this scheme does work only if the 
jntegrals in (55) are dominated by the contributions of large q. This is the case for the 
eigenfunctions of the Goldstein equation and for the (A > 0)-eigenfunctions of the 
Kummer equation which are both characterized by 4 < p < 1. The negative eigen- 
values of the Kummer equation are found for wavefunctions with p > I. Since then 
the large q contributions do not dominate in the variational quotient, the self-con- 
sistent scheme is not expected to yield precise values of A. In this case p is fixed by 
optimizing the convergence of the variational quotient for increasing matrix size. 

The Fourier transform (56) of the trial functions (58) may be evaluated by inserting 
the expansion of the exponential function 

,+‘W = 2 c (-i)” hd$ C,l ($) Czl ($) + R, 
2 

which follows from Sonine’s formula and the addition theorem for Gegenbauer 
polynomials [34]; the remainder R stands for a sum of anisotropic terms that depend 
on both the length and the direction of the spatial part q of the momentum transfer. 
Employing the orthogonality relation of the Gegenbauer polynomials, one is left with 
an integral containing J,+,(qx), which is known to be proportional to a modified 
Bessel function [35]; the final result for &$(x) (with even E) is 

$k;(x) = (-)(lp’z 2-U-2-n+1[f(~ + I + n)]-’ x~+~+~-~K~+~-~(x) C,*(x,/x). (60) 

The denominator of the variational quotient (57) is easily evaluated now, since 
integrals of products of two modified Bessel functions and a power of x may be 
expressed in terms of gamma functions [35]. 

The integral in the numerator of (57) can be calculated by choosing the integration 
variables q and Z/J = arccos (q4/q) and employing the identity valid for even E and I’ 
[35]: 

T (-)(l/z,(L+z', 
=- 

2a (1 + u2)1/2 [(a + (1 + LZ~)~/~)+-~‘~ + (a + (1 + .z)1/2)-Z-z’-a]. (61) 
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The ensuing integral over q may be transformed, by a suitable choice of a new integra- 
tion variable, into a linear combination of the basis set of integrals: 

(62) 

with positive integers k, and k, . Recursion relations for these integrals can then be 
used to write them as combinations of 1( 1, 1) and 1(2, 1); the latter have to be evaluated 
numerically, at least if 2~ is noninteger. 

The numerical methods described above were applied first to the Wick-Cutkosky 
equation. In that case the coupling-constant spectrum may be obtained in an alter- 
native way by starting from Eq. (43), which followed from the introduction of bipolar 
coordinates. Numerical values of the inverse coupling constant A-l are found from 
that equation by determining the stationary values of the corresponding Rayleigh- 
Ritz quotient for trial functions of the form 

fn,&z) = (I - ~2)w)(~+~ 2’ (63) 

(cf. (44)), with nonnegative even integer r. Since for each value of II the lowest eigen- 
value (1-l corresponds to a solution with a nonrelativistic limit [17], only these have 
been investigated numerically. The results for various bound-state masses 2~~ have 
been collected in Table I: attention has been confined to the first few branches of the 

TABLE I 

Coupling Constants A of the Wick-Cutkosky Equation as a Function of the Bound-State Mass 
Parameter caa 

0.0 0.0 8.000 24.000 48.000 
0.1 0.0909 1.414 22,122 44.109 
0.2 0.1667 6.920 20.543 40.845 
0.4 0.2857 6.129 18.033 35.672 
0.6 0.3750 5.524 16.123 31.749 
0.8 0.4444 5.043 14.617 28.667 
1.0 0.5000 4.651 13.397 26.177 
1.2 0.5455 4.325 12.387 24.122 
1.5 0.6000 3.927 11.159 21.630 
2.0 0.6661 3.426 9.629 18.540 
3.0 0.7500 2.772 7.656 14.584 
5.0 0.8333 2.072 5.582 10.469 
7.0 0.8750 1.693 4.484 8.317 

10.0 0.9091 1.360 3.536 6.478 
15.0 0.9375 1.058 2.692 4.860 
20.0 0.9524 0.885 2.218 3.963 
30.0 0.9677 0.689 1.691 2.979 
50.0 0.9804 i 0.504 1.208 2.090 
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coupling-constant spectrum, with the smallest value of IR 1 . The values for the 
coupling constants obtained here are consistent with those following from the curves 
given in Ref. l-171. In the tight-binding limit both n and &‘l/8~,~ agree with (45) and 
(46) while in the weak-binding limit the nonrelativistic theory is confirmed. 

