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synopsis 

The multipole expansion of the retarded interatomic dispersion energy is evaluated in the 
spherical-tensor formalism. The multipole expansion of the electrostatic dispersion energy 
follows as a special case. 

1. Introduction. In a preceding paperl) we derived an expression for the retarded 
dispersion energy of two nondegenerate ground-state atoms. It was given as a 
series expansion containing matrix elements of the Cartesian components of all 
atomic multipole moments. In the following we shall elaborate this expression by 
employing the spherical-tensor formalism. The result contains the radial depend- 
ence of the interaction energy in a more explicit form. For small interatomic 
separations the spherical multipole expansion of the electrostatic dispersion energy 
is recovered. 

2. The retarded dispersion energy: summary of previous results. The expressions 
(57)-(60) of paper I, giving the interatomic dispersion energy, contain sums over 
the intermediate states 10~) and l/I> of the atoms labelled a and b; these atomic 
states could remain unspecified there. From now on we shall choose them as 
simultaneous eigenstates of the free atomic hamiltonian, the total atomic angular 

* On leave of absence from the Instituut voor Theoretische Fysica, Universiteit van Amster- 
dam. 
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momentum and its third component, so that they may be written as 

the eigenvalues are E, + hckN, (with the ground-state energy E,), FL, (LO + 1) 
and AM,, respectively. Correspondingly spherical-tensor notation2) will be used 
instead of the Cartesian-tensor notation. 

In paper I we assumed the ground states to be nondegenerate. The formalism 
given there does not change, however, if, more generally, one considers the dis- 
persion energy of atoms in degenerate ground states that form irreducible sets 
under rotations (in other words states characterized by total angular momenta 
Lao and LE); in that case the formulae represent the dispersion energy averaged 
over all orientations of both atoms a and b3). The complete interaction energy 
then contains, apart from this dispersion energy, also an induction energy, arising 
from the terms in the perturbation formulae with ground-level intermediate states 
for one of the atoms. (In paper I these terms dropped out due to the rotational 
invariance of the nondegenerate ground states considered there.) This induction 
energy, which is found to be nonretarded, shall be dealt with in a forthcoming 

paper. 
The general expression for the retarded dispersion energy may be written now as 

wo = c VOW), 
s=I. II. III 

with 

V,(R) = w: + lrl WE + lPN (*o) & M M o x & y 
N;(+O):L;:M;:M~ k:I,‘m:n 

m n .fiW + R,) 
x & E,"T~~,,,,,,P~,,P~,,V:V:P~~P~,',V,V, 

R,& 

+ (a++@, 

o = I, II, III. The functions E.“, depending on kN, and kND , are given by : 

E.: = llk;.,k~~ (kia - k&), 

E,” = l/kiakNb, 

,:I1 = 1 lkNakNb. 

The vector P,“,, stands for the matrix element 

<O, LaO, M,“I C 3 (z-6, e-‘~J’V~) INa, L, WJ, 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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with i = 1,2; it contains a sum over all electrons j of atom a with coordinates 
raj (with respect to the fixed nucleus) and momenta paj. The expressions for the 
other vector matrix elements are obtained if u is replaced by b and V1 by - V,. 
These vectors are contracted with tensors TzAPvklmn, which read in spherical 
notation : 

T:pvklmn = 4c~kl~A~.. - &~kl@L + (x, 1, k, l*p, y, m, $, (9) 

T 111 
dpvklmn = d,pAkl&n’%n - ~A,,Akld,v&n 

- ~Axkdlldpv&n + (‘6 1, k, I* /Ju, V, m, n), (10) 

with the abbreviation: d, = (- I)‘-“6,,_,; the symbol (x, 2, k, Http, v, m, n) 

represents the terms obtained from the preceding ones by interchanging (x, 1, k, I) 

and (,u, v, m, n). Finally the functionsfi(R, + R,) in (3) are defined as 

f,‘(R, + R,) = R (JCN,Rr + kNaR,), (11) 

fb’(R, + R,) = G (kN,,R1 

f,“‘(& + Rz) = A UC + 

with the auxiliary functions 

+ k,.Rz), (12) 

&I3 1% (RI + Rzh (13) 

p(x) = ;dt sin ; G(x) = P(x) - x log x - 3x. (14) 
0 x+t 

After the differentiations have been carried out the vectors RI R2 are be 
put equal to radius vector R = Rb - R, pointing from the nucleus of atom a 

to that of b. The expression (3) is symmetric in a and b due to the occurrence of 
the terms represented by (a c-) b). 

