
Physicu 64 (1973) 217-246 0 North-Holland Publishing Co. 

MULTIPOLE EXPANSION OF THE RETARDED 

INTERATOMIC POTENTIAL ENERGY 

V. DERIVATION WITH THE USE OF A DISPERSION RELATION 

L. G. SUTTORP* 

International Centre for Thebretical Physics, 
Trieste, Italia 

Received 31 August 1972 

Synopsis 

A dispersion relation technique is used to obtain the retarded dispersion energy of two neutral 
atoms in nondegenerate ground states. To that end multipole expansions are derived for the elec- 
tromagnetic form factors occurring in the vertex function that characterizes the interaction of a 
neutral atom with a pair of photons on the mass shell. The long-range asymptotic expression for 
the dispersion energy is shown to contain electric and diamagnetic matrix elements in a symmetric 
way. 

1. Introduction. In previous papersl) of this series the retarded dispersion energy 
of two neutral atoms in their ground states has been obtained by calculating, with 
the help of perturbation theory up to fourth order, the energy shift due to the inter- 
action of the atoms with the radiation field. Recently, Feinberg and Sucher2) 
showed how dispersion-relation techniques may be used to evaluate the two-pho- 
ton exchange contribution to the interaction energy of neutral particles. In fact, 
they found, by assuming analytical properties for certain functions and introducing 
a generalized electric dipole approximation, an expression for the interaction 
energy that contains the properties of the particles in the form of several spectral 
functions. Since these particles were not specified in more detail explicit expres- 
sions for these spectral functions could not be given. 

In the present paper these dispersion-relation methods are applied to the deriva- 
tion of the multipole expansion of the interatomic dispersion energy. By making 
use of the knowledge about the atomic structure the analytical properties of the 
Fourier transform of the dispersion energy may be studied in detail. As a result a 
dispersion relation can be written down for this Fourier transform, with a weight 
function containing the atomic vertex functions characterizing the emission of a 

* On leave of absence from the Instituut voor Theoretische Physica, Universiteit van Amster- 
dam. 
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pair of real photons. These atomic vertex functions are determined by the electric 
and magnetic form factors of the atoms for which expansions in terms of multipole 
matrix elements may be derived by considering the emission of photons with defi- 
nite helicities. In this way the explicit dependence of the form factors on the energy 
and the total momentum of the photons will be found. The interatomic dispersion 
energy will be obtained subsequently by evaluation of the dispersion integral for its 
Fourier transform. The expression derived in this way may be shown to be equi- 
valent to that found in the previous papers of this series. The present treatment, 
however, exhibits clearly the symmetry between electric and magnetic phenomena. 
In particular, it follows that the long-range asymptotic form of the dispersion 
energy contains electric and (dia)magnetic matrix elements in a symmetric way; 
indeed, the electric quadrupole terms found earlier can be rewritten, with the help 
of a sum rule, so as to yield the diamagnetic contribution to the dispersion energy. 

2. The interatomic interaction energy due to two-photon exchange. Let us consider 
two neutral one-electron atoms a and b with fixed nuclei and interacting with each 
other uia the electromagnetic field coupled to both electrons and nuclei. Treating 
this interaction as a perturbation one finds* for the contribution in the scattering 
matrix due to the exchange of two photons between the electrons, with charges - e : 

Sri = e4 j d4R, 0.. d4&Va, (R,) r’s,., 0% 7 &I r”wrs, Ub) 

x F&M r”‘&, b Uh 3 R4) Y”‘Y#~) 
.- 

x (g,,,gvg,,& (RI - &I D, @z - R4) + &&,h @I - R4) 

x D,@z - &I), (1) 

where the initial electron states are characterized by Dirac eigenfunctions y+, y,r, 
and the final states by y,, , yPf. In writing the expression (1) we supposed the wave 
functions of the electrons to have no appreciable overlap, so that electronic ex- 
change could be neglected. The propagator for the electron of atom a in the electro- 
static field of its nucleus is given by3) 

m 

sF, a (RI 7 R,) = -$ ; Y~@I) %,(R,) s io&,-t,) 

dw, 
e 

I E, (1 - i0) + o, ’ 
(2) 

--m 

where OL labels all positive- and negative-energy eigenfunctions ya(R) = ya(R) 
x exp (- iE,t) of the electron in the field of its nucleus. The photon propagator in (1) 

* The metric tensor gfiy with components go0 = -g” = 1 (i = 1,2, 3), gpy = 0 (JI # Y) is 
chosen. Four-tensor indices run from 0 to 3, while summation over repeated indices is understood. 
The Dirac matrices yJ‘ satisfy the anticommutation relations (yfl, y”} = 2g”‘. Rationalized gaussian 
units, with fi and c put equal to unity, are used throughout. 
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is defined as: 

D,(Ri - R,) = -1 d4k e 
-ik.(RI-RI) 

(+I4 s k2 + i0 . 

The complete two-photon exchange contribution to the scattering matrix contains 
moreover terms describing the photon exchange between the nucleus of one atom 
and the electron or nucleus of the other. These terms will be added in a later stage 
of the treatment. 

If the propagators (2) and (3) are inserted into (1) and the integrations over 
ti = Rf(i = I,..., 4) and cc),, mob are carried out one finds that the scattering ma- 
trix may be written as: 

Sfi = -2~iS (E,* + Epr - Eat - Ep,) Vf,. (4) 

For equal initial and final states the quantity V,, = V may be interpreted4) as the 
interaction energy of the atoms due to two-photon exchange between the elec- 
trons. After introduction of relative coordinates r,, r, of the electrons with respect 
to their nuclei, with position vectors R,, R,,, the interaction energy is found to 
depend on the separation R = Rb - R, in the following way: 

V(R) = (2~)~~ j dQ efeSRF(Q), (5) 

where the Fourier transform has the form: 

F(Q) = --!-- 
2 (2x)4 s d4k d4k’I’,, pv (k, k’) rr (-k, - k’) 

x 6 (k” + k’O> 6 (& + k’ - Q) 

* (k2 + i0) (k’, + i0) 
(6) 

The vertex function I’: appearing here describes the emission of a pair of virtual 
photons with energy-momenta k’, k” satisfying k” = - k’O, by the electron of 
atom a: 

r:‘(k,k’) = e2 C J:&) J&W) + J:,&‘) J&,(k) 

* a E, (1 - i0) - k” - E&, E, (1 - i0) + k” - Ea, 

(7) 

It contains the current matrix elements J& between the initial (or final) state label- 
led oco and an arbitrary energy state oc of the electron of atom a; these matrix ele- 
ments are defined as: 

J&,(k) = (a0 Iy”f‘ e-‘k*ral a>. (8) 
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From (7) the symmetry property 

rr (k, k’) = r:p (k’, k) (9) 

of the vertex function follows immediately. 
To find the interaction energy due to two-photon exchange between a pair of 

atoms that are described in a nonrelativistic way the two-photon vertex function 
need to be studied only in the approximation obtained by performing a Foldy- 
Wouthuysen transformation for a Dirac particle in an external Coulomb field and 
retaining terms of lowest order in the inverse of the electron mass m. This trans- 
formation leads to a Schriidinger form for the hamiltonian, while the charge-cur- 
rent matrix elements become then: 

