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Synopsis 

The multipole expansion of the retarded dispersion energy of two atoms in non- 
degenerate ground states is derived. The result shows that multipoles of different order 
may give rise to dispersion energies varying in the same way for large interatomic 
separations. 

1. Intmductian. The retarded dispersion energy of two atoms hasbeen 

evaluated by Casimir and Polderl) in the framework of quantum electro- 

dynamics. As a result they found an expression that contains the electro- 

static London-van der Waals interaction energy as a special case valid for 

small interatomic separations R; the latter varies as an inverse sixth power 

of R. At large separations, however, the interaction energy turns out to fall 

off as an inverse seventh power, due to retardation effects. These effects 

become significant at distances of the order of the wavelength il corre- 

sponding to the lowest excited atomic level. 

In order to arrive at their results the authors quoted above employed 

the electric-dipole approximation. Terms of higher order in the multipole 

expansion lead, in the electrostatic limit, to a dispersion energy that falls 

off more rapidly with increasing R. Due to the occurrence of the parameter 

it, however, retardation effects may change the dependence on R in such a 

way that terms of different multipole order vary in the same way. Whether 

this is true may be established when the complete multipole expansion of 
the retarded dispersion energy has been found, This expansion will be de- 
rived in the present paper. 

2 The hamiltorcialz. Pertwbation theory zc+ to forth order and its dia- 
grammatic representation. The hamiltonian for a system consisting of two 
neutral atoms interacting with the electromagnetic field may be split up 
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into four parts: 

H = H(a) + H(b) + Hrad + Hint* (1) 

The first two terms represent the hamiltonians of the free atoms, labelled 
a and b. If these atoms are described non-relativistically and the nuclei are 
held fixed one has for the hamiltonian of atom a: 

H(a)=C+&- x_“““z+L C e2 
j 2WZ i M 2 3#3’ jraj- CzjfI ’ 

(2) 

where the sums are extended over the xa electrons i with masses un, charges 
-e, coordinates raj (with respect to the nucleus) and momenta paj. The 
third term of (1) stands for the hamiltonian of the free radiation field. It 
can be expanded in terms of the annihilation and creation operators, a(k, A) 
and at@, A), respectively, of photons with wave vector k and polarization 
vector e(k, A) (A = I, 2) : 

H rad = C at(k, A) a(&, A) Ack. 
kJ 

(3) 

The radiation field is enclosed in a box (with volume V) so that the wave 
spectrum is discrete. The operators a(k, A) and at(k, A) appear in the Fourier 
decomposition of the vector potential: 

’ (a(k,J) e(k, I) eikmR f-- at(k, A) e*(k, A) ehik’“>_ (4) 

It is chosen to satisfy the Coulomb gauge condition p. A = 0, which im- 
plies the orthogonality relations 

kee(k, A) = 0 (A= 1,2). (5) 

The interaction hamiltonian in the expression (1) is the sum of electrostatic 
terms and terms which couple the atoms with the radiation field: 

+C 
e2 

]Ra -k raj -- Rb - rbj'l 
+C --% Paj*A(Ra -t- ra3) 

j WZC 

3 

+C 
3 

where Ra and Rb are the positions of the nuclei of the atoms a and b. 

b pbja A(& -k rbj) + c ?-- A'(Ra -I raj) 
j 2mc2 

e2 A2(Rb + rbj), 
2mc2 

(6) 
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To calculate the dispersion energy of the two atoms we shall treat Hint 
as a perturbation on the hamiltonian of the system of free atoms and radi- 
ation field and retain only those energy corrections that depend on the 
interatomic separation 1 Rb - R,J . This separation is taken sufficiently 
large for the overlap of the atomic wave functions to be negligible. The un- 
perturbed states will be denoted as Iti> = ]a; /?; kl, ;11; . . , ; &, &>, where 
01, 16 and IEl,&; . . . . km, ;Im are the quantum numbers that label the states of 
the atoms a and b and of the photons present in the radiation field; the 
ground state, which is assumed to be nondegenerate, is written as IO> z 
= IQl(); /3()>. If one wants to obtain the energy shifts up to terms proportional 
to e4, perturbation theory up to fourth order must be applied, as (6) shows. 
In particular, the ground-state energy shifts in the various orders have the 
form : 

E(1) = <q Hint IO>, 

E(2)=- 2 (01 Hint ln><nl Hint IO> 
AErj 

t 
n(#W 

- E(l) c (01 Hint In><fil Hint IO> 
A Ef ‘” J 

nW0) 
(7) 

E(4)=-- c <ol Hint Ifo<nl Hint 112'>Wl Hint ln”><ut”I Hint IO> 
n,n’,n”(#O) &O’AE’O>AE’~’ 

n 12’ n” 

-E(2) C co1 Hint ln>ol Hint IO> 
AE:” 

I 
ew 

where AEfj is the energy difference Ef) - Efj of the unperturbed states 
IN> and IO). 