The values of/l given in Table 1 are found to be reproduced quite accurately if the 
variational quotient (57) with trial functions (58) (for p = 1) is employed. An illustra- 
tion of the fast convergence attained by the latter method is presented in Table II, 
wheretheapproximate VahIeS Offl for eB 2 = 0.5 are listed as a function of the number 
of trial functions of form (58). 

The numerical results for the coupling constants il of the generalized Kummer 
equation that have been obtained from (57) with (58) are presented in Table III. In 
Fig. 1, curves giving the ratios Ll&, (with fl,, the coupling constant for Ed = 0) have 

TABLE II 

Convergence of the Results for the Coupling Constants A of the Wick-Cutkosky Equation with 
ca2 = 0.5, as a Function of the Matrix Size N 

N -4 -A, -4 

12 4.6514165 13.397238 26.180326 
20 4.6514119 13.397214 26.177228 
30 4.6514118 13.397213 26.177165 
42 4.6514118 13.397213 26.177163 

TABLE III 

Coupling Constants ,4 of the Kummer Equation as a Function of the Bound-State 
Mass Parameter <a2 

<a2 -A -A, -4 
___~-~ -~__ .-____. ~~~-- ___ --~- .__- 

0.0 24.000 93.957 112.00 
0.1 24.326 94.977 115.59 
0.2 24.637 95.906 119.11 
0.4 25.223 97.578 125.90 
0.6 25.768 99.075 132.41 
0.8 26.280 100.45 138.65 
1.0 26.764 101.73 144.65 
1.2 27.224 102.94 150.45 
1.5 27.874 104.63 158.81 

2.0 28.875 107.21 171.97 
3.0 30.642 111.72 196.0 
5.0 33.579 119.19 236.0 
7.0 36.03 125.4 

10.0 39.15 133.2 
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FIG. 1. The coupling constant ratio A/A, as a function of the square of the bound-state mass 
fraction l a for the generalized Kummer equation. 

been drawn for these branches. It turns out that rl is a monotonically decreasing 
negative function of +, . This property of the Kummer equation, which has been 
proved already in Section 3, is rather peculiar: it implies that increasing strength of 
the binding interaction corresponds to a decreasing binding energy. 

For small bound-state mass 2~~ the values of/l and its derivative 2fl/i3cB2 as given 
by (36) and (37) are recovered by the numerical results. When Q, approaches 1 the 
coupling constants are found to drop to increasingly large negative values; eventually 
they appear to tend to -co. This behavior is in accordance with the fact that the 
Kummer equation does not possess a nonrelativistic limit, as discussed in Section 5. 

The coupling-constant spectrum of the generalized Goldstein equation is completely 
different from that of the Kummer equation. In Section 3 it has been shown that bound 
states with wavefunctions satisfying the boundary conditions (12) are not to be 
expected for cBZ < 6; in particular, no such bound states exist for Q, = 0. On the 
other hand, in Section 4 a nonrelativistic coupling-constant spectrum was found to 
result from the Goldstein equation for E B2 close to 1 (i.e., for small binding energies). 
These predictions are confirmed by the outcome of the numerical analysis. 

