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synopsis 
The inductive and dispersive retarded interactionenergies of two ground-state hydrogen atoms 

described by Dirac theory are derived up to all multipole orders. The results are obtained by 
evaluation of Feynman diagrams and with the help of dispersion-relation methods. The non- 
relativistic and semi-relativistic approximations of the interaction energy are given in a form that 
shows explicitly the contributions of electron spin. 

1. Introduction. In a series of paperslJ) the multipole expansion for the retarded 
interaction energy of two ground-state atoms has been obtained on the basis of 
non-relativistic quantum electrodynamics. Since the atoms were described by 
Schriidinger wave functions, electron spin contributions did not occur in the final 
results. 

In the present paper the retarded interaction energy will be derived for a pair 
of ground-state hydrogen atoms that are described by relativistic electron theory. 
In this way spin terms are included a priori; moreover, the use of relativistic 
quantum electrodynamics leads to considerable simplifications in the calculations. 

The energy shifts due to one- and two-photon exchange between the atoms 
are obtained from the scattering matrix in section 2. In the following section 
the Feynman diagrams are evaluated; the resulting interaction energy is ex- 
pressed in terms of atomic one-photon vertex functions, which are subsequently 
expanded into Cartesian multipoles in section 4. Then, in section 5 the non- 
relativistic and semi-relativistic approximations of the vertex functions are studied 
with the help of a Foldy-Wouthuysen transformation; the resulting expression for 
the interaction energy shows explicitly the contributions due to electron spin. The 
radial behaviour of the interaction energy becomes more transparent from the 
expansion in terms of generalized spherical multipoles, which is derived in sec- 
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tion 6 with the help of the Racah formalism. An alternative way to obtain this 
multipole expansion from the scattering matrix makes use of dispersion relation 
methods, as is shown in section 7. Finally, in section 8, the lowest-order multipole 
contributions to the interaction energy are discussed, both relativistically and in 
the non-relativistic approximation. 

2. The interatomic potential energy due to one- and two-photon exchange. The 
interaction energy of two hydrogen atoms a and b with fixed nuclei may be ob- 
tained from the scattering matrix S,, for a transition between the initial and final 
states i and f of the pair of atoms3). In fact, the scattering matrix will have the 
general form : 

S,, = 6,, - 2xiS (Er - Ei) Vfi, (1) 

where a delta function of the difference between the initial and final energies Ei 
and Ef appears. The interatomic potential energy in the state i = f follows as the 
part of V,, that depends on the internuclear separation R = Rb - R,. 

The contribution to the S-matrix due to one- and two-photon exchange be- 
tween the atomic electrons, with charges -e, reads* : 

x Q(R~)Y"wB~ (R2) + e4 J d4R, *** d4R4&(RAy"&a (RI, R2) 

x y"yr,i CR,) k,,,gv,& (RI - R~)DF CR2 - R4) 

+ &=,,&@F CR, - R4) DF (R2 - &)I WpdR3) YP'SFb CR39 R4) 

x y"'ypi CR419 (2) 

where the initial and final electron states are characterized by Dirac wave func- 

tions ypli, lyai and yar, yPr9 respectively. The progagator for the electron of atom a 
in the electrostatic field of its nucleus is given by 

m 

SF, (RI, R2) = --rl; ; Ye% 
s 

lou,(t,--t2) 

dw, e 
E, (1 - i0) + 0,’ 

(3) 

where o( labels all positive- and negative-energy eigenfunctions y&(R) = y&(R) 

x exp (-i&t) of the electron. The photon propagator in (2) is defined as 

s -1k.R 

D,(R) = -1 d4kc. 
(2$4 k2 + i0 

(4) 

* The metric tensor g”” is chosen as diag (1, .- 1, - 1, - 1). Rationalized gaussian units, with /i 
and c put equal to unity, are used throughout. 
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In writing the expression (2) the overlap of the electronic wave functions of 
atom a and b was assumed to be negligible, so that electronic exchange needed 
not be taken into account. 

For two hydrogen atoms in their ground states the interaction energy V(R) is 
found, after inserting (3) and (4) into (2) and carrying out the integrations over 
the time variables and w,, w,, . When the average is taken over the ground states 
of both atoms independently, V(R) becomes a function of the internuclear dis- 
tance R and has the form: 

V(R) = (2~)~~ j dQ eiQSR [F1(Q) + F2(Q)]. (5) 

The contributions, due to one- and two-photon exchange, to the Fourier trans- 
form are 

d4kC,,,,, (4 rj’#,s,,( - 4 
WO) S (k - Q) 

k2 + i0 ’ 
(6) 

I;;(Q) = 1 1 i 
gag, %.&, 2 (27-44 s d4k d4k’r,,,,, ,,v (k, k’) r;;,vo ( -k -k’) 

X 
6 (k” + k’O> 6 (k + k’ - Q, 

(k’ + i0) (k’2 + i0) ’ 
(7) 

where g, , g, are the orders of degeneracy of the atomic ground states labelled 0~~) 
PO. The one- and two-photon vertex functions are defined by 

I’:,(k) = -e (01’1 y”yp emike’ - go” ICC), (8) 

Co”ao (k k’) = C Co,(k) G&k’) + r&.w) Go(k) 
E, (1 - i0) - E,, - k” E, (1 - i0) - Eao - k” 1 ’ o 

(9) 

with Y the position of the electron relative to its nucleus. By adding the tensor go” 
in the one-photon vertex function the contribution of the fixed nuclei to the inter- 
action energy has been taken into account. When (6)-(9) are substituted into (5) 
the two-photon exchange term contains sums over intermediate atomic states 01, 
fl; according to the prescription for obtaining energy shifts from the S-matrix, the 
divergent part due to intermediate states with energies equal to that of the initial 
state (i.e., in the present case states with E, = E,,, E, = EBo) has to be suppressed. 

For the projection operator P, on the set of atomic states with energy E time 
reversal invariance of the atomic hamiltonian implies 

P; = T-‘PET; (10) 



140 M.A. J. MICHELS AND L. G. SUTTORP 

here the matrix T satisfies the relation: 

y; = T-‘y” T. (11) 

As a consequence the space components of the one-photon vertex function, 
averaged over the ground states, vanish, so that in (6) only the time components 
of P(k) remain. If the overlap of the atomic wave functions is negligible a vanish- 
ing contribution to V(R) is found, however, as follows from rotation invariance 
arguments. Thus in the interaction energy (5) only the two-photon exchange term 
has to be considered. 