On substituting (6) into (7) several terms vanish as a consequence of the 
rotation symmetry of the nondegenerate ground states I&O> and I/30) of the 
atoms. In fact, the electrostatic interaction in (6) may be written, with a 
double Taylor expansion, as 

(8) 

with R =Rb- R,; if this operator is written between (0101 and lcl~o> (or 
(PO] and I&>) only the invariant part of the atomic operators in the first 
(or second) factor contributes, with a vanishing result, however, since 
AR-1 z 0 if R # 0. A similar argument shows that the matrix element of 
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the operator 

between <a& and /~lo> vanishes, as a result of (4) and (5). 
The various contributions to the energy corrections (7) may be repre- 

sented by diagramsz). In the present case of the interaction hamiltonian 
(6) the contributions depending on the interatomic distance are given by a 
set of connected diagrams that consist of two vertical lines for the atoms 
and internal lines between them. The latter are of two types: horizontal 
dotted lines corresponding to electrostatic interactions and wavy lines for 
photons. A vertex with a dotted line stands for a matrix element con- 
taining the electrostatic interaction (8), a vertex with one photon line for a 
matrix element of one of the operators in (6) that are linear, in the vector 
potential A, while a vertex with two photon lines represents a matrix ele- 
ment of one of the operators in (6) that are quadratic with respect to A. 
Retaining only terms up to order e4 and using the properties derived in the 
preceding section one finds the diagrams drawn in fig. 1, and moreover 

-- I 1 -- 
PI I-1 

M 

H 

3a 

4s 

5a 

Sd 

k4 2 

M,. 1;;;1,. 
w.. b44c 
FL Ll,. 
w . . 1>4,. 

Fig. 1. Connected diagrams for the energy shifts up to order e? 
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the diagrams obtained from the asymmetric ones by reflection with respect 
to a vertical line. 

3. Evahtiovt of the diapms. In fig. Z five different groups of diagrams 
occur, which will now be evaluated in succession. 

The first, electrostatic diagram leads, upon double Taylor expansion, to a 
second-order energy correction of the form: 

1 
X (al C (e-yu~‘v - 1) jaf+o~ C (erbroV - 1) I&)) R 

i j > 

. (10) 

The subsidiary condition (a, p) # (ao, PO) on the summation may be re- 
placed by the two independent conditions QI + ~0 and 18 $f /?o since all 
contributions with a = a~ (or p = PO) vanish as has been shown in the 
preceding section. Choosing these conditions one may omit the terms 11 

in the matrix elements. Furthermore two factors R-1 occur, both acted 
upon by functions of the nabla operator v, Accordingly, it will be con- 
venient to introduce instead of R two vectors Ri and Rz and corresponding 
nabla operators v1 and Fg. After performing all differentiations both RI 
and Ra should be replaced by R. If we introduce moreover the notation 
f (ra, p,) for the sum xj f (raj, pa& we may write (10) as 

e --a*va 

bO> 

In the second type of diagrams a summation over intermediate states 
with two photons present occurs; it may be written as 

+ c (k, A; k’, X><k, A; k’, 1’1. 
k,A;k’,A’ 

The energy correction for this group of diagrams reads thus: 

where the last symbol stands for the preceding term 

A; k’, A’> 

(a, 01-h 81, (12) 

with (a, a) and (b, @) 
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interchanged. The summation over the polarization indices A and A’ may be 
performed if one uses the identity 

i e(k, 2) e*(k, A) = U - g. 
A=1 

(13) 

Furthermore, if the volume V of the box enclosing the system tends to 
infinity, the summations V-1 Ck may be replaced by integrations (24-3 [ dk. 
Then (12) gets the form: 

e4?i 
V2(R) = - 27c2m2c3 s 

x &(k+k’)*R 1 
- -I- (a++b,B)m 
k + k’ (14) 

The consequences of Bose-Einstein statistics of the photons for the case 
(k, A) = (k’, A’) are disregarded, since that case corresponds to an inte- 
gration region of vanishing measure. Introducing again RI and R2 by 
writing exp{-i(k + k’)mR} as exp(-iike RI) exp(-ik’m Rz) we find for (14) : 

4 

V2(R) = - ::2,3 <aok 
- cz*(h+Ps) 

l&<Bole 
rb'(Pl+Pd 

2 IB ) 0 
7r 

x (BIVl- UAl) : (V2p2 - UA2) 
s- 

dk dk’ 

(4x)2 k3k’3 

1 
x te-ik*Rl _ l)(,-ik’aRa _ 1) 

k + k' 
+ (a, QI * b, 8)J (15) 

where we extracted factors k and k’, replacing them by iv1 and irz, re- 
spectively. To assure the convergence of the integrals at the origin we 
added terms - 1 to the exponential factors in the integrand; this does not 
change the expression as a whole. The angular integrations may be carried 
out by employing the relation 

s dk 

47T f(k)( e--‘k’R-l) =JYdk,f(k)(F-- 1> 

0 

for an arbitrary function f(K). Then the integral in (15) becomes 

(16) 

