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Synopsis 

The inductive contribution to the retarded interatomic potential energy of two atoms in 
degenerate ground states is calculated up to all multipole orders on the basis of quantum electro- 
dynamics. The result, which is found to have nonretarded character, is written in such a way 
as to show the induction effects brought about in each of the atoms by the electrostatic and 
magnetostatic fields of the other. 

1. Introduction. In a previous paperl) we derived an expression for the multi- 
pole expansion of the retarded interatomic dispersion energy of two atoms in 
nondegenerate ground states. It was obtained by applying perturbation theory to 
the interaction hamiltonian of the atoms and the radiation field. The expression 
was shown to contain as its short-range limit the nonretarded dispersion energy 
that follows from the electrostatic part of that hamiltonian alone. 

If the ground state of at least one of the atoms is degenerate, the total inter- 
atomic potential energy contains apart from a dispersion contribution also an 
induction energy, as is well known for the electrostatic case’). From the derivation 
given in paper I it will be shown that the expression for the retarded interatomic 
dispersion energy found there is valid for degenerate ground-state atoms as well; 
in that case the result represents the retarded dispersion energy averaged over 
these ground states. In addition the perturbation formulae will yield then the 

* On leave of absence from the Instituut voor Theoretische Fysica, Universiteit van Amster- 
dam. 
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complete nondispersive part of the averaged retarded interatomic potential 
energy, due to electrostatic as well as photon interactions. This part will be 
evaluated, to all multipole orders, in the present paper. The result, which turns 
out to have nonretarded character, will be written in a form that justifies the 
interpretation as an induction energy. 

2. Averaged perturbation corrections for degenerate energy levels. According to 
Rayleigh-Schriidinger perturbation theory the corrections on the energy of a 
degenerate level, averaged over all states belonging to this level, may be expressed 
in forms closely analogous to those valid for nondegenerate energy levels. In fact 
the lowest-order averaged corrections on the unperturbed level Eh” are3) 

E(2) = Tr (%JW~&J 
-%o, (Tr P )AE”’ ’ 0 n 

E’3’ = c 
Tr (H,,tp.H~,tp,,H~,,po) 

n,n~+o) (Tr PO) A,??,“’ AE:?’ -“CL 
Tr(H,,,P,H,,,P,H,,,Po), (1) 

(Tr PO) (AE,“‘)’ 

E’4’ = _ 1 
Tr (H,.,P,H,.,P,,H,.,P,,,H,.,Po) 

n.n’.~~(+o) (Tr PO) AEA’O’ AE,$” A&$’ 

+n “&O, 
Tr (H,.,p,Hl,tpoHI,,p,,Hi,,p,) 

* (Tr PO) AE”’ (AE’“‘)2 n ll’ 

[cJ (1.7)], where traces appear of products of the perturbation hamiltonian Hi,, 
and the projection operators P,, on the set of unperturbed states with energy 
E”’ = E;” + A&O’. Here the terms of EC4’ that do not contribute have been omit- 
tei for brevity; these terms have been left out in (1.7) as well. 

The above formulae will be applied now to the interaction hamiltonian for 
two atoms, labelled a and b, and the radiation field: 

H int = H,, + H,, + HI,, + H,, + Hzb. (2) 

Here the electrostatic interaction H,, of the atoms is given by: 

2 

He, = 
zazbe 

K -Rbi -? ,R +:;-R, (I a b 

- ? IRb +:I’- R 1 ‘j? IR + r , II *‘a al T2Rb - r,, 1’ I’ 
(3) 
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while the one-photon interaction H la and the two-photon interaction H,, for 
atom a read: 

H2a = c ” - A2 (R, + rd, 
j 2mc2 

respectively; A is the vector potential in Coulomb gauge [see (1.4)]. In (3)-(5) 
R, and Rb are the positions of the (fixed) nuclei and r,,, paj (j = 1, . . . , z,,) the 
positions and the momenta of the z, electrons (with charge -e and mass m) of 
atom a. 

The averaged shift to order e4 of the ground-level energy of the system may be 
evaluated now on the basis of (l), with (2) inserted. In particular, the terms 
depending on the interatomic separation R = IRb - R,,I represent the interatomic 
potential energy averaged over the ground states of both atoms. These terms will 
be calculated in the following. 

Due to the rotation invariance of the (unperturbed) projection operators on the 
set of ground states of each of the atoms several terms are found to drop out from 
the expressions for the energy shifts. In fact, one may prove along similar lines as 
in paper I [see (I@-(1.9)] that the following relations hold true: 

here cyO labels the ground states of atom a (LX will label an arbitrary state of 
atom a). 