(i = 1,2, 3), 

where the curly brackets denote an anticommutator and wherep, is the momentum 
operator of the electron of atom a. By adding an extra term - 1 to the operator in 
the charge matrix element before its insertion into the two-photon vertex function 
the contribution of the charged nuclei to that vertex function can be taken into ac- 
count easily. For nondegenerate positive-energy states oco the components of the 
atomic vertex functions, characterizing two-photon emission in nonrelativistic ap- 
proximation, then get the form: 

r,“” (k, k’) = e2 1’ Q,(k) Q,*(-k') {(k, - k" - iO)-’ + (k, + k” - iO)-‘1, 

Tf’ (k, k’) = TFa(k’, k) = (2/m) C’ Q,(k) Pz’ (-k’) 
a 

x {(a - k” - iO)-1 - (k, + k” - iO)- ‘} , 

I’:’ (k, k’) = (e”/m”) c’ P:(k) P?/ (-k’) 
(11) 

(x 

x {(k, - k” - iO)-l + (k, + k” - iO)-‘} - (e’/m) d’jD(k + k’), 

where the matrix elements 

Pi(k) = (a01 ${ps, emikara} I&), 

Q,(k) = <a01 emiksra - 1 la>, (12) 

D (k + k’) = (a01 e-i(k+k’)‘ru lolo) 

have been introduced. The primes at the summation signs in (11) limit the sums to 
intermediate states with positive energies: E, = E,, + k, with k, > 0. In deriving 
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(11) the reality of the nonrelativistic atomic hamiltonian in the coordinate represen- 
tation has been used; it implies that projection operators on fIxed energy E, are 
real in that representation. For a nondegenerate state oco it follows then thatthe 
sum 

acf,;dK 
a 

) QaW Q%-k') (13) 

is invariant under an interchange of k and k’, so that the energy denominators 
could be combined in the way indicated in the first line of (11). Similar arguments 
were employed to bring the other components of r,“’ into a simple form. The “di- 
rect transition” matrix element-D (k + k’) in ri’ arose from the “odd” part of the 
current operator, with yogi, in (10). 

The expressions (11) with (12) give the two-photon vertex function for a one- 
electron atom in the nonrelativistic approximation. The extension to many-elec- 
tron atoms may be achieved by replacing the operators in the matrix elements (12) 
by sums of similar operators, one for each electron. 

In the following the dispersive contribution to the two-photon exchange inter- 
action energy for atoms in ground states will be evaluated. To obtain that contribu- 
tion only the dispersive part of the two-photon vertex function (again denoted by 
r:“) has to be considered; it is found from (11) by suppressing contributions with 
ground-level intermediate states in the sums. For atoms in nondegenerate ground 
states, to which the treatment will be confined from now on, it may be shown that 
the two-photon exchange interaction energy is completely dispersive. 

The Fourier transform of the interatomic dispersion energy is determined now by 
inserting the dispersive vertex functions following from (11) into (6). Using the rota- 
tional invariance of the atomic hamiltonians one may show that for atoms in non- 
degenerate ground states the product r,,,, (k, k’) I’r (- k, -k’) will in fact depend 
on k2, kt2, k - k”and ko2, for k” = - k’O. As a consequence F(Q) will depend only 
on Q2 and thus, according to (5), the interaction energy only on the internuclear 
distance R = IRI, as could be expected. 

After substitution of the vertex functions (11) into (6) the analytical properties of 
F(Q’) as a function of Q2 may be investigated. This variable is in fact, apart from a 
minus sign, the total momentum transfer t = -(k + k’)2 from one atom to the 
other, due to the exchange of the two photons. In appendix A it is shown that F(t) 
is regular in the complex t plane except for a cut along the positive t axis, starting in 
a branchpoint at t = 0. Moreover, it is found there that the discontinuity across the 
cut may be given by the expression: 

F(t + i0) - F(t - i0) 

wt 
i =--_ 

8x s 
Xl b.l 

P;,,, (k, k’) f;“” (-k, -k’) 

[t (iit - 0~ 
(t > (3, (14) 

0 
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where F:“’ (k, k’) is defined to be equal to r,“’ (k, k’) for k” = -k/O, ko2 = k2 
= k”, k” 2 0. By writing k = $Q + ICY, k’ = +Q - xl, the product of vertex 
functions may be converted to a function of ~2 and Qz = - I; this function has to 
be continued to t > 0 before being substituted into the integral. 

In view of the analytical structure of F(t), described above, it will be assumed to 
satisfy an unsubtracted dispersion relation : 

for t not lying on the positive t axis. Inserting this relation into the expression (5) 
with t = -Q2, one finds for the interatomic dispersion energy the integral represen- 
tation2) : 

co 

V(R) = ---& 
s 

dt ebJrRe(t). 

0 

(16) 

It is completely determined by the weight function e(t) the form of which follows 
from (15): 

g(t) = (2xi)-1 (F (t + i0) - F (t - iO)} r (17) 

Thus, in view of (14), one may limit oneself to a discussion of the vertex functions 
espy and Tic” on the photon mass shells. This study, which entails the introduc- 
tion of electromagnetic form factors to describe the atoms, will be the subject of the 
next section. 

3. Electromagnetic form factors. The general vertex function rf’, and hence the 
mass-shell vertex function rr, satisfies the orthogonality relations l 

rr (k, k’) k,, = 0, r.“’ (k, k’) k: = 0. (18) 

The first equation may be proved by inserting the expressions (11) and u.sing the 
relation 

k * P, (k) = -m (a0 I[H(a), eBikarO - 111 or) = mk,Q, (k) (19) 

[with H(a) the atomic hamiltonian of atom a] between the matrix elements in (12). 
Due to the symmetry property (9) the second equation in (18) follows directly from 
the first. 

As a consequence of the properties (18) of the vertex function the product of 
mass-shell vertex functions FzPy (k, k’) rip’ (-k, -k’) may be found by calculat- 
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ing first, for arbitrary polarization vectors E and e’ satisfying 

.s.k =O, d-k’ = 0, (20) 

the expressions E * i;.’ (k, k’) . e’ and E l f;; (- k, -k’) . e’. In fact, one may write, 
for four-vectors E:(k) = (0, a,.(k)) with space components satisfying E*(k) . k = 0 
and 8+(k) . a_(k) = 0, the relation: 

(21) 

with k” on the mass shell (k2 = 0) and 7’ = (1,O). Thus the contracted product of 
mass-shell vertex functions may be rewritten, in view of (18), in the following way : 

1 ?& (k, k’) FbrV (-k, -k’) 

=A F, $k) * r;.’ (k k’) - +(k’) El(k) . T;, (-k, -k’) . +(k’). (22) 

The contracted vertex functions occurring here follow from the last line of (11) by 
replacing ko2 by k2 = k’2: 

E. 1”: (k, k’) * E’ = (e’/m’) C {2k,/(ki - k2 - iO)} 
a(*@ 

x E - P,(k) E’ * I’:( - k’) - (e”/m) E * e’D (k + k’), (23) 