?t 
- FO(Rl# Rz), 
2RlR2 
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with the abbreviation : 

00 

2RlR2 
FO(RlPR2) = _ -4 

n 
0 

sin k’R2 1 
X 

kR t 2 
-1 

k+k” (18) 

This integral is evaluated in appendix A. There it is shown that it differs 
from the function 

F(R1, R2) = &(A1 + Rz)~ log(R1 + R2) - #R; log RI - +R;log R2 (19) 

by terms that drop out when inserted into (15). As a result we find for 

Vz(R): 
4 

V2(R>= -& bole 
-~u~(h+VJa) 

I~oxpole 
fb*(Fl+m 

IB > 0 

.F(Rl, Rz) 
x (~~Pl-uAl):(t72~2-uA2)- R1R2 +(a,a*b,fl)= (20) 

We now turn to the third group of diagrams, which contain both electro- 
static and photon interactions. The electrostatic part is treated as in (10) 

and (11). In the photon part we carry out the summation over the polar- 
ization directions and replace k by iv. Then we get (introducing again RI 
and R2) for the first diagram of this group: 

x ~1 pa e--r~‘v~ 1ao><flol Pvl @@I Pb Pva Iflo> 

; (V2V2 - UA2) &I-$- (emikoRn - 1) 
1 

(k,+ks>(ks+k) ’ (21) 

Just as in (15) the convergence of the integral at the origin is guaranteed 
by adding the term - 1 in the integrand. The expressions that are ob- 
tained from the other diagrams have the same form, apart from the oc- 
currence of different energy denominators and a different ordering of the 
matrix elements. For instance, the product of matrix elements of atom a in 
the expression corresponding to diagram 3b is: 

Since the remaining factors in that expression depend on a only through 
the energy hck,, the sum of (22) over all states with the same energy may 
be performed. This sum then contains the projection operator 

c 1~x4, 
a(Rtz coIla.) (23) 
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which is a real operator in the coordinate representation since H(a), given 
in (2), is real in this representation. For the same reason the eigenfunction 
of the nondegenerate ground-state level may be chosen to be real. As raj 
and paj are purely real and imaginary, respectively, one finds the relation 

With the help of this identity (and a similar one for atom b) we obtain from 
the diagrams of the third type: 

: (V2V2 - U&) $-J--& (emikmRz - 1) 

* (ka+b>(kp+k) - (k%+k)(h3+k) --I- i 

1 I 1 

(ktx + k)(ku -I- k/Y) I l 
(25) 

(The order of the momentum and the exponential operator in the matrix 
elements is irrelevant due to the contractions with the factor V2V2 - UAz.) 
The second term within the curly brackets may be split in the following way: 

1 1 1 1 

- 
-- ( u-k b+k/’ ) .--- 

(kc+-k)(kB+-k) ku--Kp (26) 

Then the integral in (25) becomes the sum of four parts of similar structure. 
Carrying out the angular integration with the help of (16) one finds for the 
integral : 

2Go(kuRz) 
k (k ’ - k;) R2 

+ b +-a 
01 a 

(27) 

with the abbreviation : 

In appendix A we show that in the expression (25) with (27) for V3(R) the 
function Go may be replaced by 

G(k,R) = P(k,R) - k,R log k,R - ix. (29) 
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Here P is the function defined as 

00 

617 

PC ) s dt 
sin t 

x . Z 

x$-t ’ 
(30) 

0 

it is related to the sine and cosine integralss). As a result we have found 
now for &(R): 

48 

xhnWk,(k; - k;) 
(0101 ebru”’ 101) 

x (~1 pa e-ra’F2 

: (VZVZ- UA2) (31) 

Along similar lines as above one obtains for the contributions of the fourth 
group of diagrams: 

e4 
V,(R) = ,,~aoj---& ~~0~pa~-'"'~'l~>'(vlP1- UAl) 

qvzv2- UAz) l <al p, e-ru*Fa ]01&00] erb’(‘lfVa) Ipo> 

s dk dk’ --a*& 1 
’ (qx)2 k3k'3 (e - 1)(e-'k"R2 - ') (k, + k)(k + k') 

1 1 
+ (K,+k)(k,+k’) + (k+k’)(ka+k’) + (‘+ t,b’p)4 (32) 

Using (16) one gets for the integral: 

with the abbreviation : 

Ho(k&, M2) 

00 

k&R2 
-- ‘1 

sin k’R2 - -1 
7G k’R2 

0 

1 I 1 

(ka+k)(w-q + (kLT--o)(h+k’) + (k + k’)(k, + k’) ’ 

In the first appendix it is proved that instead of Ho one may insert into v4 
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the function 

H(k&, MB) = G(k,R1 + k&) - G(k,Rl) - G(M2) 

+ qk&,M2), (35) 