3. Separation of the angular and radial parts. The central quantity in the ex- 
pression (3) for the partial interaction energy V,(R) is the tensor 

P,“, 1P” VkV’ P*‘P*’ V”V” fQ(R, + RJR,R2, b.1 1 1 a.2 b.2 2 2 (I (15) 

in which (7) is to be inserted; it contains the atomic matrix elements as well as 
functions of the interatomic separations RI and R2, acted upon by the correspond- 
ing nabla operators VI and V, . In this section we shall evaluate (15) by separating 
the parts depending on the angular and radial variables. 
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In appendix A it is shown how the vectorial differentiations occurring in (15) 
may be dealt with. From (A18) we obtain the following expansion in spherical 
harmonics Y,” : 

e -r, . v, e’b*vV:V: f(K,)/R, 

= Lal.&,L (--l) 
~al+~.1+%+~1(4X) 3’2 [(2L,, + 1) (2Lbl + 1) (2L, + l)]+ 

1 
%I. %l. ‘+f, 

( 

L 
X 

Lb, 1 1 

-Ai:, -Mb1 

Ll 

k 1 -Ml > 

r31 +%I yLM., (wa) 
1 rb 

&I+%1 yp (Wb) 
bl 

S,,~SS!,~“O (2.&l)!! (2L,, + 2&l + I)!! (2&l)!! (2Lbl + 2&l + I)!! 

Here we introduced the symbol 

(16) 

(17) 

we shall call it a Gaunt4) coefficient. For nonvanishing Gaunt coefficients rotational 
invariance leads to the conditions L, $ C i ( +j, Li and XI M, = 0, while the parity 
of the spherical harmonics implies ‘& L, to be even. As a consequence only combi- 
nations of quantum numbers with Lo, + Lb1 + L1 even contribute to (16). The 
(L, M) summations in (16) are extended over the values {L = 0, 1,2, . . . ; 

M = -L, -L + 1, . ..) L}. Furthermore the abbreviation NI = L,, + Lb, + 2s,, 
+ 2& + 2 has been used. As in paper I we omit, for brevity, the summations 
over the electrons. 

Let us define now the spherical-tensor operator Szf (Lal, sal) by: 

=..,,?M ,(- l)LaI’-M,l’ 
.a1 (18) 

where a 3j-symbol occurs. With the help of the orthogonality relation 

,z, (_~)LI-MI+L~-M~ 

1’ z 

= (-1)Ls-Ms s 
2L3 + 1 LPL$MJ.% ’ {L 7 L2 9 L3) (1% 
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(with {L,, Lz, L3) equal to unity if L1, Lz, L3 satisfy the triangular condition, 
and zero otherwise) one finds the inverse of (18) as 

1 

x (2&l)!! (2L,, + 2&, + l)!! (2LZ+ 1) 

x 3 { PZ, r, Lo1 + %I Y%l (w.)] . (20) 

The matrix elements of the operator 022’ (L ol, soI) may be factorized with the 
help of the Wigner-Eckart theorem: 

(0, L,o, M,“I QZ1?’ (La1 3 %I) INa, La, Ma) 

Instead of the reduced matrix elements we will employ in the following the 
symbols 

a N,, La CL:1 7 Lal 9 %I> = (2L,” + I>-+ (0, L,“ll G,; &I , %I) ll& La>. (22) 

Using (21) and (22) one gets for the matrix element of the operator at the left- 
hand side of (18) : 

1 4X * 

( > (2&J!! (2La1 -t- 2&l + l)!! 2L,, + 1 

x (0, LaO, M,“l* {d, r$~+zs~~Y~~;l <qJ} IN,, L,, MO) 

From (20), (21) and (22) the inverse of this relation is obtained as 

L,” G, La 
-M,” M,‘, 

Q 
M, 

N,.L, 6% 3 &al 3 %I> 

=,c C-1) 
L~“-M,o+L,t-M,l+l-x + 

.1,x 

La, 1 Gl 1 
X 

-Ma, --x M,‘, (2s,1)!! (2L,, + 2s,1 + l)!! 

x (0, Lz, K’I 3 {pi, r~l+zsalYL~l (co,)} IN,, La, Ma>. 

t 

(24) 
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Formulae analogous to (18) and (20)-(24) may be given for atom b. Then from 
(16) with (7) and (23) (together with their counterparts for atom b) one finds: 