‘while E l f, (k, k’) - E’ has the same form. 
To employ the rotational invariance of the atomic hamiltonians the spherical 

tensor formalism will be used in the following. Thus the atomic states 01 will be 
labelled from now on by angular-momentum quantum numbers L, , iI& and a third 
quantum number N,, while the non-degenerate ground state is characterized by 
L, = 0, Ma = 0, and N, = 0; as a consequence the energy difference k, = E, - Es, 
will depend only on N,. With the help of the expansion of a plane wave in spherical 
harmonics and spherical Bessel functions one may write then for the spherical 
component x of the matrix element P,(k) = PNsLsM(k) (omitting the index a refer- 
ring to atom a in the remaining part of this section): 

x <O I+ if, r L1+2s1 Y:ll(P)}(N, L, M) YL;“‘(@, (24) 

with P and i unit vectors in the direction of r and k, respectively. With the use of 
the Wigner-Eckart theorems) and the introduction of reduced matrix elements 
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Q,,, (L,, sl) by writing [v. (11.23)]” 

1 
<0 I+ {p”, rLi+2s1Y~(P))( N, L, M) 

(25) 

(the first parameter between the brackets of the Q-matrix elements of paper II 
could be dropped for brevity in the present case of nondegenerate ground-state 
atoms), an expression for the tensor TN (k, k’), contained in the first term of (23) 
and defined as 

T, (k, k’) = c PN,L,&) &.M(-k’) 
LM 

(26) 

may be found. In fact, from (24) and (25) the spherical components of this tensor 
follow as: 

Tt (k, k’) = C 4x(_)L+L*+’ (_kZ)HL,+L,)+%+% 

L,,L,,L,s,,s, 

x {WI + 1) (2352 + I)>+ f&v,, (L,, Sl) 

x G,L 652, s2) E”,,L,.L (k h (27) 

where the ancillary tensor 

has been introduced. The space inversion invariance of the atomic hamiltonian 
may be invoked to show that in (27) only products of matrix elements with L, + L2 
even occur, so that the tensor PA need to be considered only for parameters L, 
and L2 satisfying that constraint. 

The contracted tensor 

8 - iL,*L,,L (k %‘) * 8’3 (29) 

with polarization vectors satisfying (20), is, for L1 + L2 even, invariant under rota- 
tions and spatial inversion of the coordinate system; as a consequence it may be 

* Formulae of the four preceding papers’) of this series are indicated by roman numbers I-IV. 
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written in the form: 

& * E’& (cos e) + (E - iPEP * R - & * Eli * b) f&f (cos e> (30) 

with as yet undetermined functions tE and tM depending on & - kr = cos 8. 

To evaluate tE and tM it is convenient to choose a coordinate frame in which a 
and z’ have the forms (0, 0, 1) and (sin 0,0, cos e), respectively, so that their spheri- 
cal components are Lo = 1, L*l = 0, ftl” = cos 8, I?* l = f2+ sin 8. In view of 
(20) the spherical polarization vector 8% then has a vanishing zeroth component, 
e” = 0, while E” may be written as: 

Here E”” is a spherical vector with en0 = 0 and &‘(0) is an element of the irreducible 

representation matrix5) (with angular momentum quantum number j = 1) cor- 
responding to a rotation with Euler angles (n, fl, y) = (0, 0,O). Indeed, by inserting 
the explicit expressions for dj:’ one may check that .s” (31) satisfies (20) for arbitrary 
c”p (with ~“0 = 0). Definite helicity states for photons travelling in the directions t 
and &‘, with helicities x0 and p. (x0, p. = + l), are characterized by polarization 
vectors eXand .s” obtained by putting Z=( -)” 6,. _,+, and, in (31), P = (-)‘6,, _Qo, 
Y. ref. 6. Substitution of (28) and (31) into (29) gives : 

since YE’ (0,O) has the form BMM,,o {(2L, + 1)/4~}*. The Clebsch-Gordan series5) 
for the rotation matrices 

L2 L 
M; M’ 

with Y2 (0,O) = d$$z(e) ((2L2 + 1)/4x}*, may be used then to rewrite (32) in 

the form 

(34) 
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On the other hand, the expression (30) becomes in the chosen coordinate frame, 
upon substitution of (31) and explicit expressions for &‘(0): 

p-Y& -y’-B*(l - p x cos e> {fe (cos e) + X/d?,, (cos e>> . (35) 

When the explicit form for d$#3) with x, ,U = * 1, uiz. 

d:Qe) = (L(L + i)y *(I - p % COS 0) (U: (COS 0) + X,MJ& (COS e)} , (36) 

with 

a; (cos e) = P;,, (COS e) + P:_ 1 (COS e) - P; (COS e), 
(37) 

& (COS e) = 2~: (COS e), 

is inserted into (34) and the coefficients of E-~E”-“ in (34) and (35) are equated, one 
obtains a relation for tE and t,: 

tE (COS e) + xptM (COS e) = Wl + 1) w2 + 1P 
4XL (L + 1) 

for x, ,u = ) 1. Since L, + L, is even the expressions for tE (cos 0) and tM (cos 0) are 
thus found to be (for i = E, M): 

ti(COs e) = 
[(2L, + 1) (2-h + l)]” L, 1 

4xL (L + 1) (0 1 -F>(? : -:> 

with the abbreviations 

&OS e) = &OS e), &gos e) = &OS e). 

When (39) is substituted into the expression (30) for 

(40) 

the contracted tensor (29) 
and the result into (23) with (12), (26), and (27), one arrives at the following result 
for the vertex function contracted with polarization vectors: 

E - I;+ (k, k') - E’ = E . i?- (k, k') * E’ 

= k2& - &‘& (k, COS e) + (E - k’s’ a k - & - &'k - k') FM (k, COS e) (41) 
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with the electromagnetic form factors F, (i = E, M): 

227 

2e2 
Fi (k, cos 0) = - I- T- 

kN 

m2k2 N(+~o)L L L' s s k2 9 I’ 2’ 1’ 2 N - k2 - i0 

x (_k2y(L,+L,)+s,+s, WI + l)W2 + 1) 

L(L + 1) 

- 8L,L,~L,L$(COS e>> 

- Si,E 2 (0 Ie-i(k+k’)‘rl 0). 

(42) 

The symmetry between the two form factors can be pushed further by evaluating 
the last term containing the “direct transition” matrix element. In fact, by employ- 
ing the plane-wave expansion, for both exp (-ik - r) and exp (- ik’ - r), and coup- 
ling the resulting spherical harmonics depending on P one finds, using moreover 
the rotation invariance of the ground state, 

(0 le-i(k+k’)‘rl 0) = C (-k2)L+S1+S2(2L + l)M(L,s, ,s2)PL(cos0), (43) 
L.S,,S, 

with the matrix element: 

M(L, s1, s2) = {(2s,)!! (2S,)!! (2L + 2S1 + I)!! (2L + 2s2 + l)!!}-’ 

x (0 Ir =+%_+%l 0). (44) 

With the help of the sum rules (B5) and (B6) for the atomic matrix elements the 
form factors may be brought then into the form: 

Fi (k, ~0s e> = f (-k2)” N(& k2 

fI”* “)(Cos 0) + gin: l)(cos fj) . 