SO that one arrives at the result: 

Finally, the diagrams of the fifth type yield the expression: 

x <sol pb erb*V1 I@> : (VlFl- &)<a1 PU e-ra*va Id 

x <@I pb erbgVa I@o> : (V2V2 - UA2) 

- dk dk’ 
x (&)2 kQ’3 (e J -ikaRl 

- l)(e 
-ik’*Rz 

- I) 

1 1 
’ (k, + k)(k + k’)(k@ + k’) + (ka + k)(kh + kfl)(kfl + “) 

(36) 

1 1 

+ (k, + k) (k, + ks)(ka + k’) + (R, -t- k) (k + k’)(kd + k, 

1 

$- (kdrtk)(kbrtkBtktk~)(Kgtk) 

1 

+ (k,+k)(K,3_ks+k$-k’)(ka_tk~) -t-(a*B) 
l 

(37) 

Since the part of the expression in front of the curly brackets is symmetric 

with respect to an interchange of (a, a) and (b, /?) we could bring the symbol 

(0~ f-) /9) inside these brackets. Furthermore, because VI and V2 appear in 
a symmetric way, one may interchange k and k’ in each of the terms with 

energy denominators. The sum of the first three of these (arising from dia- 
grams with non-crossing photon lines) may be rewritten as 

ku + k/3 t k i- k1 1 
I 

(K, + k) (k -+- k’) (k/j -+- k’) (K, + kB) ‘- (ka -I- k) (k, + k’) (ka -f- kd 
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1 1 

(kn+k)(k+k’) + (h3 + k’J(k + k’) 

1 

+ (w-k)(ku+k’) I ’ (38) 

Adding the terms with a and @ interchanged one may bring this in the form: 

1 1 

(kd-k)(k-+-k’) + (ka + k’)(k + k’) 

1 

+ (kLX+k)(ka+k’) 
(39) 

The remaining energy denominator terms in (37) (due to diagrams with 
crossed photon lines) may be transformed, with the help of (26), into: 

k 

Combining this with the expression found by interchanging 01 and /I, and 
symmetrizing then with respect to k and k’ one gets a result similar to (39) : 

1 1 1 

k u- k. (k, + k)(k + k’) + (ka + k’)(k + k’) 

1 

+ (k,+ k)(k,+ k’) + (a ++‘)’ 
(41) 

The curly bracket expression in the integral of (37) is given now by the sum 
of (39) and (41). After integration over the angles with the help of (16) one 
finds for this integral: 

2~ksHo(Wh Mb) 
4 2 k tk - k;) RR2 

+ (a +-) BL 
a a 

(42) 

where Ho has been given in (34). Just as in V@) one may replace Ho by 
the function H defined in (35). Then the contribution &(R) becomes: 

h(R) = C 
2edko 

wao),~wO) xfim4c%~(k~ - ki) 

x <a01 pa e-ra*P1 la><poI pb eramvl l/n : (VlVl - UAl) 

X <~Ipae-'""" Ia0></3[ pbPva Iflo> : (VZVZ- UAz) 

X 
H(b&s k&) 

RlR2 
-I- (a, a - b, B)* (43) 
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Collecting the results we have found now for the retarded interatomic po- 
tential energy V(R) of two nondegenerate ground-state atoms at a sepa- 
ration R: 

V(R) = i V,(R). 
S=l 

(44) 

The various contributions V,(R) have been written in formulae (I I), (20), 
(31), (36) and (42) with auxiliary functions (19), (29) and (35). 

4. Transformation of the m&i% elements. Dispersion energy to all mdtipole 

orders. In the previous section we obtained the interatomic potential energy 
as a sum of five contributions containing different products of matrix ele- 
ments. In the electric-dipole approximation 1) these products may be brought 
into the same form by transforming the matrix elements. Then it appears 
that some terms cancel so that a considerable simplification can be achieved. 
In the following we want to show that a similar situation exists in the 
general case of arbitrary multipoles. 

Let us start by introducing the following notations: 

with i = 1, 2; the curly brackets indicate an anti-commutator. From a 
similar reasoning as given in (22)-(25) it follows that the sum 

c pa 1c 2 
a(h const.) ’ ’ 

is real. 
The fifth contribution, displayed in (43), is already expressed in terms of 

the matrix elements (45) since the order of the momentum and exponential 
operators is irrelevant in &(R). Thus one has: 

4 2k B 
P& 1PP 1 

xhck;(k;- k;) ’ ’ 

: (wi- UAl)P;$;,,: (v2v2--&) J 

x 
H(W1, k,Rz) 

R1R2 
+- (QI++Bb (46) 

The remaining contributions contain different matrix elements as well, 
of the type <a~01 exp(-r, l Vi) 101> (i = 1,2) in VI and V3 and of the type 

<a01 exp{-ram(V1 + V2)) 1010) in h and J74. 

