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Synopsis 

The long-range asymptotic expression for the multipole expansion of the retarded interatomic 
dispersion energy is shown to consist of contributions from electric dipole-dipole, dipole- 
quadrupole and quadrupole-quadrupole interactions, all varying as the inverse seventh power 
of the interatomic separation. The general expressions for these interactions lead to short-range 
series expansions which extend results obtained earlier with the help of the Breit hamiltonian. 

1. Introduction. In the first two papers of this seriesl) the interatomic dispersion 
energy V(R) of two ground-state atoms at a distance R has been found as a sum 
of three terms V,(R) (a = I, II, III), written in spherical-tensor notation in 
formula (44) of paper II. The radial dependence is represented there by functions 
fl [defined in (II. 1 l)-(II. 13)], acted upon by a number of differential operators. 
Furthermore coefficients T” . K, appear which have been given in terms of 3j- and 
6j-symbols by (11.36)-(11.42). The properties of the atoms enter in the form of 
squared matrix elements of operators that have been defined in (11.20). Expression 
(11.44) is valid for nondegenerate ground-state atoms and, as an averaged energy, 
for atoms in ground states that form irreducible sets under rotations; then the 
squared matrix elements are to be understood as averages over these ground 
states. 

The results described above will now be studied in the limiting cases of large 
and small interatomic separations. First, the long-range asymptotic form of the 

* On leave of absence from the Instituut voor Theoretische Fysica, Universiteit van Amster- 
dam. 
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dispersion energy will be derived. Then, on the basis of the complete expressions 
for the contributions of lowest multipole order, short-range expansions will be 
given. 

2. The interatomic dispersion energy for large separations. In paper I it has been 
shown that the terms with the largest range in the interatomic dispersion energy 
fall off as the inverse seventh power of the separation R between the atoms. Since, 
as R tends to infinity, the functions fi in the general expression (11.44) are pro- 
portional to R-l, R and R3 for c = I, II, III, respectively, the leading terms of 
V, , V,, and Yin are found by choosing the summation variables L,i, Lbl, s,*, Sbi 
(i = 1, 2) such that 

is equal to 4, 6 and 8, respectively. We shall now consider the contributions of 
V,, V,r and Vi,, successively. 

With regard to V,(R), the definitions of N1 and iV2 imply that we may confine 
ourselves to the term with all parameters &, Lbl, s,*, s,,~ (i = 1, 2) equal to zero. 
As can be inferred from (11.20) the operator 92; then reduces to BLal. 1paM”I’, so 

that the electric-dipole approximation of V,(R) is recovered, which is equal to 
that of V(R), since V,‘,,(R) and V,,,(R) do not contribute in this approximation. 
The result has been given already in (1.71). With the use of (1.65) and (1.69) we 
obtain from it the leading term in the long-range expansion of V,(R): 

(1) 

which is the well-known result of Casimir and Polde?). Here we employed as a 
basis of atomic states the set of eigenstates IN., L,, Ma) of the atomic hamiltonian, 
the angular momentum and its third component; the atomic ground states are 
accordingly written as 10, Lz, Mz). The difference between the atomic energy 
level characterized by N, and the ground level is fickNO. Furthermore the Wigner- 
Eckart theorem enabled us to rewrite the squared electric-dipole matrix element 
in the following way: 

with the abbreviation 

rN,,L, = (2L,” + I)-* <o, L,“II ra IIN,,, Lo>. 
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Let us consider now the leading term in the long-range expression for V,,(R). 
In this case only terms with parameters satisfying the equality 

L,, + Lb1 + L,, + Lb2 + 2s,, + 2&l + 2s*z + 2s,2 = 2 

contribute. If, moreover, the parity conditions (11.30) are used, three types of 
parameter combinations are found to be relevant: those with La, = 1, Lbi = sgt 
=sbi =O(i= 1,2),and(attb);thosewithL,, =2,L,,z =O,Lbl =s,, =sbl=O 
(i = 1,2), and (Q ++ b; 1 c-, 2); finally those with so1 = 1, s,~ = 0, La, = Lbi 
= sbi = 0 (i = 1,2), and (a f+ b; 1 t, 2). For these combinations of parameters 
only certain values of LL, LL and L lead to a nonvanishing coefficient T” - K, 
(see table I; the 3j- and 6j-symbols have been taken from ref. 3). Since this co- 
efficient is symmetric with respect to an interchange of 1 and 2, parameter com- 
binations following from those given in the table by such an interchange have 