3. Evaluation of the two-photon exchange contribution. Upon substitution of (9) 
into (7) the following two integrals show up: 

I,,, (Zz,, Zc,) = j dk” {[Ea (1 - i0) - EbO - k”] [EB (1 - i0) - EBO + k”] 

x (kZ + i0) (PZ + iO))-‘, (12) 

L (k, k,d = j dk” {[Ea (1 - i0) - E,, - k”J [Efl (1 - i0) - EB, - kO] 

X (A? + i0) (P + iO))-l (13) 

(with k, = E, - E,,), referring to Feynman diagrams with non-crossing and cross- 
ing photon lines. From (12) and (13) the following symmetry properties may be 
obtained : 

Lr (k, k,) = Lr C-k, -k,) = -I,, C-k,, k,) 

= -L (k,, -k,), (14) 

so that the integrals have to be evaluated only for k, 3 0, k, 3 0 (with the exclu- 
sion of k, = k, = 0). By closing the integration paths in the complex k” plane 
one finds: 

Lr (k, k,d = 
xi 1 1 

2kk’ (k, + k,) (kor + k) (k + k’) + (k, + k’) (k + k’) 

1 + (k, + k) (k, + k’) 1 + (a -B)v (15) 

Z,, (k,, k,) = - xi 
1 1 

2kk’ (k, - k,) (k, + k) (k + k’) + (kb + k’) (k + k’) 

1 

+ (5 + k) (k, + k’) 1 + (a ++B)r (16) 
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where the symbol (01 t* /I) stands for the terms obtained from the preceding ones 
by an interchange of 01 and #?. 

The integrations over the space components of the photon momenta may be 
dealt with after replacing in the expression (5) with (7)-(g) the exponential exp 
(iQ - R) by exp (ik * RI + ik’ * R,), and subsequently in the matrix elements (8) 
the momenta k and k’ by the operator -iv, and -iV2, respectively. (When the 
differentiations with respect to R, and R2 have been performed, both vectors are 
to be put equal to the radius vector R.) The integrals over k and k’ may now be 
evaluated with the help of the relation (for k, 2 0): 

1 + (k, + k)(k, + k') = 1 xP(k,R, + k,RJ 
' RIR, 

The function P(x) is defined as: 

a, 

P(x) = dr =; 
s. x+t 
0 

it obeys the differentiation formulae : 

dP/dx = -Q(x), dZP/dx2 = -P(x) + x-l, 

where Q(x), on a par with P(x), is given by 

03 

Q(x) = dt z. 
s 
0 

1 

(k, + k')(k + k') 

(17) 

(18) 

(19) 

(20) 

As a result the interatomic potential energy is obtained as a sum of two terms, 
arising from the diagrams with non-crossing and crossing photon lines: 

JV> = - (iuC1 c C 3 (W- 3 Sgn 6%) Kk + $I- ’ 
a,,.80 a,/lW,.kp#O,O) 

x P (b&R, + WWR,& + (a *LO, (21) 

where Sgn (E,) = I&/I&I. The symbols rii and I$ stand for the matrix elements 

C,,, (-iv,) and r& (iv,), with i = 1, 2. From the time-reversal relations (10) 
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and (11) it may be shown that these matrix elements have the following property 
with respect to complex conjugation: 

(22) 

+ &I * &~:~~;?‘)I P (Ik,R, + k,R,I)/R,R, + (LX ++ ,8). (23) 

As in the non-relativistic case (0. papers I and IV of this series) the expression for 
the interatomic potential energy may be split up into two terms, with both atoms 
and with only one atom in excited intermediate states; these contributions, which 
are the dispersive and the inductive part of the interaction energy, respectively, will 
be evaluated separately in the following section. 

4. Cartesian multipole expansion of the dispersion and the induction energy. 
The dispersive part of the interaction energy follows by restricting the sum over 
~11, b in (23) to intermediate states with k, # 0, k, # 0. Then one may express 
V,,,,(R) completely in terms of the space components of the one-photon vertex 
functions with the help of the relation 

(24) 

which follows by commuting the operator in .Fay [u. (S)] with the atomic hamilto- 
nian. In fact, one gets with the help of (19): 

x C+2$- : WA, - VzVJ P (W, + k,R,I)IR,& 

(25) 

As a consequence of the occurrence of the function P(x) the dependence of the 
dispersion energy on powers of R is different for small and large values of k,R 
(with k, a characteristic reciprocal atomic wavelength) due to retardation effects 
for large separations. 
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From the general expression (23) the induction energy is obtained by putting 
k, = 0, k, # 0 and vice versa. Substituting the value &C for P(0) one finds for the 
induction energy: 

As in paper IV the induction energy may be understood as the sum of the energy 
shifts for each atom in the static electric and magnetic fields generated by the other, 
which can be calculated from second-order perturbation theory with the interaction 
hamiltonian H,,, = -yOy,A”. Indeed, the expression (26) has non-retarded 
character, in contrast to (25). 

The expressions for the dispersion and induction energies may be expanded in 
terms of Cartesian multipole-moment matrix elements, which are defined as 

00 
Pa = -e (a01 (l/n!) r” Ia>, (27) 

42 = -e (a01 [n/(n + l)!] r”-lr A y”y Ia) (28) 

(v. also appendix A). The one-photon vertex functions I’$, which are in fact 
charge and current matrix elements, are expanded in terms of the multipoles as 
follows : 

rat = f (-V,)“-l i (-ik&? - VP’ A V,). 
n=l 

(30) 

(An analogous expression is used to derive the Maxwell ,equations for the fields 
due to composite particles from those for the fields generated by a set of charged 
point particles’).) Upon substitution of (29) and (30) into (25) and (26) the com- 
plete Cartesian multipole expansions of the interatomic dispersion and induction 
energies may be obtained. In particular it may be seen then which multipoles 
contribute to the long-range asymptotic interaction energy. 

The long-range behaviour of the dispersion energy follows from the power- 
series expansion P(x) = x-l - 2xP3 + ea.. In the first term of (25) the leading 
contribution then contains electric dipoles for both atoms, while in the second 
term the sum rule (A17) implies the leading contribution to couple the magnetic 
dipoles of one of the atoms with both electric and magnetic dipoles of the other. 
Since due to the rotation symmetry of the atomic hamiltonian only the invariant 
part of the product of dipole matrix elements for each atom comes into play, the 
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long-range dispersion energy gets the form : 

- 7 lv:‘l’ I$‘]’ + 23 lv;‘j’ Iv~)12)/144x3 k,kpR7. (31) 

For the electric dipole part an expression of the same form was obtained already 
by Casimir and Polders) in the framework of non-relativistic quantum electro- 
dynamics. The extension to magnetic dipole moments (again in the non-relativistic 
approximation) was given by Mavroyannis and Stephen6), and Condiff7). Em- 
ploying dispersion-relation methods (0. also section 7) Feinberg and Sucher8) 
derived the long-range form of the dispersion energy for neutral spinless particles 
in terms of static electric and magnetic polarizabilities. 

Just as the long-range dispersion energy, the induction energy (26) for large 
separations contains only contributions of electric and magnetic dipoles: 

+ Iv:)12 I~;)[~)/‘24 x2kpR6 + (a w/f?). (32) 

To extract the behaviour at arbitrary separation for dipole or higher-order multi- 
pole moments a large number of vectorial differentiations has to be carried out, 
as is obvious from (25) and (26) with (29) and (30) inserted. A more convenient 
form for the dispersion and induction energy is obtained by passing over to the 
spherical-tensor formalism. Before doing so the non-relativistic and semi-relativ- 
istic limits of (25) and (26) will be studied. 