P,“,,,P;,,v:v: f(R1) 
RI 

= c (_ l)L,l+L,o-M,o+L,o-M,o+~(L-M) (4# (2& + 1) 
&I. L,I.L,,‘,L,,‘,L, 

M,I.Mbl.M,1’.Mbl’.M, 

x (2L, + 1) [(2L: + 1) (2J$ + I) (2G, + 1) (2& + 1) (2L, + l)]+ 

L 
X 

01 Lb1 1 1 L1 La, 1 LA, L," Gl L 

-Ml, -Mb1 k I -Ml M,,, 1c -M;, >( -M: M;, Ma > 

The symbol c (L - M) appearing in the exponent of the phase factor is defined 
here such as to contain a term L - M for each summation over a magnetic 
quantum number M. An expression for PzPt,>VyV”, f(R,)/R, is found by taking 
the complex conjugate of the right-hand side of (25), replacing 1 by 2 and (x,1, k, I) 

by C-P, -v, -m, -rz), and multiplying by the phase factor (- l)“+v+m+n (this 
prescription follows from the relation X’* = (- 1)” (X*)‘” for an arbitrary 
spherical vector X”). Combining that expression with (25) one may obtain for 
(15) an expansion in spherical-tensor notation in which the dependence on the 
directions of RI and R, is given by a product of spherical harmonics 

Both Sz, and 52, may now be put equal to the solid angle 52 that characterizes the 
direction of R. Then the coupling relation 

y;l(Q) yL;Mz(Q) =,,FM,(_ 1)“’ 

[ 
(2Ll + l) ‘“;,’ l) (2L’ + l) 

1 

* 

may be employed. 
potential (averaged 

x (f’ fz f) Gl _;2 _;,) Y?(Q) (261 

As a consequence of rotational invariance the interatomic 
over the ground states) depends only on the length of the 
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radius vector R = Rb - R,, so that only the term with L’ = 0 from (26) will 
contribute. For that reason we will replace the left-hand side of (26) by 

(1/4x) (- lY1 ~L1&.f1.M2. (27) 

(A formal justification of this step will be given at the end of section 4.) 
For the expression (I$ summed over all intermediate states with the same 

energy and total angular momentum, and averaged over the ground states, we 
have found now the expansion: 

(2L,o + 1)-l (2L,” + 1)--l 

X c P:.lP” VkVIP*rP*v V”V” f”(R, + RJR,R, b.1 1 I a.2 b.2 2 2 a 
Mao*M,o.M,,Mb 

= c 
L.,.L,,,L,,‘,L,,‘,L 

Lb,, LbZ, Lb,‘. Lb,’ 

saga, (2Lal + I) (2Lbl + l) (2Lc72 + l) 

Sbl*SbZ=O 

x (2Li,2 + 1) (2L + 1) [(2L:, + 1) (2L;I + 1) (2L:2 + 1) (2L;z + I)]’ 

here the “angular” tensor p”“” is defined as 

K, A wlpvklmn = 

c C-1) 
r. (L-M) 

hf M.Z.~.~‘.M.~‘.M.O.M..M 01. 
M,,.M,,,M,,‘.M,,‘.M,o.M, 

( 

L Ial L 
X 

Cl ' 1 L 

>( 

La2 Lb2 11L 

-Mai -Mb1 k 1 -M M,, Mb2 m n M > 

x La, 1 

( 

LA, L: LA, La L,,l 1 Lb1 

Ma, x -MA >( -M,” M,‘, M, >( Mb1 1 -MA > 

L 
X 

L,” L;, Lb a2 1 LA2 L,” LA, L, 

-M,” ML1 Mb -Ma2 ,u Ma’2 M,” -Ml, -Ma > 

L 
X 

b2 1 G2 L;2 Lb 

-Mb2 V M;2 > -Mb2 -Mb . 
(29 
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Its counterpart I%, follows by interchanging a and b or, equivalently, (x, y) and 
(A, Y). In deriving the phase factor in I?, we employed, apart from the properties 
of the 3j-symbols and Gaunt coefficients, the space-inversion invariance of the 
free atomic hamiltonian; in fact, only products of matrix elements with quantum 
numbers satisfying 

La1 + La2 = even, Lb1 + Lb2 = even, (30) 

contribute to (28). 
In this section we obtained expression (28) for the tensor that occurs, con- 

tracted with T”, in each of the partial dispersion energies V,(R), (3). The main 
feature of this result consists in the fact that the angular and radial parts of this 
tensor have been separated in such a way that its indices x, 1, p, v, k, I, m, n 

appear only in R,, given by (29). Consequently, in carrying out the contractions, 
we may confine ourselves to a consideration of T” and I?,. This will be the subject 
of the next section. 