TABLE I 

The coefficient T” * K, 

G L.1 Liz, L; Lbl Lb2 L T” . K a 

1 0 0 0 1 1 1 4127 

1 0 0 1 1 1 1 - 2127 

1 0 0 2 1 1 1 2/135 

1 0 0 1 2 0 0 - lo+/1 5 

1 0 0 1 2 0 2 - lot-/75 

been omitted. However, T” - K, is not symmetric in a and b: it turns out to vanish 
for parameter combinations obtained by interchanging these labels. The third 
combination mentioned above, with L,, = Lbi = 0 (i = 1,2), does not occur in 
the table, since T” * K, is equal to zero in that case (in fact the coefficient is then 
identical to that of the electric dipole-dipole contribution to Vu). 

The reduced matrix elements LRN., L, (LA, Loi, sat) in V,,(R) will be transformed 
now in such a way that the electric and magnetic multipole moments appear 
explicitly. We have to consider for the parameter combinations (LI:, Lot, sei) the 
values (1, 0, 0), (0, 1, 0), (1, 1, 0), (2, 1,O) and (1, 2,0). 

From the definitions (11.20) and (11.22) we find for the first matrix element: 

a N,, L, (1, 0, 0) = (2L: + I>+ (0, L,“ll pa IiN,, La), 

and hence, with the commutation relation 

(3) 
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the expression 

n N,, L., (LO, 0) = - imckN.rN,, L,> (5) 

where again the notation rN&, = (2Lz + l)-* <O, LI 11 r, IIN,, L,,> for the re- 
duced electric-dipole matrix element has been used. 

For the second matrix element we get from (11.20) and (11.22), with the 3j- 
symbo13) 

( 1 1 0 

> 

= (-l)‘--” 
M -M 0 J3 

and the commutation rule (4), the expression 

sz Na, La (0, LO) = (i ,/3/W mckNe (rz)No, L,. 

Here we employed the abbreviation 

(r2ha. La = (2L,o + l)-+ <o, L,“II r: IIN. La> 

for the matrix element of the trace of the electric-quadrupole moment. 
With the help of (II.20), (11.22) and the 3j-symbo13) 

111 

> 

= M(-l)l-M 

M -M 0 J6 ’ 

the third matrix element gets the form: 

sz N,,L,O, 190) = c-iJw)(r~P)N.,La~ 

(6) 

(7) 

(8) 

(9) 

where at the right-hand side the matrix element 

of the magnetic-dipole moment (multiplied by 2mc) occurs. However, r, A p. is 
the angular-momentum operator, which commutes with the free atomic hamil- 
tonian. Therefore the matrix element (r A p)N,,& vanishes unless N, = 0. This 
parameter value is excluded from the summations occurring in the expression 
(11.44) for the dispersion energy VJR), so that terms with magnetic-dipole matrix 
elements do not contribute. In a similar way we may derive the expression: 

Q N,. L, (2, 1, 0) = -imc kN.qiv.. L. 3 

346 
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with the abbreviation 

for the matrix element of the traceless part of the quadrupole moment in spherical 
notation. 

In the terms of V,,(R) written out explicitly in (11.44) the matrix elements (7) 
and (10) occur only in the combination 

(11) 

with LA = 0 and 2, respectively (see table I). In the appendix it has been shown 
that the following sum rule holds: 

Therefore we may eliminate in Vu(R) either the matrix element (7) or (IO); the 
latter will be retained in the following. 