5. The non-relativistic and semi-relativistic limit. The atomic hamiltonian, viz. 

H = Yom + y”y *p - ep, (33) 

with y = el4xr the nuclear potential, may be transformed in such a way that the 
positive- and negative-energy solutions are decoupled. In the Pauli representation 
for the y-matrices the unitary Pryce-Foldy-Wouthuysen transformation for the 
free hamiltonian (p’ = 0) reads: 

U = [(E + m)/2E]’ + y *p/[2E (E + m)]’ (34) 

with E = (p’ + m2)*. When this transformation is applied to (33) the hamiltonian 
still contains “odd” parts. It may be brought into even form up to any desired 
order in m-“, or, more generally, in m-“f(ym), by carrying out subsequently suc- 
cessive Foldy-Wouthuysen transformations. Up to order mm3f(pm) this is achieved 
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by employing the transformation 

U’ = 1 - iey”y 0 E/4mZ (35) 

(with E = -Vpl), which is indeed unitary in this order of approximation. The 
resulting hamiltonian then becomes: 

I? = y” (m + *rn-‘p’ - +mm3p4) - ep - tern-‘(a A p) . E 

+ &em-’ V . E. (36) 

Likewise, the charge and current operators appearing in the one-photon vertex 
function (8) are to be transformed with the help of U’U. The calculations, during 
which it is convenient to make use of the Weyl correspondence (see e.g. ref. 4), 
lead to the following expressions for the atomic matrix elements occurring in the 
interaction energy: 

rf+ = -e (a01 3 (1 - *me2 (p A a). V + *mm2d, e-“‘} - 1 I&+), (37) 

Tao_ = -e(O1O1*{+im-‘a-V -;tim-3p2a-V 

- 4 imb3a .pp. V - & ime30 + VA, e-“‘} I&_), (38) 

r,+ = -e (0~~13 {m-lp - 3 - m lb A V - $rn-“p’p - +rn-“p* VV 

+ imv3p2U A v + irnm3a A pp - V + & me36 A VA 

+ +emm2a A E, e-“‘) I&+), (3% 

r,_ = -e (a01 3 {c - +rn-Ss-pp + $rnm2p A V - tm-“a. VV 

+ Am-‘ad, e-‘*‘} la_), (40) 

up to order md3 f(vm). For brevity the suffix i at the nabla operator has been 
suppressed here; states with positive and negative energy have been labelled by 
oc+ and a_, respectively. The results (37) and (39) are different from those given 
in ref. 9, the reason being that in the (non-unitary) transformation employed 
there the approximations up to the desired order have not been made correctly. 
With the help of (37)-(40) the interatomic dispersion and induction energies (25) 
and (26) may be obtained in the “semi-relativistic” approximation, which includes, 
beyond the non-relativistic terms, for instance spin-orbit coupling effects. 

The non-relativistic limit of the interatomic potential energy, i.e., that following 
from the Schriidinger-Pauli hamiltonian, may be derived from (25) and (26) by 
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retaining in (37) and (39) the leading terms: 

Fl = -e (ocOj e-“’ - 1 /LX+), (41) 

Fa+ = -e (olOl 4 {m-‘p - *m-la A V, e-“‘} IDI+), (42) 

while the leading term of the negative-energy contribution (40) gives rise to a 
direct matrix element in the interaction energy: 

g,’ C Cf(k,_) F~_lF~z = gi’ Cf( -2m) e* (a01 e-‘.(vl+vz’ IQ) U. (43) 
&J o(_ a0 

Indeed in the Schrbdinger-Pauli hamiltonian a term linear in the scalar potential 
occurs, while both linear and quadratic terms in the vector potential are present; 
these three terms give rise to the matrix elements (41), (42) and (43). Inserting 
these matrix elements into (25) and (26) one recovers the results of papers I and 
IV, if moreover the Pauli spin terms are suppressed. 

6. Spherical-mu&pole expansion. In this section the expressions (25) and (26) 
for the interatomic dispersion and induction energies will be evaluated in the 
framework of the spherical-tensor formalismlo). Correspondingly the atomic 
states will be chosen as simultaneous eigenstates of the free-atomic hamiltonian, 
the total atomic angular momentum and its third component: ICX) = INa, J,, Ma), 

with eigenvalues EN,, J, (J, + 1) and M,, respectively. The ground states 101~) 
will be denoted by 10, J,“, Mf). 

In the dispersion energy (25) the first term only contains transverse one-photon 
vertex functions rL = r * (U - VV/O) (u. appendix B). In fact these occur in 
the combination : 

-K, (VI 2 V2)fUG + R2YhR2 = QJ: + 11-l @J,” + l)-lM OEM ra,r,,: 
M?: M”, 

x W, -V,Vd C%?2 : W, - V,V,)f& + R2)l&R2. (9 

The second term of (25) may be rewritten so as to contain this combination as 
well, if use is made of the sum rule (A17). In this way the dispersion energy may 
be cast into the form: 

J,‘dR) = C -!- 
N,( # O), J, 8x3k,k, 

&J (VI 3 V2) J-- 

N,(+‘J). J, 
R,Rz 

x {(k: - k:)-’ lkal-1 P((k,R, + k,Rzl) - [k,l-3 

x V’WR, + k&l) - IkaRl + k&l log IkaRl + kR,l 

+ & IkaRl + k,R213 log Ik,& + k,R,ll} + (a *b), (45) 

where the differentiation formulae (19) have been used. 
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Expression (44) can be evaluated with the methods of paper II. In particular 
the Rayleigh expansion may be used for the exponentials occurring in the matrix 
elements. Subsequently the resulting spherical harmonics Y:(P) are to be coupled 
with the matrix y”y = ar so as to yield the spherical tensor operator 

x (2s)!!(2L’+ 2s + l)!! 
LX’?‘+ 2sY;’ (9)) (46) 

the reduced matrix element of which is written as: 

Q,, (L, L’, s) = (2J” + l)-’ (0, JoI1 Q, (L’, s) 11 IV, J). (47) 

Employing now the graphical techniques of paper II (sections 3, 4) to separate 
the radial and angular dependence [u. in particular formulae (28), (31)-(34), (36), 
(39)-(41) of paper II] one arrives at the following result for (44): 

x Q;G,J, (La 9 L a2 3 %32) SZ;r& (Lb, Lb23 sb2) D &I + ‘%I + %31 + 2sbl + 2, 

La2 + Lb2 + 2%~ + z&,2 + 2, L)f@, + R,). (48) 

Here the symbol D is defined as: 

(49) 

When the differentiations have been carried out both RI and R2 are to be put 
equal to the interatomic separation R. Then (49) may be rewritten in the form 
(II. 45) : 