4. The angular coefficients. To carry out the contractions of the tensors T”, 
(8)-(lo), and k,, (29), it is convenient to employ a graphical notation5.6) for the 
3j-symbols, the Gaunt coefficients and sums of products of these. A summary of 
this notation and the associated calculus is given in appendix B. In particular, 
the coefficient l%, may be represented by the graph in fig. 1. Here a simple vertex 

1.h 

ri 1.v 

Graphical representation of the angular tensor k;lxnavkrmn. Fig. 1. 

corresponds to a 3j-symbol (the sign at a vertex indicating the order of the columns 
in the 3j-symbol), an encircled vertex to a Gaunt coefficient. For each internal 
line L the summation over the corresponding azimuthal quantum number M is 
carried out, after multiplication with a phase factor (- 1)L-M. 
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A simplification of the diagram is achieved by eliminating the double bonds 
with the help of the transformation (B7). In fact we may write: 

-x.Ipvklmn 
Ko = &,1~.~&,,~,~b,~ W:, + I)-’ W;, + I)-’ 

x {Ljj, L:, , L,,) (L;, L;, , Lb) K:Apvkimn, (31) 

where the tensor K, is represented by the diagram in fig. 2. From now on LL, = L& 
will be replaced by L: and LL, = LLz by LL . The triangular delta’s occurring in (31) 
may be omitted after substitution of Ka into (28), since they are already present 
implicitly in the definition (21), with (22), of the reduced matrix elements. 

t.x ;.u 
Fig. 2. The angular tensor K;lxrl@“““. 

The tensors T”, (8)-(lo), are linear combinations of the tensors 

~t&vklmn = dxkdlldpmd,m~ 

f&k,,,,,, = dxldkld~vdmn~ 

(32) 

(33) 

T C(1) 
xrl~vklmn = dxkdlldpv&s, (34) 

D(1) T wl~vklmn = dxpdkV%m&, (35) 

together with TcC2) and TDt2), which follow from Tc(‘) and TD(‘) by the inter- 
change of (x, I, k, I) and (,u, Y, m, n). In terms of these six tensors the expressions 
(8)-(10) may now be written as 

,-I = 2TA + 2TB _ 2731’ - 2TCt2), (36) 

T” = _2TB + TD”’ + T”(2), 
(37) 

T”’ = _TB _ $Tc”’ _ qTc’2’ + TD”’ + TDc2’. 
(38) 
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TA*K, 

Tc(~).K 
a 

TB*Ka , 

Fig. 3. Contraction of K. with T*, TB, Tco) and TDo). 

Contraction of the tensor K, with the six tensors T*, TB, . . . , TDc2) is graphically 
represented (see appendix B) by a corresponding pairwise linkage of the external 
lines in fig. 2. In this way one gets for the angular coefficients T* - K,, TB * K,, 
Tccl’ * K, and TDcl’ - K, the diagrams drawn in fig. 3. The loops and the double 
bonds ending at the (encircled) Gaunt coefficient vertices may be removed with 
the help of the transformations (B18) and (B20). Then the set of diagrams given 
in fig. 4 is obtained. The basic graphs of (B9) and (BlS), with (B14), may be 
recognized now. In fact T* - K and Tco) * K, are already expressed completely 
in terms of these graphs. The Hame may be achieved for TB * K, by cutting the 
lines Li, L, LL with the help of the transformation rule (B5), while TD”’ * K, gets 
a final form when in its leading diagram (B7) is used, see fig. 5. If the diagrams 
of figs. 4 and 5 are translated into algebraic form and the parity selection rules (30) 
are used the angular coefficients become: 
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TC’1’ . K, = (- l)L+l 

TBbK, 

(_,)Lb+Lbl +’ 

Fig. 4. Simplified diagrams of the angular coefficients T* . K., TB . K., T”” . K. 

and TDcl) . K,, . 
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To(l). K 
a 

Fig. 5. Final forms for the diagrams of TB . K, and TD(‘) . K,. 

The expressions for Tct2) - K, and T D(2) . K, follow from (41) and (42) by an inter- 
change of the indices 1 and 2. 

With the help of the graphical analysis employed above a formal justification 
may now be given for putting L’ = 0 in the right-hand side of (26). If instead the 
complete expression had been used we would have found diagrams which follow 
from those of fig. 3 by replacing the internal line L in the following way: 

L L L 

5- -Y-* l!,M’ 

Application of (B3) would have led then again to L’ = 0. 