- k2 - i0 
(45) 

n=o N 

Here the angular functions containing the atomic matrix elements are defined as: 

ftNs”)(cos 0) _ 2e2 c2h +$ ?I; + l) CGI) 

m2 L.L,.L~.s~.s~ 

(? : 2) (i2 : 2) 
((1 - 6,. L,8L, L,) U: (COS 0) - 6,. L,sL. L2b:. 60s w 
~N~~N.L(L~,S~)SZ:.L(L~,S~), 

\ 
(46) 
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gj”‘@os 0) = 2e2 Z(n) (2L, + 1) (2L, + 1) 

m2 L.L,.L~.s~.s~ L(L + 1) 

x (gL1 : _:> (? : _‘;) [-,,+l,L&l,L2 ;;I;+‘;; 

X kilQN.L (L,, h)Q;G,dL2, s2) -3mM(L, SI,Q) 11 , (47) 

where the symbols (n) at the summation signs stand for the subsidiary condition 
$(L, +L,)+.Q+sz = n. The advantage of the representation (45)-(47) for the 
form factors as compared to that of (42) lies, apart from the greater symmetry 
between the two form factors, in the fact that in (45) only positive powers of kZ 
occur, while (42) contains apparently terms with km2. In fact, for i = E the para- 
meter values L, = L2 = s1 = s2 = 0 yield a contribution with kw2 to the first term 
of (42); by employing (43) and the sum rule (B6) it may be shown, however, that 
this term cancels indeed the km2 contribution of the last term in (42). 

The expressions (45)-(47) for the form factors are the main results of this sec- 
tion. They describe the electromagnetic structure of a neutral atom by means of the 
matrix elements Q and M defined by (25) and (44). According to (41) the form fac- 
tors determine the two-photon vertex function contracted with a pair of polariza- 
tion vectors. Hence knowledge of the form factors is enough to be able to calculate 
the cross section for scattering of photons by neutral atoms. Usually the electric 
dipole approximation is made in an early stage of the evaluation of that cross 
section. The present results may be used to generalize these calculations so as to 
include the contribution of higher multipole transitions. 

The nomenclature of the form factors becomes evident when studying them for 
vanishing photon momenta : k = 0. The expression (45) reduces in that case to : 

(48) 

where we omitted the argument cos 0 on both sides since the form factors are now 
in fact independent of it, as follows from (46) and (47) with (37) and (40). By using 
the sum rule 

&,ki '52,. 1 co, 0) Q% 1 c2, O) = O, (49) 
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following from (B5) for L = 2, s1 = - 1, s2 = 0, one finds that in FE(O) only the 
term withf,$N’o’ contributes and in FM(O) only that with gg’; the result is: 

4@) = 3e2 C kN 11rN12, 
~ N(*O) 

FM(O) = +e” C kil ](r A p)J2m12 - (e2/6m) (0 lr21 0). 
N(=bO) 

Here the reduced matrix elements rN = <Oil r )( N, 1) and (r A p)N = (011 r A p 

1) N, 1) have been introduced; they characterize the electric and magnetic dipole 
moments of the atom and are proportional to particular Q-matrix elements [u. (111.5) 
and (III.O)] : 

S,, 1 (0,O) = -imk,r,, 

%, 1 (LO) = -i (J2/6) (r A P)N- 

(51) 

The expressions (50) show that the electric and magnetic form factors contain in an 
analogous way the electric and magnetic dipole moment matrix elements; the 
magnetic form factor contains moreover a matrix element that describes the dia- 
magnetic properties of the atom. Due to the rotation invariance of the atomic 
hamiltonian the reduced matrix elements (r A P)~ vanish in the present case for 
N # 0, so that in fact only the diamagnetic term contributes to FM(O). 

The form factors (50) may be interpreted as the static polarizabilities of the 
atom in its ground state. In fact, starting from the interaction hamiltonian 

H,nt = er * E + (e/2m) (r A p) * B + (e2/8m) (r A B)’ (52) 

of a neutral one-electron atom in homogeneous static electric and magnetic fields E 

and B [u. (IV.31)] and applying perturbation theory in first and second order one 
finds for the energy shift AE of the (rotation-invariant) ground state: 

dE = -*FE (0) EZ - fFM (0) B2, (53) 

up to second order in the electromagnetic fields. 
In the following it will be convenient to write the form factors as functions of the 

absolute values of the photon momenta and the momentum transfer t = -(k + k’)2 
= - 2k2 (1 + cos 13). To that end the Legendre polynomials Pr. (cos 0) occurring 
in (37) are written as: 

P,(COS 6) = c pL (COS e)], (3 (1 + cos ep, 
m (54) 
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where the coefficient [P& follows by making use of the representation of the 
Legendre polynomial as a hypergeometric function’) : 

PL(COSt3) = (-)“zP,1 (--L,L + 1; l;$(l + cos8)). (55) 

Series expansion of the right-hand side leads to 

PL (cos w,, = 
(-y+m(L + m)! 

(L - (m!)2 ’ 

while similarexpressions, uiz. 

[Pf’ e)], = 
(-)L+m+J(L + m + j)! 

m -j)!(m +j)!m!’ 

(56) 

(57) 

are found for the coefficients of the derivatives PF’ (cos 0) = dJP, (cos 8)/d (cos 0)j 
of the Legendre polynomials. Evidently these coefficients are different from zero 
only when 0 Q m < L - j. 

Introducing these expansions into (45) one finds for the form factors : 

Fi (k, t) = 

with i = E, M. The coefficients, defined as 

[f IN**) (COS e)],, g:n+l*m) = [gi”+‘) (COS e)],, (59 

may be evaluated by using the explicit expressions (46) and (47) with (37) and (40). 
From these it follows that the coefficients are nonvanishing only when 0 G m< n 
so that indeed no negative power of occurs in the form factor (58). 

In ref. 2 the dependence of the form factors on the momentum transfer is neg- 
lected in the course of the calculation of the interaction energy of neutral particles. 
Since explicit expressions have been obtained now for the atomic form factors the 
consequences of such an approximation may be discussed. In (58) the approxima- 
tion amounts to the suppression of all terms with m different from zero, so that 
effectively, according to (59), the functionsf, and g, are considered to be indepen- 
dent of cos 8. The expressions (46) and (47) with (37) and (40) then show that only 
the terms with L = 1 are treated correctly in both FE and FM. Since in particular 
the electric dipole terms in the form factors are of this type, this approximation may 
be considered as an extension of the well-known “dipole approximation”. In the 
following we shall avoid all approximations of this type by retaining the full de- 
pendence of the form factors on the momentum transfer, so that the complete 
multipole expansion of the dispersion energy will be derived. 
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4. Evaluation of the retarded dispersion energy. In this section the interatomic 
dispersion energy will be derived from the general integral expression (16) by 
evaluating the weight function e(t) given in (17) with (14). First of all the contracted 
product of two-photon vertex functions occurring in (14) has to be calculated. 
From (22) and (41) one finds, using the identity [u. (21)]: 

the following expression for the product of vertex functions: 

P,:,,, (k, k') f;‘” (-k, -k’) = (k4 + (k l k’)*} (&I& + FaMFbM) 

- 2k*k l k’ (F&F& + FaMFbE) (61) 

with form factors depending on k and L - k’ = cos 6 or on k and t, as given in (58). 
Inserting now k = +Q + K~, k’ = +Q - xl, so that k* = kf2 = -$t + x: and 
k.k’= -at- X: with t = - Q*, one finds for the right-hand side of (61) a func- 
tion oft and x:. After analytical continuation of that function to positive values of 
t (which is an altogether trivial manipulation in the present case, since the power 
series expansion in t is known) it has to be substituted into (14) .Then one gets, 
with (17), for the weight function : 

+J* 

e(t) =-& s dx, {(At.* f d> (FOE& + Fadd 
0 

- (&t’ - XT.> (FOE&M + F~M~E)} 3 (62) 

or, with the new integration variable x defined by {it - xi>* = +t’x, 

t?(t) = - 
t* 

(16x)* i. 