D(N, + N,,L)= i 
4( - l)kl+kz (L + k,)! (L + k,)! 

k,.k,=O kl!kz! (L - k,)! (L - k,)! 
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[v. also (V. 86)]. The symbol Cab in (48) stands for the angular coefficient: 

Cab = JJ (2L,, + 1) (2L,, + 1) (-lp+=b 
i=1.2 [ (? “ob’ :) {::i 2 t} 

(51) 

which may be written in an alternative form by using the definition of the 6j- 
symbol : 

Cab =i=~2(2Li + 1) (2Lbi + lJA gkl 

I 

(52) 

From this form for Cab it follows that in (48) the atomic matrix elements occur in 
the combinations (B13) and (B15) which contain the transverse electric and mag- 
netic multipole matrix elements x and Y. Writing (48) in terms of these matrix ele- 
ments one gets: 

L TL(2L+ 1) 
2;. .&; 

(: yl $ &,+&,+L. even LX&r, (L,, ‘%) &‘,J, cLb, sb) 

X D (NY L) + JNa.ra (La 5 sa) J,,,J,, CL,, sb) D (N + 4, L)] 

+ sL,+L,+L. odd [~N,J, (La, Sa)JN& cLb, sb) D (N + 2, L) 

+ Jt/‘NaJ, CL, 7 ‘%I xN,.J, CL, 2 sb) D (N + 2, 01) _f@R) 9 (53) 

with N = 2 (L, + L, + & + &). 
Upon insertion of the form (53) for the expression (44), the dispersion energy 

(45) is obtained as a sum of three terms, representing interactions between the 
electric (both static and transverse) and magnetic multipole moments, given in 
(Bl), (BIO) and (Bll): 

{ba, ebb, O&N,J, 6% 7 &I) AN,J, cLb 2 sb) D (3, L) 

ka, 0 (1 - &,. 0) AN,& CL,, ‘%) .xN& cLb, sb) 

(a c+ WI D W - 2, L) + (1 - &,, o) (1 - &,.o) 

k&b P (2 lkal R> p(2 hi R) 
k,2 - k," Ikal - 1 lhl ’ 

L2 

0 > 

(54) 
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V disP+e-dR) 

k&b + (a++b)]- 1 P (2 lksl W P (2 lk,l RI 
k,Z - k: _ lkl - 1 lhl ’ 

(55) 

V dlSP,rn-rm = Gv3 N ,;, J L T 

N;(#O):J; t;,i; 

L~La+Lb+L,c”Fn (zr+l)(? 21 @ 

X MNaJ,. (La, %b'hbJb (Lb, &) D (NY L) 

kakts 

’ k,2 - k: c 

P (2 lkl N P (2 V&l RI 
lkal - 1 Ihl . 

(56) 

In the terms with parameter value S = 0 the product dZNJ(L, S) (B14) of electro- 
static multipole matrix elements could be introduced with the help of (B12). 
Furthermore, the sum rule (B20) and the differentiation relations (19) have been 
employed in order to arrive at (54)-(56). 

In the expression (26) for the induction energy the radial function 1/R,R2 
occurs, for which the two-centre expansion gets a simple form (v. paper II, appen- 
dix A). The first part of (26) may then be expressed in terms of the longitudinal 
electric multipole moments ,U (Bl) with s = 0, which are the static electric multi- 
pole moments. In the second part both the transverse electric and magnetic multi- 
pole matrix elements x and v [(BlO) and (Bll)] show up, again only with s = 0; 
employing the fact that for one of the atoms only ground level intermediate 
states occur and making use of the sum rule (B20), with (B12), one finds that the 
transverse electric multipole moments x do not contribute, so that only the static 
magnetic multipole moments v come into play. As a result the induction energy 
may be cast into the form: 

Vi”,(R) = - 1 C 1 
N,(+W,J, L,,L~ 16x2k, 

X [40J,o C-L, O)AN,,J~ (Lb, 0) + NOJ,O (La, O>J~TN,J, (Lb, WI 

X ZL ,‘,,,+2 + (a-b), R = 
(57) 

where the abbreviations (B13)-(B15) have been used. 
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In this section the complete multipole expansion of the retarded interatomic 
potential energy has been derived. It contains.the matrix elements of the irre- 
ducible tensor operators for the atomic multipole moments that follow from the 
longitudinal and transversal part of the one-photon vertex function. 

7. Derivation from dispersion relation methods. An alternative way to derive the 
interaction energy due to two-photon exchange makes use of dispersion-relation 
methods. For non-relativistic atoms the multipole expansion of the dispersion 
energy has been obtained along such lines in paper V of this series, on the basis 
of Feinberg and Sucher’s derivations) in which a generalized dipole approxima- 
tion was employed. In this section both the interatomic dispersion and induction 
energy for a pair of relativistic hydrogen atoms will be found by considering the 
analytical behaviour of the Fourier transform F2, given in (7) as a function of 
complex Qz = -t (with t the momentum transfer). 

As in paper V, appendix A, the dispersive part Fdisp(t) of F,(t) may be shown 
to be an analytic function in the complex t plane apart from a cut along the posi- 
tive axis, a branchpoint being present at t = 0. The dispersion energy may then 
be written as: 

cc 

V,,,,(R) = - -!- s dt e 
87PR 

-JtR [FdlsP (t + i0) - F&, (t - iO)]. (58) 

0 

Here the discontinuity across the cut is given by 

Fdlsp (t + i0) - FdisP (t - i0) = -i 
1 

8x (25: + 1) (25; + 1) 

+Jt 
x M FM o ,s dx,.xl~:*“’ (k, k’) g,i,,gvv&-* Jo’“’ ( -k, - k’) 

a. b 

[v. (V. 14)-(V. 17)], with p!* ‘” (k, k’) equal to the dispersive part of r’r (k, k’) 
for k” = -k’O, ko2 = k2 = kr2, k” 2 0, corresponding to mass-shell photons. 
By inserting k = 3Q + KI, R’ = $Q - K,_ (with Q - K~ = 0) the product of 

vertex functions (averaged over the atomic ground states) will depend only on 
X: and t c 0; in the integrand of (59) the analytical continuation of this product 
towards positive t, with fixed x:, is to be substituted. 