(43) 

5. The retarded interatomic dispersion energy in spherical-tensor notation. The 
results of the preceding sections may be used now to bring the three contributions 
V,(R), (3), to the retarded interatomic dispersion energy Y(R) in a form that con- 
tains the dependence on the interatomic separation R more explicitly. In fact, 
upon substituting (28) with (31) into (3), we get: 

VAR) = = N,(*O),L,,L,‘,L,,,L,,.L 
N,(+O).L,,L,'.L,,.L,, 

x E: (2L,, + 1) (2Lb1 + 1) (2L,, + 1) (2L,, + 1) (2L + 1) 

x S2N,,L, CL:, Lal,'&I)QNb,Lb tLkLbI, %I) 

x Q;,.L, 6% La2, s,~>-%~,LJLI,, b2, ~2) 7. K, 

x R~(~~~t(~~‘-LR:(t~~~(~~-L 

x faQ(R1 + R,) + (awb), (44) 
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with (T = I, II, III. The coefficients T” - K, follow from (36)-(42) and the reduced 
matrix elements QN0,L. and QNa,Ls from (24). The expressions for E,” andf;f have 
been given in (4)-(6) and (11)-(13), respectively. Furthermore Ni stands for the 
sum L,, + Lbl + 2~~~ + 2sbl + 2 (i = 1, 2). 

The radial part of (44) may be written in an alternative form with the help of 
the identity (A29), which leads to the relation 

=k fp’“‘+k2 v + 3, kl) CL + 39 k2) 
1’ z 

1 d 
X 

{ 1 

N,+N,-k,-k, 

Rk1+k2+2 d (2R) 
f." OR), (45) 

where at the right-hand side both R, and R2 could be put equal to the interatomic 
separation R; the Hankel symbol (L + 3, k) stands for (L + k)!/k! (L - k)!. 

If one uses the formulae [see (1.69), 1(1.70)] 

dP - = -Q(x); 
dx 

!t$ = -P(x) + x-1, (46) 

the differentiations of the functions fi may be evaluated explicitly. 
The expression (2) with (44) gives the complete multipole expansion of the 

retarded dispersion energy for atoms in their lowest energy states. If these ground 
states are degenerate in such a way as to form irreducible sets under rotations, 
it represents the dispersion energy averaged over all atomic orientations. 

The general formula (44) simplifies considerably in the electrostatic limit. This 
will be demonstrated in the following section. 

6. The electrostatic limit. As has been shown in section 4 of paper I the expres- 
sion for the electrostatic dispersion energy is obtained by considering the dominant 
term at short distances in V(R). That term is contained in V,(R) and may be found 
by replacing fb: by its limiting value 3~ [see (1.64)]. 

The form of the radial part of (44) shows that only terms with N1 = N2 = L 

do contribute in that case, so that we have: 

where RI and Rz have been put equal to R. 

The angular coefficient T’ - K, is different from zero only if the inequalities 
L $ L,, + Lbl + 2 (i = 1,2) are satisfied, as follows from (36) and (39)-(41). 
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Since N1 = L,,, + Lb, + 2~ + 2sbl + 2 equals L, the variables s,[ and s,, are 
zero and the equalities L = L,,, + Lbl + 2 hold. Then one has La, + 1 = L:, 
Lbl + 1 = LL and LA + L; = L, so that the angular coefficient becomes: 

2 

T’ 

- 

- K, = 2 L: 1 L:, 
0 00 

1 >( L;, 1 LI, 

2 - 

1 >( L: L;, L: + 

2 
. 0 00 0 0 0 

L;, > 
(48) 

The reduced matrix elements in (44) contain in the present case tensor operators 
with components of the type Qf (L - 1, 0), which follow from (20). From (A21), 
with (A19) and (A22), an expression for 

(Wfi> WW, &T (~41 = 4 (P. . Vra, CY,M (4) 

may be derived. Comparing this expression with that for 9,” (L - 1,0) we find, 
in terms of reduced matrix elements [see (22)]: 

QNO, L, (L, L - 130) 

= - imcknO (49) 

where we used the notation 

Inserting in (48) the 3j-symbol 

L,: ( LI, L: + L; 

> 

= (_ l)v+h’ 

II 

(2LL) ! (2LL) ! 
0 0 0 (2LA + 2L; + 1) ! 1 *(L; + L;)! 

LA!L;,! ’ 
(50) 

we arrive at the following formula for the electrostatic dispersion energy: 

me@)=- c 16x2e4 (2L: + 2LA)! 