The matrix element <a01 exp( _-ram Vd) Ia> may be written, for 01 # 0l0, as 

I 
- tick <WI [H(a), e-ra’pi] Ia>, 

u 
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where the commutator with the hamiltonian given in (2) appears. Inserting 
this expression we get the relation 

(48) 

with i = 1, 2. An analogous equality follows when (a, QL) is replaced by 
(b, p) and vg by -vg. Employing these relations we may cast the electro- 

static interaction Vi(R) into the form: 

1 

aFick;k;(k, -j- kg) 
pa lq3,l 

’ 

: (VlVl- 
1 

UAl) py;,, : (V2V2 - Unz) ~ + (01 w I% (49) 

where we used the vanishing of AR -1 to introduce the same combinations 

of nabla operators as in (46). 

In the mixed contribution Vs(R) the electrostatic part is dealt with as 

in &(A) and the photon part as in Vs(R). If the result is symmetrized in 

RI and R2 we get: 

2 

xFick~kp(k; - k;) 
& l&3,1 

’ 

: (VlVl- uAl)P:,P;,~: (VZVZ-UA2) 
G(K,Rl) + G(M2) 

9 
R1R2 

+ b *B>* (50) 

The matrix element (0101 exp{-r,a (VI + Vz)} [a~>, that occurs in VZ 

and V4, will be transformed with the use of a sum rule. In fact, we may 
write: 

Taking the ground-state expectation value and inserting a sum over inter- 
mediate states we get for the right-hand side: 

With the notation (45) and the relations (24) and (48) we arrive at the sum 
rule 

vl<~ole 
--r,*(h+Fz) 

Iao> = c 
2 

- vl'&,lP;2. 
at # ao) hmcka , (53) 
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Similar relations are obtained if v1 and vz are interchanged and if (a, CW) 
and rf are replaced by (b, /?) and - vt. 

The sum rules just obtained will be applied now to Vz and ‘c/T4 successively. 

If in (20) the product (VI& - UAl) : (v& - UAz) is written out, V2 

becomes the sum of four terms. The first three of these are transformed with 
the help of the sum rules, while the last term is left unchanged for the present. 
The result may be written as 

J%(R) = - 

x pa,1&3,1: (VlVl- uAl)Py;,g = (F2V2- Ua,) 

- Pa l"PS,lP~,2*PB*,2AlA2} 
F(R1, R2) 

9 
RlR2 

x <#%le /@o> 'lA2 
F(R1, R2) 

RlR2 + (', a *b p)' 

One of the terms appearing here has the structure of the expressions (46), 
(49) and (50). The remaining terms both contain explicit factors A1 and AZ, 

due to which only the part of F(R1, Rs) with double argument RI + Rz 
contributes. If we now transform in Vz the last term as well, with the help 
of (53), we obtain : 

Vz(R)= - c A?- rrliE; h 
( > 

4 

Pa,l~#,I :'(V1V1- UAl) 
dfaoM(fBo) NW afl 

x p: 252 : (VzV2 - UA2) 
F(Rl, R2) 

? 
RlR2 

+ 1°~s,1~~,~mp;,&1~2 

X 
(R1+R2)310g(R1+w + (a wB) 

l 

6RlR2 
(55) 

In a similar way the contribution V4, given in (26), may be dealt with. As 

a result a sum of two terms is found, the first of which has a structure 
analogous to that of (46), (49) and (50), while the second contains in the 
numerator again a function of the double argument R1 + R2 only: 
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Pa, lP& 1 = (VIVI - UAI) 

X P; 2p;,, : (VzV2 - UA2) 
H(ML M2) 

I 
RlR2 

P wC%E,&,2 

x AlA2 - &Pa l*p~,2P/3,l’vlP;,2* 1 VlA2 

- +Poc l*P~,zp&1472p;,2* 1 v2q 

x * 
{ 

G(K,Rl -k k&z) 

RlR2 

+ k#1+ Jq3 log(R1-5 R2) 

6RlR2 1 
+ b+a 

(56) 

Adding the various contributions and using their symmetry with respect 
to 01 and /3 one finds indeed that several terms from different diagrams 
cancel, in such a way that only functions of the double argument RI + Rz 
appear in the numerators. As a result the retarded interatomic potential 
energy of two nondegenerate ground-state atoms may be brought into the 
form: 

V(R) = c b(R) 1 (57) 
Q- I, II, III 

with 
I 

xAckikB(kz - k;) 
pa lPB,l 

’ 

: (VIVI- UAI) P: 252 = (V2V2 - UA2) 9 

X 
P(K,Rl t- M2) 

RlR2 
-k (a ++p; 1 q, (58) 

VII(R) = - C 1 
xFick;k8 

{Pa,l*c?,lP:,2~Pg* 2 , 

X AlA2 - pa IMP: zPp 

G(K,& + a,R,,’ 

? I%PB*~‘VIA~) 9 

X 
RlR2 

+ (a *p; 1 ++2), (59) 

hII(q = - c 
( > 

-5 4 2 &ik k {Pa,l*P&l 
d#~OM#BO) mc x aB 

x PE2’ , p;, 2AlA2 + =a, 1 l VIP& 1 l VIP;, 2 l p;, 2A2 

l (60) 
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The symbol ( a t) p; 1 - 2) stands fur the three terms that arise by inter- 
changing both QI, 18 and 1, 2 independently in the preceding term. 