In the same way as in section V. 3 the combination of two-photon vertex func- 
tions occurring in (59) may be written as the product of two vertex functions, each 
contracted with a pair of polarization vectors &g(k) = (0, en(k)), with e,(k) - k 
= 0 (A = 4-). In fact, for mass-shell photons (k2 = 0) the polarization vectors 
fulfil the identity: 

g W’ = -,&E;(k) c&(k) - (k . q)-’ k”k”’ + (k . q)- ’ (k’q”’ + qCkP’), (60) 
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with 1;1” = (LO). The two-photon vertex function satisfies the orthogonality re- 
lation k,r”’ (k, k’) = 0, as follows from current conservation k,l” (k) 
= (k” - kN) TO(k). Hence, after contraction of pr and p,““’ with the right-hand 
side of (60) only the first term remains, so that, in order to evaluate (59), the con- 
tracted two-photon vertex function E * F (k, k’) * E’ is to be studied. It contains 
one-photon vertex functions for which one may derive the following multipole 
expansion : 

(ZJ,” + 1)-l c 
hf,o N,(k,const). J,M, 

= c 
f : ( _k2)“a-ma (+)ma [kZE . +,~f%.Ja*“d”n.)(k) 

N,(k,const), J, n,=O ma=0 

- (E A k) . (E’ A k’) q.@, Ja*nn~mn’(k)], (61) 

for k2 = k” and (k + k’)’ = -f. Here Q)~ and P)M are defined in terms of the 
products (B13) and (B15) of the transverse electric and magnetic multipole matrix 
elements (BlO) and (Bll) as: 