~1=~1.5.~;“c(kN.+kN3(2L:,+l)(2L;+1)(2L:,+1)!(2~;,+ l)! 
b * Ir* b 

x I(rLa’YL,&,, L,j2 I(rLb’Y&,, Lb12 l/R2L,‘+2Lb’+2. (51) 

Of course, a shorter derivation of this result may be obtained by starting from 
(1.11) and inserting the two-centre expansion7*8) of the function f(R) = R-l 
(see appendix A). Along such lines the electrostatic dispersion energy has been 
studied earlierg*lO). 

In a following paper the short- and long-range behaviour of the general expres- 
sion (44) will be studied. Furthermore, the contributions of the lowest-order 
multipoles will be discussed separately. 
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APPENDIX A 

Expansions in spherical harmonics. In this appendix an expansion in spherical 
harmonics will be derived for the q-fold spatial derivative of a function F depend- 
ing on the sum R + r; + -. . + rp of the p + 1 vectors R, rl , . . . , rI,. Employing 
a formal Taylor expansion we may write this derivative as 

($rerS”) V”” ... V”@ F(R), (Al) 

wherem,, . . . . mp , with values 0, + 1, label the components of the nabla operators. 
Upon expanding the function F(R) in spherical harmonics Y,“(Q) it turns out that 
we can confine ourselves to a consideration of the expression 

642) 

Let us introduce the ancillary variables r,, 1, . . , r,,, write the 

Pfq 1+4 
\Qlera*“) elkeR = (afi;‘k”a) eikaR. (A3) 

When we substitute on both sides the expansion of exp (ik - r) in spherical waves: 

e ik” = 4x,C, (- l)“‘iLjL, (kr) YL;“‘(12k) Ye’, (A4) 
‘. ’ 

we obtain, after multiplication with Yp(Qk) and integration over the solid angle Q,, 

= L,....f+Q,L, (- l)M’ [(2L + 1) (2L’ + l)lf L1 *** Lp+a 
M,.. .Mp+,.M’ 

iv1 *** M,,, -it4 M’ 

P+4 

x C,lr, (- l)Mu [4x (2L, + l)]+ P 

x j,. (kr,) Yc(wb)) i% (kR) YE’(Q), (A5) 

with the Gaunt4) coefficient 

W) 

As may be inferred from the properties of the spherical harmonics, the Gaunt 
coefficient differs from zero only if XI Li is even and if the relations XI M1 = 0, 
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Lj 5 ‘&C+jj LI are satisfied. The (L, M) summations in (A4) and (A5) are extended 
overthevalues(L=0,1,2,...;M= -L,-L+l,...,L).Equatingtheterms 
linearinv,.,, . . ..rP+@ on both sides of (A5) and using the power series expression 
for the spherical Bessel fimctionll): 

_m = f 
s=o (2S)!! (2L + 2s + I)!! ’ 

(A7) 

we get 

= c (- [(2L + (2L’ + 
L1,...,LI.L’ 

M, . . . M,,M,+l, . . M P+P’ M’ 

x L, *** L, 1 

( 

**a 1 L L 

Ml .a. MD M,,, ... M,,, -M M’ > 

P+q 

x J-J+ 1 (- l)“a (A@ 

The scalar products in the second factor at the left-hand side read in spherical 
notation: 

r, * v = c (-l)M, f 
f 

r,YF (OJ V-M,, 
M, ( > 

so that we obtain from (A8): 

(aJjlera’v) V”’ a.* Vmq i”jL (/CR) Y,M(sZ) 

= L,* FL (- 1F’ K2L + 1) (2L’ + w 
D’ 

L, 
Ml.-..M,,M’ 

x L1 .** L, 1 v.0 1 L L’ 

c Ml . . . MI, -ml a.’ -mq -M M’ > 

(A9) 

x (ik)q iLjLj,.-(kR) Yr(Q) . (A101 
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With the help of (A7) the curly-bracket expression gets the form: 

with N = q + xi= 1 (L, + 23,). The factor (ik)NjL, (H?) at the right-hand side 
of (AlO), with (Al 1) inserted, may be written asj, (/CR), acted upon by a differential 
operator, if the recurrence relations1 ‘) 

z”+% (2) = Y-m+lj”_m (z), 

m Z-“j, (z) = (- 1)” z-n-mjn+m (z) 

6412) 

are employed. In fact, for L 2 L’ we use the first relation, choosing the values 
12 = L and 12 - m = L’, and employ subsequently 3 (N - L + L’) times the 
differential equation 

j,(z) = _ I L dZ z _ 
L(L + 1) 

z dzZ Z2 

j,(z) = -zL-l d 1 d zL+ljL (z). 

dz zzL dz 

(A13) 

[N - L + L’ is even as follows from the Gaunt coefficient occurring in (AIO).] 
Then we find: 

(iQN iL’jLC (/CR) = D (L’, L, N) iLjL (/CR), (Al4) 

where the differential operator D (L’, L, N) is defined as 

D (L’, L, N) 

= A-_(+ 2Ly-L’(R2L & _& &~~N-L+L’kL+l (L 2 L’). 