The expression for V(R) may be written in a form that contains the 
matrix elements of the electri and magnetic multipole operators 4) 

withn = 1,2, . . . . In fact from the definition (45) one finds the relation 

withi- 1,2. 
In the formulae (59) (with (29)) and (60) logarithmic functions occur. 

However, in (59) the function ((RI + Rg)/RlRz) lo&RI + R2) is acted 
upon by at least one Laplace operator. If (60) is rewritten with the help 
of (53), two of these Laplace operators appear, which are acting on the 
radial function {(RI + R2)3/RlRz) log(R1 + Rz). As a result neither VII nor 
VIII contains any logarithmic function when the differentiations have been 
performed. 

The short-distance behaviour of (58) and (59) may be obtained from the 
series expansions for the sine and cosine integralss). From these one gets: 

P(x) =~~+xlogx+(y-1)x--gxx2+.... (64) 

Comparison of terms with the same multipole matrix elements in VI, VII 
and VIII shows that I;/‘1 becomes dominant for small R. Inserting the value 
Q~c for P(K,Rl + k,R$ and using (48) one recovers the electrostatic po- 
tential energy (I I). 

For separations that are large compared to the maximal k,l we may 
employ the expansion of P(X) in powers of x-1, which starts with the terms3) : 

PC ) x E x-1 - 2x-3 + 24x-5 - .*. l (65) 

If again contributions with the same multipole matrix elements in VI, VII 
and VIII are compared one finds that the order of magnitude of their 
leading terms are in the proportion of 1 to (kaR)2 to (k&R)? respectively, 
so that now Y 111 is dominant. In drawing this conclusion we did not take 
into account the way of contraction of the nabla operators and the matrix 
elements, due to which certain multipole contributions vanish. This be- 
comes clear when the electric-dipole approximation is studied. 

The electric-dipole approximation is obtained by retaining only the first 



W’(x) = -Q(X), P(2)(x) = -P(x) + x-l (69) 

that follow from the definition (30) for P(X) and the analogous one fur 

Q( 1 x : 
00 A 
dt 

cos 8 
. . t (70) Q( > X- J 

0 

we get in the 

xt-8 

dipole approximation : 

V(R) = c 4MB 
arwao),~(+~o) 9xfic(k~ - k;) R5 

lklZ lPs12 

x [{(uq3 - 5(&R) + 3(k,R)-l) P(2bR) 

+ {-2(kaR)2 + 6) Q&R) - #,R)z - (a++ /?)I. (71) 

An alternative form may be obtained by employing for P(x) in (67) the 
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term in the Taylor expansion of the exponential operator in P,,t which 
then becomes (a01 p, Ia> or -imck, <cw~] ra ]a>. Due to the rotational in- 
variance of the nondegenerate ground state [a~> we may write now: 

c Pa,(Pzi=- ?- = ‘k:U 
a& const.) 

t 
3 ( > e 

c Ipa(2, 
a(koc const.) 

(66) 

where pa stands for the dipole matrix element --e<aol ra Ia>. On substi- 
tuting this expression into (57) with (58)-(60) the contributions V, and VIII 
drop out due to the vectorial contractions, so that we get: 

V(R) = C 
2k&g 

cx~#ao~~~aw Bxfic(kz - k;) 
IP,[z Ips12 (Iv1 - UAl) 

= (VA - UAa) 
1 

P(k& + M2) P(k&+ &@2) 

MWh - k&R2 1 
l (63 

If we now employ the ancillary relation for an arbitrary function f : 

(V1Vl- UAl> : (VZVZ - UA2) 
f(&+ R2) 

RlR2 II RI= &= 11 

= j& 

i 
f’4’(2R) - $ f@(2R) _t & f’2’(2R) 

- $f”)(2R) + -& i(ZR)}, (68) 

(where f(n) denotes the n-fold derivative of f) and the differentiation formulae 
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integral representation 3) 

00 

PC > 

e-Xt 

x Z 

s 
dt 

1+t2; 
0 

then one finds with (68) : 

V(R) = - C 
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(72) 

x I dt 

e-2E (t4 + 2t3 + 5t2 + 6t + 3) 

{(kacR)2 + t2}{(kbR)2 + t”> - ’ 
0 

(73) 

which is the result of Casimir and Polderl). 
The long-range expansion (65) for P(x) and the ensuing one for Q(X) = 

= -dP/dx lead to the well-known asymptotic form of (71) containing an 
inverse seventh power of the interatomic separation R. 