Yi (NvJ*n*m)(k) = x(“) & [L (L + I)]-’ {[&,, k-2cfNJ (L, s) 
L.S 

+ ~~~II~NJ (h S)} p (62) 

with (n) denoting the restriction L + S = n + 1. Furthermore a? and bf’ are 
linear combinations of derivatives of Legendre polynomials : 

a; = b; = PL,l + Pi_, - PL, 

a& =bk =2PL. 

The bracket notation [. . .I,,, is defined by: 

f(cos 0) = c Lflm (3 + t ax Qrn; 
m 

in particular one finds for the Legendre polynomials and their derivatives 

lpij,lm = (-l)L+m+-VL + m +_C 
2J(L-m-j)!(m+j)!m!’ 

(63) 

(64) 

(65) 

(66) 

Upon insertion of (61) into (9) the following expression for the contracted 
(mass-shell) two-photon vertex function is obtained: 

(25: + 1)-l&e - F, (k, k’) - E’ 
L 

= k2E * dF,E (k, t) - (6 A k) * (8’ A k’) FPM (k, t) (67) 
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with form factors : 

Fi (k, t) = C f )!J ( -k2jn-“’ ($t)” 2kN (ki - k2 - iO)-l pllN’ J’“‘“‘(k). 
N(#O),Jn=Om=O 

(68) 

For soft photons (k = 0) the form factors reduce to the static polarizabilities: 

FE(O) = 4 C kN’ IPNJ (1, W”, 

N(+O),J 
(69) 

(70) 

as may be shown by employing the sum rule (B20), with (B12). 
The dispersion energy may now be evaluated by substitution of the expression 

(67) for the contracted two-photon vertex function (after analytical continuation 
to positive t) in (58) with (59). In this way one may recover the results (54)-(56). 
In particular the long-range part of the dispersion energy is determined by the soft- 
photon form factors (69) and (70), as may be seen directly from (31). 

In a recent paperIl) Au and Feinberg extended the work by Feinberg and 
SucheP) so as to include higher-order multipole contributions in the dispersion 
energy of two neutral spinless particles. The structure of their results, which 
contain the properties of the particles in terms of unspecified spectral functions, 
is different from that of the expressions given here in terms of the atomic multi- 
pole matrix elements. Indeed these authors assume integral representations for 
the electromagnetic form factors in closed form, which do not hold for each term 
separately in the multipole expansion (68) with (62) of the form factors. 

The inductive part of the interaction energy is the Fourier transform of Find, 

occurring in (7). As a consequence of time-reversal invariance the time-time and 
space-space components of the two-photon vertex functions, of which one con- 
tains only ground-level intermediate states and the other excited intermediate 
states, may be written as: 

I’~a=o, (k, k’) = 27ciS (k”) c I’:(k) I’:*( -k’) 
(N,=O). J,.M, 

(71) 

and 

C%,+ 01 k k’) = 2 C k; ‘T,” (k) I’;*( -k’), 
N,(#.O). J,,M, 

(72) 

respectively (in the latter k” has been put equal to zero); the mixed time-space 
components drop out. The analytical properties of the function Find(t), with 
t = -Q2, are similar to those of F&t), so that Vind may be evaluated from a 
formula analogous to (58). The discontinuity across the cut along the positive 
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t axis is in the present case given by: 

Fincj (t + i0) - Find (t - i0) 

1 = -=X -I t-3(2&y + 1)-l (25,” + 1)-l M FM o j dk” ??yk,=oj (k k’) 
P. b 

x gjLp$$ R&O) (-k, -k’) + (a t, b), (73) 

(v. appendix C) where fi“’ is defined as I”” with k” = -k/O, k2 = kt2 inserted. 
By writing again k = *Q + rcL, k’ = +Q - rcI the product of vertex functions 
will depend on k”, xf and t. It has to be continued to positive values of t, where- 
upon X: is put equal to $, before insertion into (73). 

As was the case for the dispersion energy the metric tensors contracted with 
the two-photon vertex functions in (73) may now be replaced by expressions con- 
taining polarization vectors &f; (with 1 = A) for photons which in the present 
case are off the mass-shell (k2 # 0), but have vanishing time components (k” = 0) : 

g W’ = -&&:(k) c;‘(k) + rfrf + k-‘k’k”‘. (74) 

Upon substitution into (73) the term ke2k”k”’ drops out due to the orthogonality 
relation k,P’ (k, k’) = 0. The term arising from contraction of the two-photon 
vertex functions with ~“8 may be expressed in multipoles with the help of the 
expansion (61). Similarly the expansion 

(75) 

[v. (B2)] may be used to rewrite the contractions with $‘$’ in terms of multipole 
matrix elements. Here y contains longitudinal electric multipole matrix elements 
(Bl) only: 

Y (N’ J*n’ m, = ,c,‘“’ L (L + 1) - ’ [p&,, d#NJ (L, s) 

with (n) standing for the condition L + S = n + 1. 
Upon substituting the multipole expansions for e - f * E’ and PO0 into (73) the 

resulting integrand, which is a function of k”, xi = it + k2 and t, has to be con- 
tinued analytically towards positive t; then X: is to be put equal to #, so that k2 

becomes zero. As a result only the multipoles with s = 0 in (62) and (76) contri- 
bute; the transverse electric multipoles contained in &?f?NJ (L, 0) may be shown to 
drop out altogether, due to (B12) and (B20). The resulting multipole series for 
(73) leads upon evaluation of the dispersion integral to the induction energy (57). 
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Both the dispersive and inductive part of the interatomic potential energy have 
now been derived from dispersion-relation methods, with results identical to those 
obtained in the preceding sections by evaluation of the Feynman diagrams. In 
the following section special cases of the general formulae will be studied. 

8. The lowest-order multipole contributions to the dispersion energy. In this sec- 
tion the formulae (54)-(56) for the complete multipole expansion of the inter- 
atomic dispersion energy will be used to evaluate the explicit expressions for elec- 
tric and magnetic dipole and quadrupole interactions. To that end the values 
S ai = 0, sbl = 0, L, = 1, 2 and L, = 1, 2 are to be inserted in the multipole 
matrix elements, leading to the lowest-order static multipole matrix elements 
PNJ (L, 0) and VNJ (L, 0). The radial differentiations in (54)-(56) may be carried 
out with the help of (19) and (50). Substituting moreover the numerical values for 
the 3j-symbolslz) one gets for the dipole dispersion energy: 

V dlW,d-d(R) = N &, J 36x3 (k?k, k2) R5 ~IlPu,(l)l’ lPb(l)l’ + (P c-, 41 
N;C#O):J; 

a b 

x [(@a” - 5~ + 3e,‘) P (2eJ + ( -2~: + 6) Q &a) - !&I 

+ [1,%(1)12 bb(1)12 + (p +-+ +>)I K -@a” + @a) p&d 

+ 2dQ &dl> + (a - b), (77) 

where the notation ea = lk,l R has been introduced. Furthermore the parameters 
N, J and s( =0) in the matrix elements have been suppressed for brevity. 

Similarly the mixed dipole-quadrupole contribution to the dispersion energy 
reads : 

V disp,,d-s(R) = 1 
k&b 

pw;.? 80x3 (k: - kg) R7 
{[k&~(~)i” lpb(2)i2 

b 3 b 

+ I,4d2)i2 ipb(i)i2 + (P C* v)i [(-@a” + a?.” - 162@, 

+ 9Oe, ‘) P (2eaJ + (6~3: - 84~: + 180) Q (2eJ 

+ td - %:I + [hd1)12 Iyb(1)12 + l/&(2)12 ivb(1>12 

+ (P * v)l r<eB’ - l%.” + 9ea) lJ (2ea) 

+ ( - 6e: + 18~x3 Q CG,) - 3d + %$I> + (a c* b> . (78) 
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Finally the quadrupole-quadrupole part of the dispersion energy is found as: 

V diStb9_q(R) = c 
9kakb 

NN~(W;.JJ” 1600x3 (k,2 - k;) R9 
md2)12 Irub(2)l’ + (p * 41 

b . b 

x [(~a’ - 89@,' + 1983e,3 - 936Oe, + 5040&1) P (2~~) 

+ (-lo@.” + 510~: - 5280~; + 10080) Q (2& - &e” 

+ %%a” - ?$$I + [I/ml’ 14q2 -I- (p cf Y)] 

x h?: + 53~: - 324~: + 180& P (2~~) + (10~: - 168~: 

+ 360~:) Q (%A + te,” - yp: + $$I} + (a f-, b). (79) 

An alternative form for the dipole and quadrupole dispersion energies may be 
obtained by employing for P(x) and Q(X) the integral representations: 

m m 

P(x) = s e-xf 

dt -, 
i + t2 