1 

dx 

0 

where the abbreviations 

P&> i (k t> E,._, (k t>, (63) 

&x) = (j&x) = 2 - 2x2 + x4, 

(64) 
cpedx) = P)ME(X) = -2x* + x4 
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have been employed. In (63) the form factors (58) have to be substituted, with the 
replacement of k2 by -it + xz, or by -&x2 ; the result is 

(65) 

From this weight function the interatomic dispersion energy is obtained by making 
use of (16). With the new integration variable z = $t* one arrives at the expression : 

c rdzjdxe-2ZR 
8i’C3R n~.$m,,m, i,J=E.M 0 0 

XZ 
2(a,+n,+2)+1 vij(x) X2(“.+%-%-%) 

f 
(N,. $a. m,) c f ;j. “., m.J 

+ g2i+ 1.~2 c b+J 
k;. + z2x2 k;, + z2x2 

+ g;2.+ 1’ w . (66) 
N,(+O) N,(+o) 

The coefficients f/Nsnvm) and g?*“‘) follow from(59) with (37), (40), (46), (47) and 
(57), as expansions involving the atomic matrix elementsQ,,, (L, , sl) and M(L,s, , 
s2), defined in (25) and (44), respectively. To evaluate the integral occurring in (66) 
it is convenient to split V(R) into three parts by working out the product of the 
curly bracket expressions. The first term becomes, upon using the definitions (59), 
(64) and shifting the summation variable m = m, + mb in an appropriate way: 

1 
V,(R) =-- c 

8Z3R N,(*O),N,(+O) n,,nb=O m=O 

x (f;yp + l-f ;yq * (1 - il cos e)z 1 m cc I 
2(n,+n,+2)+ lX2(n,+nb--m+2) 

X s s dz dx e-2ZR ’ 
(k& + z’x”) (kib + z’x’) * 

0 0 

(67) 
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The double integral may be evaluated by using the method of partial fractions and 
employing the relation (for p > 0, q 2 0) 

00 

s s d2q & 1 dx e-2zR z;~;;:::p _ 1 d2P 
-~ P(2kR), 

d(2R)2q 2kR d(2R)2p 
(68) 

0 0 

which may be proved by induction with respect to p. The function P(x) occurring 
here is connected to the sine and cosine integrals’): 

m 

P(x) = s e-zx 

dz ~ = 
1 + z* 

Ci (x) sin x - {S(x) - ;} cosx; 

0 

(69) 

it satisfies the differential equation d2P (x)/dx2 = -P(x) + x- ‘. By using (68) in 
(67) the following result is found for V,(R): 

v,(R) = + c 
X3 N,,(+OhNb(+O) n,,y,=O 

1 d2” 1 d 2(n,+nb--m+2) 

' 7 d (2R)2” 7 d(2R)2(“~+“‘)-“+2) 
p(2kN.R) P(zkN$) 

kN, - kNb ’ 

(70) 

Likewise the second and third contributions to the dispersion energy become: 

X 
[= 

(f$P + nf:,p’) (gpp + 1gp; l)) * (1 - il cos e)’ 
I=fl 1 m 
1 dzm 1 d2(n,+n,--m+2) 

’ R d (2R)2m F d(2R)2("n+"b-m+2) 

P (2+,R) 
kNa 

+ (a*49 (71) 

J’m,,,(R) = -& 
x (gp$+l) + 2gph: l)) 4 (1 - I cos (3)” 1 m 

1 d2” 1 d2(n,+nb-m+2) 1 
’ F d (2R)2”’ y d (2R)2(n,+nb-m+2) -$ (72) 
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where (a * b) stands for the preceding terms with a and b interchanged. The square 
bracket expressions in (70)-(72) may be worked out by substituting (46), (47) for 
f, g and using for a&, and b: ,M the relations (36) and (40). In that way these bracket 
expressions become, respectively : 

z (“nv”d [cycos S)]* p/b, (73) 
{=, S) 

c (“@“b+ l) [C”b(cos e)], +b, (74) 
(L.S) 

c 
(n,+l.“,+l, [C”b(cos Q],+b, (75) 

CL, s) 

with sums extending over {&S> = {La, L,,l, L&, Sal, &z, Lb, Lbl, Lb2, $,l, sb2}. 

The brackets at the summation signs have an analogous interpretation as in (46), 
(47); for instance, the subsidfary conditions in (75) are 3 (LoI + L,,) + sal + s,,~ 
= n, + 1 and + (Lb1 + &,2) + sbl + $,2 = ?‘?b + 1. The atomic matrix elements 
are contained in the factors /and 9 defined as : 

fW;L,L1,Lz,s1,~2 1 = P2/m2> m4v.L VI 7 Sl) Jx, L 6% 3 s2), (76) 

g(L,L1,L2,s1,s2j = -@2/m2)~L+1,L &-l,L, ((2L + 1j2/L(L + I>> 

x c k, ‘QN,, CL1 9 Sl> Q;l;, L (L,, s2) - (2e”/m’> 
N(=+O) 

- $mM (L, ~1, s2>>, (77) 

while the coefficients follow from the function: 

cab (L,, L,, , L,2, Lb, Lb1 , Lb2 ; cos @ 

= *,,,z=,l ik ka* + 1) (2Lbi + 1) (:i 
2 

b 

i 

_S) 

i 

x Lb, 1 

( 

Lb 

0 A41 -ii!ii )I 

&;f hfp> d%, , _ M,(e). (78) 

By employing the Clebsch-Gordan series (33) for the d-matrices these coefficients 
may be written as: 

[C”“(cos ej JM = ; (2~ + 1) Cab [pL (COS ejlm, (79) 
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since &$3) = Pt (cos 13). Here cob stands for the expression 

3 ifi. 
1 

(=Ix, + l) (2Lbl + l) 

X 
Lb, 1 Lb &I Lb L 

0 Mi -Mj >( Mt -M, 0 
9 (80) 

which may be evaluated by extending the sum to the value Mi = 0 and subtracting 
subsequently that extra term; the result is: 

eb = 4{(2&,i + 1) (2&,, + 1) 
[ 

( -)L’+Lb 

(81) 

Substituting (79) into (73 j(75) and the results into (70)-(72) one obtains finally the 
following expressions for the interatomic dispersion energy: 

dN-2m 

R d(2R)2” 7 d (2R)N-2m 

V,‘,,(R) =-1 c c (2L + 1) P 
16x3 N,(+O) {L,s).L 

p (2kr$) 
- kiv. 