The lowest branches of the A-spectrum are given in Table IV, while the 
corresponding curves have been drawn in Fig. 2 and, in a more convenient para- 
metrization, in Fig. 3. For bound-state mass parameters l B2 close to 1 the coupling 
constants depart from zero in the way described by the nonrelativistic theory (as 
indicated by the tangent lines in Fig. 3). When the interaction becomes stronger, the 
binding energy increases monotonically. A critical binding strength is obtained for 
A = - I, corresponding to l :, = 0.724 and •2~ = 0.939 for the branches considered. 
As fl approaches - I the derivative &l/a cB2 tends to zero for both branches. From (11) 
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it follows that the integral in the numerator of the Rayleigh quotient (57) becomes 
divergent if the trial function is to represent the eigenfunction accurately. Since A 
remains finite, the denominator of (57) is divergent as well. For that reason the curves 

TABLE IV 

Coupling Constants A of the Goldstein Equation as a Function of the 
Bound-State Mass Parameter ?a* 

2.1 
2.8 
3.0 
3.5 
4.0 
5.0 
7.0 

10.0 
15.0 
16.0 
17.0 
20.0 
30.0 
50.0 

-4 -& 
___~~~_____~ ~.._~ ~~ .___ 
0.9997 
0.998 I 
0.9920 
0.9661 
0.9332 
0.8649 
0.7481 
0.6254 
0.5007 
0.4827 0.999 
0.4663 0.988 
0.4247 0.934 
0.335 0.765 
0.248 0.573 

FIG. 2. The coupling constant A as a function of the square of the bound-state mass fraction l a 
for the generalized Goldstein equation. 
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giving the numerical results for the coupling constant break off at the critical values 
of $; no discrete spectrum has been found for l n2 < & . 

Comparison of the numerical results for the lowest branches of the inverse coupling 
constants of the Goldstein and the Wick-Cutkosky equation (see Tables I and IV) 
shows that the right-hand side of inequality (30) is negative for all values of the bound- 
state mass parameter cB2 larger than & . Since the lowest eigenvalue ~‘-l of the 
Kummer equation is negative, inequality (30) is manifestly satisfied. 

FIG. 3. The coupling constant n for the generalized Goldstein equation in an alternative para- 
metrization; the tangent lines at tB2 = 1 indicate the nonrelativistic limit. 

The character of the coupling-constant spectrum of the Goldstein equation, which 
is the tight-binding limit of the generalized equation studied here, has been investigated 
repeatedly in the literature [5-111. Several methods, such as the introduction of a 
cut-off [5], the use of symmetry arguments [8], or dimensional continuation [l 11, have 
been devised to isolate a discrete spectrum in this special case. The results found here 
show that the absence of a discrete spectrum is not a unique property of the tight- 
binding limit: the discrete spectrum breaks off already for much smaller binding 
energies, in fact as soon as the coupling constant becomes of the order of unity. 
Discrete spectra of this type are known to occur for interactions with a singular 
potential [36-391. An example is the Klein-Gordon equation for a spinless particle 
in a Coulomb field that has been used to describe mesic atoms [40,41]. The validity of 
the one-particle approximation inherent in that equation may be questioned for large 
values of the coupling constant. A similar remark may be made with respect to the 
Bethe-Salpeter equation, since the ladder approximation has been crucial in the 
derivation of the basic equations of the present paper. 
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7. CONCLUSION 

The study of the generalized Kummer and Goldstein equations, to which the spinor 
Bethe-Salpeter equation with massless-boson exchange reduces for special combina- 
tions of the fermion-boson couplings, has revealed several interesting features. The 
spectrum of the generalized Kummer equation which describes spinless bound states 
of positive parity turned out to be discrete for all binding energies. However, this 
spectrum has an unusual property: an increasing interaction strength leads to de- 
creasing binding energies; as a consequence a nonrelativistic limit does not exist. 

The spectrum of the generalized Goldstein equation valid for spinless bound states 
with negative parity is completely different. It is discrete only if the binding energy 
and the binding strength are smaller than a critical value. In that range decreasing 
binding energies correspond to a decreasing interaction strength. In particular, in the 
nonrelativistic limit the generalized Goldstein equation reduces to a Schrodinger 
equation with a Coulomb potential. For large binding energies the generalized 
Goldstein equation does not possess a discrete spectrum of coupling constants. 
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