Q(X) = dt 5; 
s 

0 0 

in this form the non-relativistic dipole approximation was given in refs. 5 and 7. 
The long-range expressions for V,,,,(R) up to quadrupoles follow from (77)-(79) 

by inserting the asymptotic expansions of P(x) and Q(X), or, more directly, by 
putting P(x) = x-’ in the general formulae (54)-(56). For V,,,,, d_d this leads to 
(31) (with Cartesian dipole matrix elements replaced by the corresponding spherical 
ones); the asymptotic expressions for the higher-order multipoles are: 

V&p. cw,(R) = - 1 
1 

N,(ZO). J, 640x3kakbR9 
N,(#‘-‘), J, 

x (1593 [la(1)1’ Irubm’ + I/4m12 I/-ml2 + (P c-, 91 

- 297 [1,4)12 M2)12 + I,4(2)1’ Ml)12 + (P * 911, (81) 

VdLlsmw,(R) = - c 1 

N,(fOLJ, 6400x3kak,R” 
15591 IP*(2>1’ IPbG91” + (P 4-b 41 

N,(#O).J, 

- 47223 [ltdaC312 bd3l” + od * 41). (82) 

From the formulae (77)-(79) the non-relativistic limit for the dipole and quadru- 
pole dispersion energies may now be derived (v. appendix B). In the sums over 
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positive-energy intermediate states the multipole matrix elements ,u and v are then 
to be replaced by their non-relativistic counterparts, while the negative-energy 
intermediate states give rise [a. (B26), (B29)] to direct matrix elements M(L. + s1 
+ s.J of the form (B24). The direct matrix element which originates in this way 
from the magnetic dipole moments is in fact the diamagnetic matrix element M(1). 
Thus the long-range dipole dispersion energy (31), (which is in fact the complete 
asymptotic dispersion energy), leads in the non-relativistic limit to an interaction 
energy containing, apart from electric and magnetic dipole contributions, terms 
with these diamagnetic matrix elements. The latter may be transformed with the 
help of (B30) into a sum, over positive-energy intermediate states, of squared 
quadrupole matrix elements. In such a form, with dipoles and electric quadru- 
poles, the non-relativistic limit of the asymptotic dispersion energy has 
been given in paper III, viz. in (III.l), (III. 15) and (111.18) (in that paper spin 
terms were not considered; then in addition the orbital magnetic-dipole matrix 
elements may be shown to vanish, as a consequence of rotation invariance argu- 
ments). In the same way the non-relativistic limit of the general expression (77) 

for v*isp, d-d may be rewritten as the sum of the terms in (111.19), (111.23) and 
(111.25) due to V, , V,, and V,,, , respectively (in the notation of papers I-111). The 
remaining terms in (111.23) and (111.25) follow from the non-relativistic limit of 
the ,u(l)-p(2), v(l)-~(2) and ,~(2)-,u(2) interactions in (78) and (79). 

APPENDIX A 

Cartesian multipole matrix elements and sum rules. The operator occurring in 
the one-photon vertex function (8), viz. 

r’ = __e (yof evreV - go”) (Al) 

(with V instead of ik) may be expanded into Cartesian multipole operators: 

p(“) = -e(l/n!) r”, 642) 

“(“) = -e [n/(n + l)!] rnM1r h y”y. (A3) 

In fact these expansions are: 

p = f (-V)” i p(“), 
VI=1 

r = f ( -V)+ -l ; (i [H, p’“‘] - V(“) A V), 
?I=1 

(A41 

(A51 

from which the current conservation relation (24) is obvious. 



MULTIPOLE EXPANSION OF POTENTIAL ENERGY. VI 157 

Time-reversal invariance of the atomic hamiltonian leads [u. formulae (lo)-( 1 I)] 
for the matrix elements of the operators (A2) and (A3) between states Ior,) and 
Ia) to the following properties with respect to complex conjugation: 

’ $&2 Qppp* = 0, 046) 

.!%?a s, pyvy* = 0, (A7) 

where the abbreviation S, = &,~ao.,const) has been introduced. The correspond- 
ing property (22~ for the one-photon vertex function (Al), may be obtained now 
by employing (A4) and (A5). Space-inversion invariance of the atomic hamilto- 
nian implies the parity selection rules 

s,pp~“* = 0 (n, - nz odd), (A9) 

sapyV~2)* = 0 (n, - n, even), (AlO) 

SaV~‘)V~)* = 0 (n, - nz odd), (Al 1) 

while rotational invariance entails moreover the relation : 

s,pyvp* = 0 (n, even). 6412) 

From the vanishing of the repeated commutator [[H, r”‘], rn2] one gets, with 
the help of (A6), the sum rule: 

S k,p:‘j@)* = 0, (A13) 

with S = x k. +0) S,. Likewise a second sum rule is proved, viz. : ( 

s ppvg2)* = 0. 
(A14) 

In view of (A4) and (A5), the ensuing sum rules for the one-photon vertex func- 
tions read : 

S k,J,o,r,o,* = 0, (A15) 

s r,qr;z = 0) 6416) 

These sum rules are not independent; in fact, current conservation (24) may be 
used to derive (A15) and (A16) from (A17). 
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In the non-relativistic limit the time and space components of the one-photon 
vertex function for positive energy states a, reduce to : 

Fzi = -e (&,I e-“‘[ - 1 [a+), (Al8) 

r&+i = -(e/m> <a01 + {p - +a A Vi, e-r’vi} la+), (A19) 

respectively. Multipole expansions of the same form as (A4) and (A5) may be 
found if the non-relativistic multipole moments are defined as: 

P -2’ = -e (a01 (l/n!) Y” la+), (A20) 

p 
a+ = -(e/m) (n,l + {P-l, [n/(n + l)!] rhp + [l/2 (n - l)!] U> /LX+). (A21) 

The non-relativistic magnetic-multipole matrix element Y(“) differs from the non- 
relativistic limit of the corresponding relativistic matrix element (A2) by terms 
that drop out in the multipole expansion for (A19). 

The sum rule (A17) and hence (A15) and (A16) lead in the non-relativistic limit 
to the sum rules given in paper I when, moreover, the spin terms are suppressed. 
In fact, in (A17) the negative-energy intermediate states give rise, according to 
(43), to a direct matrix element in the left-hand side, and in the right-hand side 
to the matrix element (I.B6). In this way (A17) may be seen to entail the non- 
relativistic sum rule (I.B9), which in turn implies (1.53), as follows when the inner 
product with Vi is taken. 

APPENDIX B 

Multipole matrix elements and sum rules in the spherical-tensor formalism. In 
this appendix the spherical-multipole expansion of the one-photon vertex func- 
tion is derived. The resulting multipoles and their sum rules will be discussed both 
relativistically and in the non-relativistic limit. 

The time component PO(k) of the operator in the one-photon vertex function 
(8) may be expressed, with the help of the Rayleigh expansion, in terms of the 
electric multipoles 

&(s) = -e 
[4x (2L + l)]& 

(2s)!!(2L+2s+ l)!lr 
L+2SYF (3), 031) 

with parity eigenvalues ( - l)L; in fact one has: 

P(k) = c ( - l)L-M [4x/(2L + l)]* (ik)L+ps YL”(f;) p:(s). (B2) 
L,M,s(L+2s>O) 
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The spherical componentsJ’“(k) (3, = 0, rt 1) of the space part of the operator 
in (8) may be expressed in terms of the operators J?r (L’, s), defined in (46), as: 

P(k) = c (-l)L-M+L’-M’ [4x (2L + 1) (2L’ + l)]+ 
L, L’, s 

_LM _LL, 

M.M’ 
> 

x (ik)L’+zS Y;‘(k) @_# (L’, S). (B3) 

By applying the addition theorem for spherical harmonics 

ifi [4x/(2L, + l)]’ Y$(i) =&( - l)M [4x (2L -I- l)]+ ( L1 ..- Ln L 
Ml 0.. it4” -M 

) Y?(i) 

(B4) 

[that follows from the definition (11.17) for the Gaunt coefficient], the longitudinal 
part r,, = kk l r/k2 of (B3) may be cast into the form: 

F;(k) =L s,“( -l)L-M+L’-M’(ik)n 

n;. M’ 
( 

: 

Here the tensor operator T,, is defined as: 

Ti;fL (L’, n) = E’ [4x (2L + 1) (2L’ + 

L L’ 
_M _M, 

> 
T& (L’, n) Y:‘(k). (B5) 

l)lV2L” + 1) (10 ; “b) (:, ; “a) 

(the prime at the summation sign stands for the restriction n - L” even and 
non-negative); it is non-vanishing only for L’ = L + 1 and has the parity eigen- 
value (-l)L’+l = ( - l)L. Since r,, may be written as, - [H, r”] k/k2, the right- 
hand sides of (B2) and (B5) are closely related. As a matter of fact the gradient 