Closer inspection of the argument that led to the expression (67) shows 
that VIII vanishes if the matrix elements of at least one of the atoms are 
considered in the electric-dipole approximation, while VII disappears if in 
the matrix elements of both atoms this approximation is used. On the basis 
of these arguments one may infer that ‘VII and VIII will fall off, for large 
separations, as R-6 and R-5, respectively. However, in the general ex- 
pressions for VI, VIZ: and VIII some products of the electric and magnetic 
multipole matrix elements prl and v(n) defined in (61) and (62), drop out 
due to the symmetry properties of th: items. 

Using the rotation invariance of the hamiltonian H(a) given in (2), which 
implies the invariance of the nondegenerate ground state j&, one may 
prove : 

2 y~l~p~)* = 0 h - 9z2 odd). (74) 
a& const. 1 

Moreover, spatial inversion symmetry of H(a) (and hence of I&) results in 
the relations 

Since the hamiltonian H(a) commutes with the total angular-momentum 
operator L(a) of atom a;, another consequence of the assumed nondegeneracy 
of lao> is the vanishing of L(a) I&o>. In the approximation of fixed nuclei one 
may write L(a) as Cj rtij A paj, Upon comparing this with (62) one finds: 
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so that the magnetic-dipole moments do not contribute. (Relations analo- 
gous to (74)-(77) hold for atom b.) 

If the results obtained above are applied to (59) and (60) one is led to 
the conclusion that not only ‘VI but also ‘VII and ‘VIII will have asymptotic 
expressions varying as R -7, The asymptotic expression of VI is due to pure 
dipole-dipole interaction, while in that for VII and ‘VIII higher-order multi- 
pole moments of at least one of the atoms play a role. Thus multipoles of 
different order may give rise to dispersion energies varying in the same way 
for large separations, 

APPENDIX A 

The atixiliary functions F, G and H. In this appendix we shall evaluate 
the integrals given in (18), (28) and (34), and show that they may be re- 
placed, in V(R), by the auxiliary functions (19), (29) and (35), respectively. 

The integral (18) may be written in the form; 

where the symmetry in R1 and Rg is made manifest. As a consequence a 
symmetry of the integrand in k and k’ is obtained, which allows us to re- 
place the lower limit of the k’ integration by -00. The singularity that 
arises for k’ = -k is avoided by taking the principal value of the integral. 
Thus the k’ integral is of the form: 

1 
-1 

k+k’ l 

--00 

Writing the sine function in terms of exponentials and 
in the complex plane one finds for this integral: 

& (cos kR - 1). 

closing the contour 

Insertion into (A. 1) yields the expression: 
00 

Fo(hR2) = 
s 

$ {sin k(Rl + Rz) - sin kRI - sin kR2 

0 

- kR1 cos kR2 - kR2 cos kR1 + kR1 + kR&. A 

(A4 

(4 
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If we replace the lower limit by E > 0, the integral may be split into ink- 

gals of the type: 

J%(E) = 
s 

dxs. 

For PS = 0, 1, 2 and 3 one has (with y the Euler constant) : 

I&) = &7E, JO(E) = --y - log E, 

I&) = 1 ---1ogq J&) = &-I - *7c, 

Iz(&) = &-I - &7F, J2(e) = +&-2 - p + 8r + # log E, 

where terms that vanish for & = 0 have been omitted. Using these formulae 
one gets (with E -3 0) for (A.4) : 

Fo(R1, Rz) = F(R1, R2) - &R1R;(3 log R2 + 1) - &R;Rz(3logRl+ 1)n 

(A4 

where F(R1, Rz) is the function given in (19). (The arguments of the loga- 
rithms, including those in F(R1, Rg), may be made dimensionless without 
altering the result by multiplying them with a constant of the dimension 
of an inverse length.) In (20) the function Fo(R1, R2) appears divided by 
RlR2 and acted upon by operators r1 and v2* Therefore the last two terms 
in (A.7) do not contribute in Vg(R). 

The integral (28) may be treated by the method of partial fractions, 
which yields : 

G&R) = kqdk[-y{~ - & + k&(k:+k) > 
0 

1 1 
-- 

k 
+ 

Ix 1 k&k ’ 
(A4 

Taking again E as lower integration limit and using (A.5)-(A.6) we find 

for this integral: 

Go(k%R) = G(M) -/- (I- y) kaR, (A 9) . 

with G(k.R) given in (29). For the same reason as mentioned above in con- 
nexion with I;0 the last term in (A.9) does not contribute to Y3(R). 

Finally we consider the integral Ho written in (34). The second energy 
denominator term can be split into partial fractions so that the curly 
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bracket expression becomes : 

-J-)+ k,Lk’ (&+A). (*Jo) 

Due to the symmetry of this result in k and k’ the integral Ho may be cast 

into the form: 

Ho(k&, wz) 

(A. 11) 
. 