A similar sum rule may be applied for matrix elements ON&, with parameter 
values (1 , 0,O) and (1,2,0). In fact one may prove the sum rule 

N,Jj L k~~1~,b,Lb(l)0,0)~~~..(1,2,0) =o, b ’ b 
(13) 

which permits the matrix element LR Nh,Lb (1, 2, 0) to be eliminated from V,,(R). 
The radial differential operator in (11.44) may be evaluated with the help of 

(11.45); for N1 = N2 = 3 and L = 1 we find: 

1 d6 2 ds 1 d4 --_-- --. 
R2 d (2R)6 R3 d (2R)s -+ R4 d (2R)4 

(14) 

The dominant term off,” (2R) (11.12) for large separations is -2k,R log (2kNaR), 

as follows from (1.65). Carrying out the differentiations and using (5), (7) (12), 
(13) and table I we arrive at the asymptotic form of V,,(R): 

Vfi(R) = - N (,c,, L ,,0di~~4 k 
N;(*O):L: N.a ND 

R7 

x (kk kINa, L,12 lrNb.L,12 + J&, IrN., L,I2 hN&12); (15) 

it represents an electric dipole-quadrupole dispersion energy. 
For the third term V,,,(R) of the interatomic dispersion energy the asymptotic 

expression may be found in a similar way. The coefficient T”’ - K, has to be 
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calculated for all possible parameter values compatible with 

L, + &I1 + JL, + Lt.2 + 2S,l + 2Sbl + 2s,z + 2SbZ = 4. 

Since the coefficient is multiplied, in (11.44), by an expression which is symmetric 
in a and b we have to consider only the symmetric coefficient T”’ - (K, + Kb). 
The latter turns out to vanish when both La1 and La2 or Lb1 and L,, are zero 
(a coefficient with these parameter values occurs in the contributions to Vr,, 
containing electric dipoles; indeed, such contributions vanish). In table II we have 
collected3) all nonvanishing coefficients T’n * (K, + Kb) with the exclusion of 
those that will give no contribution to V,,, as a consequence of the sum rule (13). 

TABLE II 

The coefficient T”’ . (K,, + Kb) 

L: La1 La2 G Lb1 LbZ L T”’ . (K, + Kb) 

0 1 1 0 1 1 0 - 20127 
0 1 1 0 1 1 2 81135 
0 1 1 2 1 1 0 141135 

0 1 1 2 1 1 2 -41135 
2 1 1 2 1 1 0 - 261675 
2 1 1 2 1 1 2 2313375 

(For brevity parameter combinations with a and b interchanged have been omitted 
from the table.) The radial operators acting on f:r’ (2R) (11.13) are found from 
(11.45) by putting iV1 = NZ = 4 and L = 0 or 2; we get for these two cases: 

1 d8 

R2d(2R)8) 
(16) 

1 d* 6 d’ I 15 d6 18 d5 9 d4 ----- ~_-~ 
R2 d (2R)’ R3 d (2R)’ R4 d (2R)‘j R5 d (2R)5 +R6d(2R)4. 

(17) 

When the differentiations are performed and (lo), (12) and (13) are used, we find 
for the long-range behaviour of V,,,(R) the expression: 

which represents an electric quadrupole-quadrupole dispersion energy. 
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The complete expression for the long-range retarded dispersion energy (averaged 
over atomic orientations) is given by the sum of (I), (15) and (18). It falls off as 
the inverse seventh power of the separation between the atoms and contains 
contributions with electric-dipole and quadrupole matrix elements. Hence the 
use of the electric-dipole approximation is not sufficient to determine the long- 
range behaviour of the interatomic dispersion energy. The relative magnitude of 
the various terms may be estimated by comparing the quantities lrN.,LJ2 and 

kCa kLvn,L,12. 

3. The dispersion energy up to terms with electric-quadrupole moments; the 
asymptotic form for small separations. In the preceding section the long-range 
asymptotic form of the dispersion energy has been obtained, It turned out to 
contain electric dipole-dipole, dipole-quadrupole and -quadrupole-quadrupole 
interaction energies. The complete expression for the dispersion energy up to 
electric-quadrupole terms will be given in the following. On the basis of this ex- 
pression the asymptotic form for small interatomic separations will be found. 

The electric dipole-dipole dispersion energy follows from (1.71), with (2), as 

x [(e.” - 5e, + 3eP ‘) P (2e3 + (- 2e.” + 6) Q Gkd - 3d - &+ @I, 

(19 

where the abbreviation e. = k,.R has been introduced. The symbol (a * b) 
represents the terms arising from the preceding ones by interchanging a and b. 
The functions P(x) and Q(x) have been defined in (1.30) and (1.70). 
,\ The short-range expansion4) of (19) follows by employing the series expansions 
of P(x) bnd Q(x). In fact the latter read5): 

P(x)=~x+xlogx+(y-l)x-fxx2-~x3logx-~(6y-11)x3+..., 

(20) 