formula yields : 

i [H, p”t” (s)] = C (- 1)” (2L + 1)’ (2L” + 1) 
1LL” 

L” ( > 00 0 

x QF 
( 

L”, s + 
L-C-1 

> 2 ’ 
037) 

which is precisely the combination of operators 52 occurring in (B5) with (B6). 
The transversal part r, = r - r,, follows by subtracting (B5), with (B6), 

from (B3). Then an expression analogous to (B5) results for r,, with T1 given 
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by: 

TF&', n) = ;' [4x(2L + 1) (2L' + l)]’ 

With the help of the orthogonality relation of the 3jsymbols an alternative form 
for Tl is obtained: 

T& (L’, n) = 5’ [4x (2-L + 1) (2L’ + l)]* (2L” + 1) 

Here the cases L = L' + 1 and L = L' may be considered separately. In the 
former case (B9) contains the following combination of operators Q: 

4%) =,,,_~*W L+l [‘“I”,; ‘)lt(2L!r + 1) (: -“, y) 

x Lq ( L", s + L -L" - 1 

1 2 ’ 

with parity eigenvalue ( - l)L; in the latter case one is led to the operator: 

Y:(S) = i( - l)L+ ’ [2L(2L+; ')]1(2L + I)(; ", +L,s), (Bll) 

with parity eigenvalue ( - 1) L+ l. These combinations of operators also occur in 
the theory of multipole radiation from atomic systems. In fact the amplitudes for 
the electric and magnetic 2L-pole radiation may be expressed in terms of (BIO) 
and (Bll), respectively. For that reason the operators xf(s) and Y:(S) may be 
called the transversal electric and magnetic multipole operators. From (BlO) it 
follows that x?(O) is related to the electrostatic multipole moment p?(O): 

~50) = i LX &@)I. PW 

The two-photon vertex functions (9) lead, upon evaluation in the spherical- 
tensor formalism, to the following products of reduced matrix elements of the 
multipole moment operators (Bl), (BlO) and (Bll): 

(B13) 
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JNJ CL, s> = L (L2L+: 1> c VNJ tL, s> v:J tL, s - ‘>* 
s 

0314) 

0315) 

[The dipole matrix elements are obtained from (Bl), (BlO) and (Bll) by putting 
L = 1, S = 0: 

x?(O) = -ecP, W6) 

p?(O) = -er”, (B17) 

y?(O) = -+e (r A ~4)~. (W 

Sum rules for the reduced matrix elements of the spherical multipole operators 
may be derived from those for the one-photon vertex functions, given in appen- 
dix A (with -iV, and -iVz replaced by k and k’, respectively). Inserting (B2) and 
(B5) into (A16) and using the orthogonality of the 3j-symbols one gets: 

which leads with (B6) and (B7) to the sum rule: 

A formula similar to (B19) is found for T1, giving the sum rule : 

1 PNJ CL7 d %zJ (L, s2) = 0. 
N(#O). J 

@W 

0321) 

The analogous sum rule with x replaced by v is trivial since then all terms vanish 
separately, as may be seen from parity considerations. 

The non-relativistic approximation of the operator (46) has the form: 

@f(L’, s) = -e 1 (-l)‘-“+L’-M’(2L + I)+ L’ l L 
1. M’ -M’ -1 M > 

x [(2s) ! ! (2L’ + 2s + I)! !]- 1 [4x/(2L’ + l)]’ 

x (3 {m-‘p” + d, rL'+zsYf?' (3)) 

+ +i [m-l (a A p)“, rL’+“YE’ (P)]) Q322) 
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[u. (39) and (40)], from which expressions for non-relativistic operators R, p and F 
follow by relations analogous to (B7), (BlO) and (Bll). Sums over negative-energy 
intermediate states contaiding products of the reduced matrix element Q&L, L', s) 
[v. (47)] may be rewritten as: 

N(k ;,, Jf(kN) QNJ CL, Ll 2 81) JZJ w, L2 > $2) 
N * (~23) 

=f(-2m) (2L + 1) (2LI + 1)-l &,,L,C (L1, Sl, 82) M(L + Sl + sz), 

where the direct matrix element 

M(L + s1 + sp) = ez (2J” + 1)~+ (0, J”~~r2L+2s1+2s2~~0, Jo) (~24) 

and the coefficient 

c (L, sl, x2) = [(2s,)!! (2s,)!! (2L + 2s, + I)!! (2L + 2~2 + l)!!l-1 (B25) 

have been introduced. The relation (B23) leads, with the use of (B7), (BlO) and 
(Bll) to analogous formulae for the sums of products of multipole matrix ele- 
ments : 

=)m-2f( -2m)(2L + 1) [Lc(L - l,q,s2)+ (L + 1) 

x c(L + l,s, - l,s, - l)] M(L + s1 + s2 - l), (B26) 

N,kN& J f@W Pm 6% SI> %J 6% ~2) 

= -+im-1f(-2m)L(2L+1)[c(L-l,~~,S2) -C(L+l,$-l,S2-1)l 

x M(L + s1 + s2 - l), (~27) 

N,,,;o, J f-&N> jiNJ 6% 31) 6J& $2) 

=f(-2m)L(2L+ l)(L + 1)-l [(L + l)c(L - 1,Sl,S2) 

+ Lc(L + l,s1 - l,s2 - l)] M(L + s1 + s2 - l), (B28) 

N(k Fo, J fV4 cNJ & $1) t?J & S2) 
N ’ 

=f(-2m)L(2L + 1)2(L + I)-'c(L,s,,s,)M(L + s1 + x2). (B29) 
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Parity conservation implies the vanishing of similar expressions containing pro- 
ducts of an electric and a magnetic multipole matrix element. From (B26) and 
(B27) the non-relativistic limits of the sum rules (B20) and (B21) follow immedia- 
tely. The sum rules may then be used to rewrite the direct matrix element M as 
a sum, over positive-energy intermediate states, of products of non-relativistic 
electric-multipole matrix elements; in this way one gets: 

M (L + S1 + Sz) 

=2m(2L+3)-1[(L+1)c(L,s,,s,)+(L+2)c(L+2,s,-1,s,-1)]-’ 

x& J&iML + lJ,)PXL + 194, (B30) 
N 9 

and an analogous expression for M in terms of products of ,ii and ii. 

APPENDIX C 

The analytical behaviour of the Fourier-transformed induction energy. The induc- 
tive part Find of Fz given in (7) contains a contracted product of averaged two- 
photon vertex functions which has the form [v. (71) and (72)] 

= 6(k0) &(k2, k’2, k - k’), (Cl) 

with a regular function fab that is symmetric under an interchange of k and k’. 

Introducing the variable K, by writing k = +Q + K, k’ = $8 - IC, the Fourier 
transform F&t) becomes (with t = -Q2): 

Fin,(t) = i 
s 

MQ2, 4, xi?) 

2 (2743 
h,, dxlxl 

[(q + 3Q)” + x:1 Nq - 3&I’ + &I 
(C2) 

where cylindrical coordinates around Q have been used for K. 
In the complex xl,-plane the integrand of (C2) has poles at xl1 = +3Q + ixl. 

Upon analytical continuation in t away from the negative t axis, counter-clock- 
wise and clockwise by putting Q = IQ1 exp (iv) with q~ running from 0 to +t and 
-3x, respectively, the integration contour in the complex xl1 plane has to be de- 
formed so as to avoid the poles. Although the contours for v = JX and pl = -+t 
are different, the resulting integrals over xl, turn out to be equal if x1 is different 
from 3 1Ql. When xL equals + ]Q] the contour gets pinched for v approaching the 
values + 3~. As a result a pole on the xl-integration path shows up at xI = 3 lQ1. 
The prescription for analytical continuation requires this pole to be avoided, 
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through the upper x1 plane for v + +rc, and through the lower x ,_ plane for 
q -+ -+x (a. fig la). As a consequence the ensuing values for Find, viz. Find (t - i0) 
and Fina (t + iO), respectively, with t > 0, are different. In fact, in the former 
case one finds: 

Fina (t - i0) = 

where the small arc around +jQl in the xl-integration path has been parametrized 

IQ1 n&+, 
4 (2x)3 s s dx,, @ ~%(-lQ12, tlQ12, x;i> 

@II + lQ12> (xi + e2 eZiW)’ 
(C3) 

0 CV 

by polar coordinates (e, y). The corresponding contours in the xl1 plane have been 
denoted by C, and have been drawn in fig. lb, c, d for p = x, 3x and 0, respec- 
tively. An expression analogous to (C3) may be found for Find (t + i0). 

c 

x c d 

Fig. 1. Integration contours, after counter-clockwise analytical continuation towards positive t, 
(a) in the XI plane, (b, c, d) in the x,, plane. 

The discontinuity of F,“.Jt) across the cut along the positive t axis follows by 
subtracting (C3) from its counterpart. Calculating the residues arising from the 
different circumventions of the poles in the x,1 plane, one gets 

Find (t + i0) - Find (t - i0) = -&r-lt-t-jJ - t, $t, 0), (C4) 

which leads upon comparing with (Cl) to formula (73) of the main text. 
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