(A15) 

For L 5 L’ we employ the second relation of (A12), with n = L and n + m = L’, 
and then 3 (N + L - L’) times (A13). In this way an identity of the form (A14) 
is obtained in which now the differential operator 

D (L’, L, N) 
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appears. Upon substituting (A14) into (AlO) with (All), multiplying the result 
by an arbitrary function of k and integrating over k, we finally arrive at the 
formula 

L, 1-a L, 1 ..* 1 L L’ 
. . . M, -ml . . . -ma _M M’ 

x Y:<sz> D CL’, L, Wf(R), (A17) 

which gives the expansion of the expression (A2) in spherical harmonics. A spe- 
cial case of the general formula is found by considering a spherically symme- 
tric function, i.e. by putting L = 0. In that case (A17) reduces to: 

Vml ... V”v(R) = L,, .$; L (- l)M [4x (2L + l)]” 

Ml. .My.'.M 

L1 *.* L, 1 *.* 1 L 

Ml ... M, -ml +.. -m, M 

x Y?(Q) RL ($-&)L;(&)+LRf@), 6418) 

with N = q + z& 1 (L, -I- 2~~). Expansions of the types obtained above have been 
studied earlier, with the help of different methods. In fact, (A17) for p = 1, q = 0, 
and (A18) for p = 2, q = 0 have been written down by Sack12). For p = 2, q = 2 
the result is employed in the main text of this paper. 

Formula (A17) simplifies considerably when it is applied to solid harmonics, 
i.e. when for f(R) the functions RL and R-=-l are chosen. For the regular solid 
harmonics only (A15), with N = L - L’, plays a role, while for the irregular ones 
only (A16) with N = L’ - L contributes. Then one has: 

D(L’, L, L - L’) RL = [(2L i- 1)!!/(2L’ + l)!!] RL’ (L 5 L’), (Al% 

D (L’, L, L’ - L) R-L-1 = (-l)L’-L [(2L’ - 1)!!/(2L - l)!!] R-L’-’ 

(L (= L’). NO) 
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The form of the Gaunt coefficient in (A17) now implies that in both cases only 
terms with s1 = .a. = s, = 0 occur. Substitution of (A19) or (A20) yields, for the 
values p = 1,2, q = 0, the results found already by Chiu13). 

Finally, for p = 0 the general formula (A17) reduces to: 

V”’ *** V”f (R) Y?(Q) = c (- 1)“’ [(2L + 1) (2L’ + I)]* 
L'.M' 

1 .*. 1 L L 
X 

-ml -.- -ma 
_ M M, 

> 
mQ1 D CL’, L, df0. WW 

Putting moreover q = 1 one recovers the well-known gradient formula2), as can 
be seen by expressing the Gaunt coefficient in terms of 3j-symbols: 

The radial part in (A18), viz. 

0422) 

(A231 

may be brought in a more convenient form by writing: 

f(R) = ;d&, (W +(Q, 
0 

(A241 

and applying (A14), with the result: 

D (L, 0, N)f(R) = rdk (ik)N iLjz. (kR) 4(/c). 
0 

0425) 

The spherical Bessel function j,(z) may be given asll) 

j,(z) = [(-i)L+1/22] &! (L + f, -iz) eiz + c.c., 

where the polynomial 

W6) 

9(L + 3,z) =k$o(L + 3,W(2W (A271 

containing the Hankel symbol (L + 3, k) = (L + k) !/k ! (L - k) ! occurs ; it is 
related to Lommel’s polynomials. Inserting (A26) and (A27) into (A25) we get: 

D 6% 0, N)f(R) 
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here we have replaced the factors ik by d/M acting on the exponential. Since 
j,(z) = sin z/z we find with the help of (A23) and (A24): 

N--k W(N, (A29) 

so that the radial part of (A18) has been expanded now into a sum of derivatives 
of the function R’(R). 

APPENDIX B 

Graphical methods for the evaluation of the angular CoefJicnts. In this appendix 
a summary is given of the graphical methodP) employed in the main text for 
representing 3j-symbols, Gaunt coefficients and the angular coefficients con- 
structed from these. In particular the transformation rules used in evaluating the 
latter are written down. 