(83) 

*N-l 

x fag” m;. [P& _f_ d2” 1 dN-2”-2 ’ (2kkNaR) 

R d(2R)2m R d(2R)N-2m-2 N, 

+ (ao@, (84) 

v,,,(R) = 

dzm 1 dN-2m-4 1 

R d(2R)2m y d (2R)N-2m-4 !ii? 
(85) 
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with coefficients [P& and cab given in (56) and (Sl), respectively, atomic matrix 
element functions +“sb and g”pb defined in (76) and (77) (with (25) and (44)) and the 
abbreviation N = CT= 1 (Loi + Lb, + 2s,, + 2& + 2). 

The present results may be compared with those obtained in paper II of this 
series. When using, for an arbitrary function f (2R), the identity, proved in appen- 
dix C, 

m_, ~PL]m 1. dZm 1 dN1+NZ-2m 

R d (2R)2m x d (2R)N1+Nz-2m 
f (2R) 

1 dNcL 
x - -.f(R, + &I, 

R2 dRtZ-= 

(0 < L < min (N1, IV,)), where RI and R, are to be put equal to R when the 
differentiations have been performed, one recovers directly from (83) the expres- 
sion (11.44) with (11.36) and (11.39-41) for V,(R). Likewise one may derive from (84) 
and (85) the expressions for Vr, and Vi,, found in paper II, by employing the sum 
rules (B5) and (B6) in a judicious way. 

5. The interatomic dispersion energy for large separations. The asymptotic form 
of the dispersion energy for large interatomic separations may be obtained from the 
behaviour of the weight function e(t) for small t2). In fact, the expression (65) shows 
that one may write 

e(t) = 1 e.t”, 
?I=2 

(87) 

so that e(t) is proportional to t2 for small t. From (16) one finds then for the dis- 
persion energy an expansion in powers of RY1 : 

038) 

For large interatomic separations the dominant term is determined by ez. It has the 
form : 
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[from (59) with (37), (40), (46) and (47) it follows that n, = 0, nb = 0 implies 
m, = 0, mb = 0 in (65)]. The definitions (64) imply: 

,E dx vi,(X) = 23/15 for i, j = EE, MM, 

(90) 
= -7/15 for i, j = EM, ME, 

while the expressions between curly brackets in (89) follow from (59) with (48) and 
(50). Thus the dominant term in the dispersion energy for large interatomic separa- 
tions is found to be: 

+ 23 (Am-’ (0 Ir?l 0)) (&m-l (0 IrlI 0) 

+7 
(= N,(*O) 

@$ lrN,i2) (+Trn-’ co 161 O)) 

+ 7 (&m-1 co1 d lo>) (N &@ibl 

b 

IrNbi2j), (91) 

where the fact has been used that in the magnetic form factor only the diamagnetic 
term contributes in the present case of spherically symmetric ground-state atoms. 
By employing the sum rule 

(92) 

which follows from (B6) with L = 1 and s1 = s2 = 0, (44) and the relation 

,n,,2 (1, 0) = -(id3 J6) khN, (93) 

[v. (III.lO)], with qN the reduced matrix element of the electric quadrupole moment, 

(4x/5)” @II r2 y2 (9 IlX 3, one recovers the expressions (III.l), (III. 15) and 
(III. 18) derived in paper III of this series. In contrast to those expressions the pres- 
ent result (91) shows clearly the symmetry of the asymptotic form of the dispersion 
energy with respect to electric and (dia)magnetic phenomena, as could be expected 
on the basis of the expressions (50) for the form factors characterizing the emission 
of a pair of soft photons. 

APPENDIX A 

Analyticalproperties of the Fourier transform of the interatomic dispersion energy. 
In this appendix the expression (6), with (11) inserted, for the Fourier transform 
F(Q) of the interatomic interaction energy will be studied. Since this energy is 
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purely dispersive for atoms in nondegenerate ground states only the dispersive part 
of F(Q) will be considered. Due to the rotation invariance of the atomic hamilto- 
nians F(Q) depends for such atoms on the momentum transfer t = -Q2 only. 

From (11) it follows that the product of vertex functions occurring in the dis- 
persive contribution to (6) may be written in the following form (with k” = - k”) : 

c f$’ (k2, kr2, k . 8’; ko2) = 
k.(*O).k,d*O) (k,” - ko2 - io) (ki - kO2 - it)) 

+ c f:?(k2,kr2&kr) + c f:;‘(k2,k’2,k.k’) 
k,(+O) k,’ - k”2 _ i0 k,d+O) k2 - k02 - i0 B 

+ f:;’ (k2, k12, k * k’). (Al) 

Here the summations over LX and b, at fixed k, and k, , are performed already. The 
functions j$’ contain the matrix elements (12) and are thus regular in their argu- 
ments; in view of the property (9) they are symmetric in k2 and P2. The general 
form (Al), which shows explicitly the nature and position of the poles of the pro- 
ducts of vertex functions in the complex k” plane, will be useful in the discussion 
of the analytical properties of the function F(t). 

For the first contributionP’(t) to F(t), obtained by inserting the first term of 
(Al) into (6), one finds upon introduction of the variable K according to k = $9 + K, 

k’ = +Q - K: 

x [{ko2 - (x,, + $8)” - xi + i0) 

x {ko2 - (xl, - $Q)’ - x: + iO}]-1 (A2) 

with Q2 = - t. Here we introduced cylindrical coordinates for K with ~~~ = Q- ‘Q * K 

and x1 = (x2 - z$)“. Since f,61’ is symmetric under an interchange of k2 and kf2 
it is an even function of xl1 . 

The integral over k” in (A2) may be performed by closing the contour in the lower 
half of the complex k” plane. Since&? is of second degree in k”, the large semi- 
circle gives no contribution. The poles below the real axis are situated at the posi- 
tions k” = R, E {@et + 38)” + xi - iOjif, k” = k, - i0 and k” = k, - i0, 
where the square roots lying just below the positive real axis are meant. Evaluating 
the residues we find for P)(t) a sum of two-terms, resulting from the first and 
second pair of poles, respectively: 

(A3) 
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with the abbreviations : 

1 
v1 = (& 

L%Q2, x:, .;; R:) 
- Rt.) R, (R2, - k,Z) (R: - k;) 

(A4) 

1 
‘2 = kz _ k; 

f,6” (Q2, 6, xi; ; k,2) 
k ‘CR: - k;) (R? - k:) 

- @a *k,) . (A5) 

The symbol (R, t--, R_) stands for the preceding terms with R, and R_ inter- 
changed; (k, t, k,J has an analogous interpretation. If x,, tends to zero the roots 
R, and R_ coincide; the function qol remains finite, however, in this limit. Like- 
wise v2 remains finite if k, and k, tend to the same value. 