Employing the relations (6) and (7) we obtain for the interatomic potential 
energy in the first place the terms represented by the set of diagrams in fig. 1 of 
paper I. Evaluation of these diagrams leads to an interaction energy that may be 
split into two parts, one of which has the same structure as the dispersion energy 
for nondegenerate ground-state atoms, given in (1.57)-(1.60) as a sum over excited 
intermediate atomic states, the only difference being that in the present case an 
average over the ground states appears. Therefore this part, which is the averaged 
dispersion energy for degenerate ground-state atoms, need not be considered any 
more. In addition, the diagrams in fig. 1 of paper I give rise to terms with ground- 
level intermediate states, since now such intermediate states can no longer be 
excluded on the basis of the arguments employed in paper I. 

Apart from the additional terms just mentioned, extra contributions to the inter- 
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atomic potential energy arise from a different origin, viz. the second parts of Et3’ 

and EC4). These contributions have the form: 

(8) 

Here the symbol (a ++ b) stands for the terms obtained from the preceding ones 
by an interchange of the labels a and b. Furthermore, the intermediate states of 
the system are labelled by the index n; the latter stands for the set of indices 

{@;B;k1,4; . . . ; k,,,, A,,,], where k,, Ai are the wave vector and polarization of the 
ith photon. As a consequence of the occurrence of the projection operators PO 

only ground-level intermediate states for both atoms contribute to (8) and (9). 
The total (averaged) interatomic potential energy thus consists of the (averaged) 

dispersion energy, with excited intermediate states for both atoms, and a non- 
dispersive energy, with ground-level intermediate states for at least one of the 
atoms. The latter contribution, which drops out in the special case of non- 
degenerate ground-state atoms, will be evaluated in the following section. There 
it is shown that in fact only the terms with one atom in a ground-level inter- 
mediate state remain. This part of the interatomic potential energy may be inter- 
preted as the interatomic induction energy. 

3. Evaluation of the induction energy. The induction energy will be found by 
calculating, in a fashion closely analogous to that of paper I, the five types of 
contributions following from the diagrams in fig. 1 of paper I, and moreover the 
contributions given in (8) and (9). 

The first, electrostatic diagram leads to an inductive energy of the form: 

Vlnd(R) = - 

X 

X 

Lc ce4 
g&b 63’. PO a,,. B(+B~) hck, 

(&I e-la “1 - 1 ]no) (a01 e-‘n’V2 - 1 I&) 

(&I erbevl - 1 I& (@I e’* 

[cJ (I.lO)]; here g, and gb are the orders of degeneracy of the ground levels of the 
atoms a and b. (For nondegenerate ground-state atoms 10~~) and I&,> both denote 
the rotationally invariant ground state of atom a; then (6) may be applied so 
that V:nd vanishes.) 
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The second type of diagrams in fig. 1 of paper I gives no extra contribution in 
addition to the dispersive energy written in (1.12); thus we have: 

V:nd=O. (11) 

In the nondispersive terms following from the third type of diagrams a product 
of matrix elements of the form: 

$ g <&I e-‘a “I - 1 1~~) (~~1 {p,, e-ra’vz) lab) (12) 

occurs for at least one of the atoms. With the help of a reasoning similar to that 
used in arriving at (1.24) expression (12) may be shown to be equal to its opposite, 
so that no contribution to the induction energy arises. The extra energy correction 
(8) contains the same combination of matrix elements (12) and hence does not 
contribute either. As a consequence we find for the total inductive interaction 
energy of the third type: 

VFd(R) = 0. (13) 

We now turn to the fourth type of diagrams in fig. 1 of paper I. Inspection of 
(1.32) leads to the following expression for the partial induction energy: 

VP(R) = J- c c 
g&b a,‘. PO’ % 

4n2z3c4 (&I (paI e-‘a’V1) IG> - (V,V, - UA,) 

- (v2v2 - UA,) * (a01 {p,, e-‘4’v2} lab) (/l&I e’b”vl+v2) I/lb) 

s dk dk 

x (4~)~ k3(k’)3 
(e- Ik.RI _ l)(e-lk’*% _ 1) ~+(a,Ly*b,#q. 

kk’ 
(14) 

By commuting exp (-r, - VI) with the free atomic hamiltonian [see (1.47) and 
(1.48)] the matrix element (CC,,] (VI * p., exp (-r, l VI)} I&) may be proved to 
vanish; hence only the terms with the operator AlAz in front of the integral 
contribute to (14); this operator yields a factor k2(k’)2 in the integrand. Performing 
now first the angular integrations with the help of (1.16) and then the radial 
integrations by employing the relation : 

sin kR, sin k’R2 x2 
[dkO;dk’----=-, 

kR, k’R2 4R,R, 

we get for the induction energy (14): 

(15) 

. <ol,l {p,, e-ra’v2} I&J (,!?&I e’b”v1+v2’ I&) (l/R,R,) 