For the 3j-symbol the graphical representation is defined by: 

Jrml 

(Bl) 

Each of the directed lines in the diagram corresponds to a pair of quantum numbers 
(j*, ml); an outward (inward) arrow indicates a positive (negative) sign in front 
of mi. For a vertex with a positive (negative) sign the order of the columns in the 
3j-symbols is determined by a counterclockwise (clockwise) orientation of the 
lines. Changing the order of the lines in the diagram induces either a change in 
the vertex sign as well, or the addition of a phase factor (- l)jt+12ff3, as follows 
from the properties of the 3j-symbols. 

Summation of the product of two 3j-symbols over a magnetic quantum number 
m, after multiplication with the appropriate phase factor, is graphically represented 
by a linkage of the corresponding (j, m) lines. In fact we have: 
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When j is an integer, as is always the case in the main text of this paper, the 
direction of the internal line in (B2) is irrelevant. From now on we shall contie 
ourselves to these integer values and write accordingly 1 instead ofj. 

In the way illustrated above any product of 3j-symbols, summed over magnetic 
quantum numbers, may be represented graphically. In several cases the diagrams 
thus obtained can be reduced to simpler ones by employing certain transformation 
rules. In particular, rules for factorizing diagrams with one, two or three external 
lines may be proved. They read in graphical notation: 

(B3) 

Here the structure of part of the diagrams needed not be specified in detail. This 
part is denoted by a block, which is supposed to have no external lines apart from 
those drawn explicitly. In order to apply the rules (B3)-(B5) it is often necessary 
to isolate blocks by cutting internal lines in the diagrams with the help of (B2). 

The 3j-symbols satisfy the orthogonality relation 

&~(_I)ll-m~+l~-m2 ‘I 12 13 4 I2 

( 

I;, 

m, m2 m3 )( -ml -m2 -m3 
> 

(with the triangular delta (II, Z2, Z3} equal to unity if II, Z,, i3 satisfy the tri- 
angular condition and zero otherwise). It may be written now as 
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Comparing this with (B4) one finds for the closed diagram constructed from two 
3j-symbols : 

I -0 + = {I,, l2,13}. OW 
I 

Similarly the closed diagram made up of four 3j-symbols is written as 

+ 

‘6 Q3 1 
+I’, ‘5 = {;; ; ;:j. 

+ + (W 

‘4 

The coefficient de&red in this way is the so-called Ej-symbol. 
For the Gaunt coefficient, given by: 

we introduce the graphical notation: 

Wl) 

The definition (BlO) shows that the order of the lines around the vertex is irrele- 
vant here; furthermore a line having quantum numbers I = 0, m = 0 may be 
omitted from the diagram. 

From the definition (BlO) the Gaunt coefficients with one and two columns 
follow immediately as”) 

0312) 

The first nontrivial Gaunt coefficient may be written as a product of two 3J 
symbols : 

4 12 13 
(B13) 

mI m2 m3 



MULTIPOLE EXPANSION OF DISPERSION ENERGY. II 503 

This relation may be given graphically by: 

In particular we have then, with (B8): 

(B14) 

(B15) 

Replacing at the right-hand side of (BlO) the integration j d0 by j dSZ j dQ’ 
x 6 (Q - L?‘) and substituting the closure relation for spherical harmonics: 

lz (- 1)” Y;(Q) Y;“(Q) = 6 (Q - L?), 0316) 

we get: 

'19 'nJ% VT Wh 

/ ' 

I 

x 

: 
= g (- 1)'O (21, + 1) . (B17) 

\ 

'P,"P 'p*l*mp+l 

Gaunt coefficients having more than three external lines may be expressed now 
as sums of products of Gaunt coefficients with three external lines, which may 
subsequently be rewritten by means of (B14). Diagrams with Gaunt vertices may 
thus be transformed into sums of diagrams with 3jvertices only. As a consequence 
the theorems (B3)-(B5) remain valid for blocks containing Gaunt vertices as well. 

Some special consequences of (B17) are used in the main text of this paper. In 
particular, a loop connected to a Gaunt vertex may be eliminated with the trans- 
formation rule 

'l'? 

I 

@ 

'1*9 '19 

' = c (-1) (21, + 1) I, ,. lo )w-o = (-1>’ A+) , 
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where we used (B3) and the formula 

GW 

Furthermore, a double bond ending at a Gaunt vertex may be removed with the 
help of the transformation rule 

= g (- I)‘” (210 + 1) bA$&- 1.m 

= (- 1)’ 
(; ; L)‘j$ ~ : 1.m , 

\ 
(B20) 

that follows from (B4) and (B15). 
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