In the complex xl1 plane the integrand of (A3) has various singularities : branch- 
points are present at the positions x,, = -+Q + i (xt - iO)* and xl1 = $Q 
f i (x: - iO)‘, corresponding to the square roots R+ and R- , respectively. As a 
consequence the integrand in (A3) is defined, for x1 # 0, Q # 0, on four Riemann 
sheets, as a function of complex x,, ; these sheets (labelled by roman numbers) are 
connected across cuts in the way indicated in fig. 1. To identify the various sheets 
the signs of the roots R+ and R_ along the real xl, axis have been indicated. The 
integration path C,, that must be followed in evaluating (A3) extends over sheets I, 
II and IV. For x1 tending to zero it is pinched by branchpoints which are then 
collapsing pairwise. Indeed, the integral over x,, is logarithmically divergent for 

I II 

++p yyLz _____;I ?I[ y___. 

m E 

=k I III II 
-0--__----- 

co 
T----- -- -7 --) 

----- ._-- 
-+ -_ 3 G-7 ++ 

A I, I- 

Fig. 1. Riemann sheets of the integrand of F(‘)(r) as a function of complex xII . 
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x,_ = 0. On multiplication by the explicitly present factor x1 this end-point singu- 
larity for the x,-integration disappears, however, leading to a finite result for 
F”‘(t). 

Apart from the branchpoints the integrand of F(l)(t) (A3) has a number of poles. 
First of all, poles occur for xl, = 0 on those sheets svhere R, and R- have opposite 
sign, i.e., on sheets I and IV (on sheet II, where the integration path C, passes 

91 = 0, no pole is present at this value); they have been indicated by crosses 
in fig. 1. Furthermore, series of poles occur for those x,, that satisfy one of the 
four equations R& = -k,, R* = - k, [for all k, and k, appearing in the sums 
in (A3)]. The first of these equations, for instance, with the upper sign, has solutions 

xl1 = -+Q I!I (-- x: + k: + iO)‘, leading to poles on those sheets where R, is 
negative for these values of x,, . The location of the series of poles corresponding to 
all four equations have been indicated in fig. 1 by dashed lines (since k, and k, are 
positive the lines are bounded in one direction). Inspection of the figure shows that 
the integration path C, is in fact not hindered by any of these poles : they are locat- 
ed on sheets different from those on which C, is situated. 

The function F(‘)(t) (A3) may be continued analytically in the complex t plane, 
by continuing the integrand for complex values of Q, starting from Q > 0 (cor- 
responding to t = -Q’ < 0), and deforming the integration contours continually 
to avoid singularities in the integrand. 

III IY 
I II 

-------7 
-------- 

------- -------- 

Ip 1.. = 

Fig. 2. Riemann sheets of the integrand of F(l)(r) as a function of complex xl,, after analytical 
continuation in t, for 0 < xI < 3 jQ[. 
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When continuing analytically into the lower half t plane by writing Q = IQ] e”, 
with y running from 0 to &r, one finds that the cuts in the complex x,, plane cor- 
responding to the branchpoints of the integrand in (A3) are rotating counter- 
clockwise over y. The xl-integration path has to be deformed to pass in the same 
order as before through the cuts and to avoid the poles. In the course of this ana- 
lytical continuation (Le., for 0 5 y c 3x) no singularities are encountered that 
may pinch the contour in the x,, plane (except for the harmless one connected with 
x1 = 0), so that a function F(l)(t) regular in the lower half t plane is obtained. For 
the ha1 value +t of y the position of the cuts and the poles on the Riemann sheets 
of the integrand F’(t) as a function of xl1 , for 0 < x1 < 3 IQl, have been drawn in 
fig. 2; the integration path to be followed for the evaluation of P’(t) has been la- 
belled there by C, . 

When the function F”‘(t) is analytically continued from the negative t axis into 
the upper half plane, according to Q = IQ1 eiw with y running from 0 to -+r, the 
cuts in the Riemann sheets of the integrand are rotating clockwise. For y = -3x 
one arrives at the same integrand as for y = 3~ discussed above, as inspection of 
(A3)-(A5) shows. Thus, the Riemann sheets of the integrand at y = -$ are again 
represented by fig. 2, where I, II, III and IV result now from I, III, II and ‘IV in 
fig. 1, respectively. However, the path of integration for xl1 is different in the present 
case. As a consequence of the continuous path deformation one ends up with the 
contour labelled C- in fig. 2. Thus F”‘(t) can be continued analytically from the 
negative t axis into the complex t plane, leading to a function regular in the whole 
plane with the exception of the positive t axis. Depending on the way the continua- 
tion is carried out different values are found along the positive t axis : the function 
has a cut along that axis, starting from t = 0. The discontinuity over the cut may 
be evaluated by taking the difference between the integrals over x,, along the con- 
tours C, and C- . In calculating this difference we may use the invariance properties 
of the integrand of F”‘(t) in going from one sheet to another. In fact one may prove, 
from the change of sign of R, when passing the corresponding cuts, that the fol- 
lowing relations connect the functions v1 and Q)~ on the various sheets in fig. 2: 

%(I) = -%(Iv), %(II) = -%(III), 
646) 

%(I) = &II) = %(III) = %(Iv). 

As a consequence it follows that the contour C, - C_ may be reduced to a small 
circular path in counter-clockwise direction around the pole at x,, = 0 on sheet I 
in fig. 2. In deriving this result we used the fact that the branchpoints correspond to 
square roots so that integration paths going twice around them give a vanishing 
contribution to the integral. 

The above discussion was valid only when 0 < x1 < 3 I Ql. For xl > + IQ1 the 
cuts are no longer separated after rotation over + +TC. Both the contours C, and C_ 
can then be chosen to follow the real axis on the Riemann sheets I and IV. As a 
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consequence no contribution to the discontinuity of F”‘(t) across the cut along the 
positive t axis arises from the integration range x1 > 41Q]. 

The discontinuity of Fl)(t) across the cut along the positive t axis is obtained now 
by evaluating, for 0 < x1 < #Q] the residue of the pole at xII = 0 of the integrand 
of (A3) on the Riemann sheet I of fig. 2 and integrating the result over x1. Since 
only ql, given in (A4), has a pole there one finds for the discontinuity across the 
cut : 

P(l) (t + i0) - P(l) (t - i0) 

i +-Jt 
=-- c 

l illdx,f6:‘(-t,x:,0;x: - $t) 

8X k.(*O),kg(*o) o [t (it - 41” 

1 

x (k,z + 4t - XZ) (/Is” + *t - xf) ’ 
(t > 0). (A7) 

Comparison of this expression with (Al) and (A2) shows that the discontinuity 
of P)(t) is given by an integral over x1 of the analytical continuation [to positive 
values of t = - Q2 = -(Ii + k’)‘] of the first term of rO,cV (k, k’) r,“’ (-k, - k’) 
[(Al)], for values of k” = - k’O and k = &Q + K, k’ = +Q - IC satisfying the 
relations ko2 = ;tQ* + x2, Q . K = 0 or ko2 = k2 = kf2. In other words, to 
evaluate the discontinuity across the cut the vertex functions have to be know-n 
only on the photon mass shells. Such a state of affairs could be expected on the 
basis of Cutkosky’s rules*) for the determination of discontinuities of covariant 
scattering amplitudes. The application of these rules to the present case of atoms 
with fixed nuclei is not altogether straightforward; therefore an independent ap- 
proach was preferred. 