Q(x)= -logx-y++rx+$x210gx+i(2y-3)x2+..., (21) 

so that we f%rd immediately for the electric dipole-dipole interaction at small 
separations R : 

V:_,(R) = - c 2e4 kN,,. &,I2 b+N6, Lb12 

$‘,‘,“,;. 2 3fiC (kN, + kNb) R6 
b 3 b 

x 1 - +k&ibR2 + 2 kNakNB (kN, + kNJ R3 + . . . 1 . (22) 
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The first term is the well-known electrostatic London-Van der Waals dispersion 
interaction; the second has been derived on the basis of the Breit hamiltonian as 
we116p7). 

The mixed electric dipole-quadrupole interaction is the sum of two terms, 
originating from V, and V,, , respectively: 

X ((e: - ,b2)-’ [(--e(: + 2%: - 162@, + 9Oe,l) P(2toJ 

+ (6d - 84~: + 180) Q (2&J + $: - yea” - (a t, b)] 

+ (-e.” + @a) p (2&z) + 2dQ (k,) + ;&if - ;] + (a +-+ b) . (23) 

The short-range behaviour of this expression may be obtained with the help 
of the expansions (20)-(21); the result is: 

x h,, L.I’ hB, L,? + lqN,,L,12 Ihb, Lrl2) 

x 11 - 4 kiv,,k@” + (5/18x) kivakivb (kn, + kN,) R3 + . . -1. 

(24) 

The first term forms part of the electrostatic dispersion energy given in (11.51); 
the second has been derived earlier from the Breit hamiltonian6~‘). 

The electric quadrupole-quadrupole interaction contains contributions from 

V,, V,r and vu,. It reads: 

x {(@a’ - ,b2,-’ [(@II’ - 89e.” + 1983e: - 9360@, + 5040&-1) P(2eJ 

+ (- 10~: + 510~: - 5280~: + 10080) Q (2~~) 

189 4 
- &ell + T@a 

4583 2 

- 4@P - (a* 61 

+ k?: - 15@,3 + gelI> P (2eJ + (- 6~: + 18~0’) Q (2e,J 

-~@eP”+~@a’-~+((LIt,b)]-_~. (25) 
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From (25) the short-range behaviour may be found as 

vg_, = - c 14e4 

N,(*O)* L, 5fic (k& + kNJ PO 
I%+@ La I2 I%vb, L,12 

N,f*O).L, 

x [l - + kN0k,,,R2 + (383/2520x) kN.kNb (kN, + k,J R3 + - .a]. 

(26) 

Again the leading term is the electrostatic contribution contained in (11.51). 

In this paper we have evaluated the contributions of the electric dipole-dipole, 
dipole-quadrupole and quadrupole-quadrupole interactions to the dispersion 
energy of two atoms in their ground states; the results have been written in (19), 
(23) and (25). For small separations R the contributions, specified in (22) (24) 
and (26), vary as Re6 and Rb8 and R-lo, respectively, with first-order corrections 
proportional to Rw4, Rs6 and Rm8. Th e asymptotic expressions for large R have 
been given in (l), (15) and (18), respectively; together they form the complete 
long-range dominant term, varying as the inverse seventh power of the interatomic 
separation. 

APPENDIX 

Sum rules in spherical-tensor notation. In this appendix we want to derive sum 
rules for the reduced matrix elements QN,,L, (LA, L,, , s,J (i = 1, 2), defined in 
(11.22) with (11.20). Let us consider to that end the expression 

(AlI 

which may be written, with the help of (11.19) and (11.24), as 

c c 
N,(*O).L, x,l,M,1,M~2,M~0,M”,M~’ 

&, 

(- l)“,’ 4x (2LL + 1) 

(2LZ + 1) (2&d!! (2&z)!! (2L,, + 2S,l + l)!! (2L,, + 2sa2 + l)!! 