+ (a,a*b,B). (16) 
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In the expression for the nondispersive energy originating 
of diagrams two different terms show up, with ground-level 
for one and for both of the atoms, respectively: 

from the fifth type 
intermediate states 

x <&I {P,, e -r4’v1> 1%) </%I {pb, erb+} ]/I) : (v,v, - UA,) 

x G%] (P,, e-ra’vz) I~~> @I (&5, e’b*‘z} I&) : (V,V, - UA,) 

dk dk 

x (4x)2 k3(k,)3 s (e- 
tk.R, _ 

1) (em 
ik’.R, _ 1 

)4 
kskk 

+ (4 a* b, B) 

x <a (P,, e-‘~‘vl) I%> @&I {pb, erb”l) I&) : (V,V, - UA,) 

x <%I (Pa, e-‘~‘v2} I& </%I (pi,, erb’vz} I&) : (V,V, - UA,) 

s dk dk’ 

’ (4~)~ k3(k’)3 
(e- 

Ik.R, _ 1) (esik’.Rz _ 1) -!- 

k2k’ 
(17) 

[see (1.37) with (I.38)-(1.41)]. The extra term (9) leads to an expression containing 
the same product of matrix elements as occurring here, with ground-level inter- 
mediate states for both atoms. Upon evaluating this term it is found to cancel the 
second part of (17) so that only the first part remains. When this part is dealt 
with in the same way as Vy, we arrive at the following formula for the total 
induction energy of the fifth type: 

The complete averaged induction energy for two atoms in degenerate ground 
states has been found now as the sum of three contributions: 

P(R) = V:“d(R) + VZd(R) + VP(R). (19) 
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The formulae (lo), (16) and (18) for these three contributions show that the induc- 
tion energy has nonretarded character: the radial dependence of the partial induc- 
tion energies Vy and V:“d, which arise from photon interactions, is determined 
by the function (RI&)-l, just as that of the purely electrostatic induction energy 
V:nd. 

4. Expansion in multipole matrix elements. The expression for the induction 
energy obtained so far may be written in terms of matrix elements of electric and 
magnetic multipole-moment operators, defined as 

(21) 

In fact the matrix elements occurring in the electrostatic energy (10) can be ex- 
panded in the following way: 

_ e (&‘I e-‘aWvl - 1 la> =“f/-V,Y i l4% (22) 

while the matrix elements in (16) and (18), arising from one-photon interactions, 
may be expressed as 

with i = 1,2. Inserting these relations into (lo), (16) and (18) we obtain: 

vt”” = -Lee 5’ 
gag, ao’.Po’ ~~~.8(*8~) nl.m,.n2.m,=l iick, 

x ((-VJ”+ i vE?& A V,} * {(-v,y+ : v2;; A V,} 

x (/yJ ,‘b*(vl+v,) IBh> (lI&~% + (a, a ++ b, 13, (25) 
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l {VP-l f (iksl@T +vz$* A V,> (l/R,&) + (at* fi). (26) 

By making use of the sum rule [see (1.53) with (1.63)] 

ez - V, (&I erb*(vl+v2) I&) 

mc2 

the last matrix element in VP may be written in terms of multipole matrix 
elements as well. Then the induction energy is expressed completely in terms of 
these matrix elements. A better insight in the result is obtained, however, by 
employing a different sum rule, viz. 

(28) 

[see (I.B9)] with the matrix element 

FwJo’ = e2 <p;iml,$=l (ml + 
mc2 

F;TL 
2 

+ l)r kb - vl>“l-’ @b - v2)m2-1 

x (rbrbvl - v2 - rbvlrb ’ v2 - v2rbrb ’ VI + urb - vlrb ’ v2) I&> 

(29) 

[see (I.B6)]. If (28) is inserted into (25) an expression results of which several 
terms occur in (26) with the opposite sign. As a consequence the following formula 
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is found for the sum of the partial induction energies (24)-(26): 

525 

V’“d (R) = - 

X 

+ 

+ 

. MBo,Bo, . ((-V,)“+ : v;?;,* A V,> (l/&R,) + (0~ ++@). (30) 

This expression may be interpreted in terms of a hamiltonian similar to that derived 
recently by Atkins and Woolley4*5). These authors found, as an extension of a 
result obtained earlier by Power and Zienau6), that from the hamiltonian for 
neutral atoms in a radiation field the vector potential may be eleminated in 
favour of the transverse electric and magnetic fields by employing a canonical 
transformation (see also appendix B of paper I). Likewise, the hamiltonian for 
a single neutral atom b in static external electromagnetic fields E = -VT, 
B = V A A may be brought into the form: 

(31) 

If the static fields are generated by a neutral atom a, with multipoles &“), v$‘), 
we may insert into (31): 

E(R,) = --vbn-jjlv: i pf’ ’ 
IR - &I ’ 

B(R,) = V, A -f (V:-’ : v:) A V,) 
1 

PI=1 I& - &l l 

(32) 

(33) 

The expression (31), with (32) and (33), reveals the mechanism that leads to the 
potential-energy contribution (30): each atom induces, through its static electric 
and magnetic fields, multipole moments in the other. Since only static fields come 
into play, the ensuing induction energy shows no retardation effects. 
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