The study of the contributions to F(t), arising from the second to fourth terms in 
(Al) leads to similar results: again these contributions may be continued analytical- 
ly to regular functions in the cut t plane. [The contribution to F(t) resulting from 
the last term in (Al) can be made convergent by adding a cutoff factor.] As a con- 
sequence one may write the discontinuity of F(t) across the cut in a form analogous 
to that of (A7) and given in (14). 

APPENDIX B 

Sum rules. In this appendix sum rules will be derived for the S-matrix elements 
defined in (25). A convenient starting point for this derivation is the expression: 

t: 4ximki’ {(2s,)!! (2s2)!! (2L + 2s, + l)!! (2L + 2s2 + l)!!}-1 
N(90hM,M2,A 

(W x (N, L, Ml 3 (p-“, rL2+2szYL;M2 (3)) IO>. 
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In fact, sum rules will be obtained by rewriting it in two different ways and equating 
the results. 

The projection operators on states with the same energy are real in the coordinate 
representation, since the (nonrelativistic) atomic hamiltonian His real in this repre- 
sentation. Since the parity invariance of the hamiltonian implies that only terms 
with L + L, + 1 even contribute in (Bl), this expression may be shown to be real. 
Taking half the sum of (Bl) and its complex conjugate one may write it as: 

- x 2xim {(2s,)!! (2sz)!! (2L + 28, + l)!! (2L + 2sz + l)!!}-I 
M,M,,A 

x (“M ; ;j (0, [++ZslY;M (P), 3 {p-“, Y~~+~~zYL;M, (P)} 10). (B2) 

The commutator can be evaluated by means of the gradient formula’). Since the 
rotation-invariant part of Y:‘(P) Y?(P) is (4x)-l ( -)“‘8L1,L,B~,.-~, one arrives 
then at the result: 

$rn ((2L + 1) (2Lz + l)}+ {(2s,)!! (2s,)!! (2L + 28, + 1)!!(2L + 2.~ + l)!!)-l 

x ; :, : {dLz.L+l 2x1 + dL,,L-1w + 2Sl + 111 ( ) 
x <Olr 

L+La+zs,+2s,-l p-Q* 
(B3) 

The expression (Bl) may be rewritten in a different way by using the gradient 
formula to evaluate the commutator in the first matrix element. Then one obtains, 
with the definition (25) of the Q-matrix elements: 

N;o)c w2 + 1) w + 1>>* (2L + 3) 
{ (Z+l) 

x QNL (L + 1, Jl - w-z,.(L,, s2) + w - 1) 

x (Id ii f-l> QN.L 65 - 1, Sl) G,L 652 9 s2) 

> 

. (B4) 

Equating the expressions (B3) and (B4) one finds, by putting L, = L + 1, two 
types of sum rules; upon insertion of algebraic expressions for the 3j-symbols’) 
they get the form: 

3mM(L, sl, s2> = Nzo,kil W - 1)-l ((2~5 + 1)/L13 

x ww + l))%L.-1 (L,&%*L-1@9 s2) 

- {CL - 1) w - 3pQN,L-1 CL - 2981 + WL-1% 41, (B5) 
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+mM (L, sl, 3,) = C kN1 (2L + 3)-l ((2L + l)/(L + l)}+ 
NC*01 

x [{(L + 1) (2L + l))+-QV,L+1 (G %)Q;G,Lfl (L s,) 

- {(L + 2)(2L f 5)~+QN,L+l (L + 23.91 - w%,L+l G.41, 036) 

with the matrix element M (L, sl, sJ defined in (44). When employing these sum 
rules the reality of the expression 

may be used to eliminate terms Q)N,L (L,, sl) &I$,, (L2, sJ with L, < &. This 
property follows from the definition (25) of the Q-matrix element together with the 
reality of the nonrelativistic atomic hamiltonian H and the atomic angular mo- 
mentum L2 in the coordinate representation. 

The sum rules derived in paper III of this series, aiz. (III.AS) and (III.A9) are 
special cases of the results (BS)-(B6) obtained here. In fact (III.AS) follows from 
(B5) with L = 1, while the information contained in (III.AB) may be derived from 
(B5) for s1 = - 1 and from (B6) for s1 = 0. (It should be borne in mind that the 
definitions (25) and (44) imply that the Q- and M-matrix elements vanish for nega- 
tive values of the parameters s.) 

APPENDIX C 

An identityfor diflerentiations. The proof of the identity (86) starts by writing the 
arbitrary functionf(R, + R,) appearing there as a Fourier integral: 

f(R, + RJ = Tdk 4(k) sin (kR, + kR,) 
0 

= - fdk 4(k) k2RlRz {jc, (kR,) yo (k&l + YO WM_io (k&i. 

(Cl) 

Then the identity 

L 1 dN-L 

2 ~RN_L Rfi &RI = WN i"_tli (W (C2) 

(N > L) valid for spherical Bessel functions fL of the first and second type [v. 
(II.Al4) with (II.A16)] may be used to write the right-hand side of (86) in the form: 

D (N, L)_f(R, + Rz) = 2 rdk 444 (ik)N+2 (--lLjL (kR) yL W), (C3) 
0 
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where we employed the abbreviation: 

D(N,L) = R: Ld- 
( > 

L 1 dNt-L 

-- 
R, dR, R, dR:‘-L 

with N1 + Nz = N. In the left-hand side of (C3) R, and Rz are to be replaced by R 

when the differentiations have been performed. With the help of the recurrence rela- 
tions’) for the Bessel functions the equality 

R-l (d2/d (2R)2) RD (N, L) = 3 L (2L + I)-’ D (N -I- 2, L - 1) 

+ $0 (N + 2, L) + 4 (L + 1) (2L + 1)-l D (N + 2, L + 1) (C5) 

may be derived from (C3) so that, by successive elimination, it follows that D (N, L) 

can be expanded in the following way: 

D (N, L) = c c:R- l {d2”/d (2R)2”} RD (N - 2m, 0), 
m 

(‘3) 

with coefficients ci independent of N. Insertion into (C5) yields the following re- 
cursion relation for the coefficients : 

2(2L + l)&, = (L + 1) c:+l + (2L + l)& + L&p; (C7) 

it has to be solved under the initial constraint ci = a,,,, . The generating function 

with F (0, y) = 1, may be shown to satisfy a linear first-order differential equation 
in x of which the solution is: 

F(x, r) = {x2 - 2x (2y - 1) + 1>-+ = f PL (2y - 1) XL, 
L=O 

(C9) 

where Legendre polynomials appear. With the use of (54) and (56) one obtains 
thus : 

& = [P,], = (-)“‘“(L + ml! 
(L - m)! (m!)2 ’ 

(CW 

so that, upon comparing (C4) and (C6), one arrives indeed at the relation (86). 
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