1 L 

[(2L,, + 1) (2L,, + l)]+ -& 

1 LA L 1 LA 

--x M: >( - ;I2 -A M,: 

(0, Lao, #I 3 (PZ, r?1+2sa1Y2; <a)} INa, L,, Ma> 

<No, La, MA 3 (pl”, r?+2s02 Kay2 (m,J} IO, Lz, Mz). WI 

The projectors on states with the same energy are real in the coordinate representa- 
tion, since the atomic hamiltonian is real in this representation. If, moreover, the 
parity selection rules (11.30) are used it may be shown that (A2) is real. 
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The sum over intermediate states may be eliminated if it is possible to extract 
from one of the matrix elements a factor kNa. To achieve this the operator in one 
of the matrix elements in (A2) has to be written as a commutator with the atomic 
hamiltonian H(a). From the gradient formula [see (II.A21)] the following com- 
mutator relation may be derived: 

(im/fi) [H(u), r:Y,” (oa)] = (- 1)” (p - L) [(2L + 1) (2L + 3)]+ 

L 

xx& M ( L+l 

-: -M’ N 

L 1 L+l 

000 > 
3 {pZ, C’YK I <wJ> 

+ (- QM (p + L + 1) [(2L + 1) (2L - l)]* 

x .Jp 
L 

&f 
_; 

-1 _“M: L 1 L-l 
. 

0 0 0 > 
3 (pk C’ Yf: &J.>> (A3) 

The right-hand side contains operators and 3j-symbols of the type occurring in 
(A2). For the special case L = 0 the second term drops out, while for L = p the 
first vanishes. Thus, a factor kN, may be extracted from the ith matrix element 
in (A2) if Lai = 1, LA = 0, or if La1 = Li - 1, s,, = 0 (i = 1,2). In the former 
case (choosing i = 1) we find, by taking half the sum of (A2), with (A3) inserted, 
and its complex conjugate, the expression 

%2. 1 c 
2 J3 ximc (- l)“+ 1 (2saz + 2) 

1. M.0 9 (2L,o + 1) (2&l + 3)! (2&z + 3)! 

x (0, Lz, Ma01 [r~sa1+2Y~ (w,), 3 {pl”, rzsan+’ Yf (co.)>] IO, Lz, Mz). (A4) 

With the commutation rule (6) we find then the sum rule 

6 c time (2~~~ + 2) (2saz + 2) = 
“” ’ ~a0 6 (2L: + 1) (2sal + 3) ! (2saz + 3) ! 

x (0, Lt, Mzl r~sa1+2sa3+2 10, Lz, Mz). (A5) 

In the second case, with L,,, = Li - 1, sal = 0, we get for (A2), with (A3): 

c 
2ximc - 

1. Mnz. M,O* M,’ (2L,o + 1) (2s,,)! ! (2L,* + 2s,, + 1) ! ! (2L,: - 1) ! ! (2L:, - 1) 

1 1 L.: 1 L,:- 1 

x 

L,: -1 

K2-G + 1) (2L,* -I- 1)]3 -;2 >( M: 0 0 0 > 

x (0, Li, Mf( [r?Y2’ (~3, 3 {pi”, r~+2sazY~~~ (co,)}] IO, Lao, Mz). 

(A6) 
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Using the commutation rule (6), the gradient formula and the orthogonality 
relation (11.19) we may write this as 

&.*,La)-J c 
27rhmc (- l)“az (2LL + 1) 

M.2. M,O (2L,o + 1) (2&z)! ! (2L,: + 2s,z - 1) ! ! (2L: - l)! ! (2L:, - 1)2 

x (0, L,o, M,OI r;L~‘+zs~~-z Y$l (f&J Y$&o,) 10, Lf, MZ). (A7) 

Employing the relation 

; (- 1)M Y? (03 YL”(W3 = y 

we arrive then at the sum rule 

(A8) 

N ,*;> 
a 

L K$&# L, GG - 1, W;t..La GLaz, 472) = ~L.2.L,'-l c 
'. Ma0 

X 
Amc (2LA + 1) 

2 (2L,o + 1) (2&z)!! (2L:, + 2&z - l)!! (2L: - l)!! (2L:, - 1) 

x (0, L,o, M,Oj r;La’+2sa2-2 10, L,o, M,O). (A9) 

Both sum rules (A5) and (A9) have been used in the main text. In fact (12) 
follows by combining (A5) (with La2 = 1, s,, = so2 = 0) and (A9) (with LL = 2, 
L = 1, so2 = 0). Furthermore (13) is obtained by putting LL = 1, L,,, = 2, 
az2 = 0 in (A9). s 
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