We may omit now the term 1 /(k - k’), extending the k’ integration domain 

to -00. Then the integral over k’ is of the type (A.2), with result (A.3), so 

that we find for Ho: 

Ho(k&, Mb) = k:Rdh ipkl(z; k) ( sin ;ELR”’ 
0 

sin kR1 sin kR2 cos kR1 cos kR2 1 1 - 
k2RlR2 k2R1R2 kR 1 kR 

+ 
2 kR 

+ 
1 kR 

. 
2 

(A. 12) 

If again the lower integration limit is replaced by E and the method of 

partial fractions is employed, a sum of integrals appears. Some of these 

are of the type (A.5); furthermore one encounters the function P(x) and 

its counterpart Q(X), given in (30) and (70), respectively. Inserting the ex- 

pressions (A.6) and taking the limit E -+ 0 we get: 

HQ(WI, M2) = H(k&, Wz) + kaRlQ(kaR2) i- korRzQ(karR1) 

-_ lk3R2R2 log k&R1 - &k;RIR; log k,R2 - Qk3(R;R2 + R&J 2al (31 

- #R1R2 +k&+Rz)y, (A. 13) 

where the function H has been defined in (35). Both in I/J@) and in V5(R) 

only H contributes, since the remaining terms of Ho drop out due to the 

occurrence of the factor (RlR2)-1 and the operators v1 and j72. 
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APPENDIX B 

Evaluation of the dis+sion energy with the use of an alternative ipzteruction 

hamibzian. The electromagnetic interaction between neutral atoms re- 
sults from two different mechanisms, V& electrostatic interaction and 
photonic exchange. Power and Zienau235) showed that the electrostatic 
terms may be eliminated from the interaction hamiltonian by a canonical 
transformation ; moreover, the resulting hamiltonian no longer contains the 
electroniagnetic vector potential A, but instead the (gauge-invariant) trans- 
versal electric and magnetic fields EL = -c--1 aA/% and B = p A A. 

Their result, which included only the effects of the electric and magnetic 
dipole moments and electric quadrupole moments, was recently extended 
by Atkins and Woolley6J) so as to include all multipole moments, The 
hamiltonian found by these authors has the general form (I), with atomic 
and field contributions again given by (2) and (3). The interaction term, 
however, is no longer given by (6) but instead by an expression that, in the 
case of atoms sufficiently far apart for contact terms to be neglected, may 
be written as 

2 

+ (raj l Va)lz--l raj A B(Ra) 

+2x dRP;2+(-+b), 
s 

W) 

Here the electric and magnetic multipole moment operators4) (cf. (61) and 
(62) for their matrix elements) 

e 
,fn) = - - 

n 
a V 2mc (n+ l)! j ra3 nrl, raj A paj] 

have been introduced. Furthermore I’; is the transversal part 

UJ - VV/A) ‘Pa 

of the polarization density 

Pa(R) = g Vi-’ i pr'd(R- Ra) 
n=I 

af atom a. 

(W 

VW 
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The dispersion energy of two neutral atoms in nondegenerate ground 

states may be calculated by employing again perturbation theory up to 

fourth order and by considering only terms that depend on the interatomic 

separation. Since the expectation values of the first two terms of (B.1) for 
the ground state of atom a vanish (as may be proved from the rotation 

invariance of that state) one finds that the various contributions to the 

dispersion energy can be represented by diagrams which have the same 

structure as those of the type 2, 4 and 5 in fig. 1. In the present case a 
vertex with one photon line stands for a matrix element containing one of 

the operators in (B.l) that are linear in the fields, while a vertex with two 

photon lines represents a matrix element of an operator in (B.1) that is 

quadratic in the field B. The remaining terms from (B.1) do not contribute 

to the dispersion energy up to fourth-order perturbation theory. 

From the diagrams of type 2 one finds, after summation over photon 

polarizations according to (13), integration over the angles with the help 

of (16) and introduction of the function Fo given in (18), that may be re- 
placed by F given in (19) : 

Here the tensor matrix element M,, is defined as 

M 
e2 n@g( - l)n1+n2 

a0 
2 -- (a01 ii 

/WCC2 nr,na=l (n1+ l)! (nz + l)! 

(rJpl (ta'r2)na-1 

(the expression for MO, follows by replacing (a, a) by (b, fl) and Vi by -Vt 

( 
. 

= 1,2) ; I$ denotes the transposed tensor). As a consequence of the 

o:currence of ihe operators A1 and A2 only the first term of F (19), with 

the double argument RI + Rg, contributes in (B.5). 

In order to evaluate the contributions represented by the diagrams of 
the fourth type in fig. 1 one must split them into their electric and mag- 

netic multipole parts, since these parts contain different integrals. If on; 

employs the method of appendix A to calculate these integrals and uses 

the reality of the sums ~a(~ conEit ) p~l’*p~a~, i &a const ) pF1l*~ra) and 
7 

L auc* consL) V, 
h~*,~nd 

!z ’ containin; the ’ multipole matrix elements (61) and 
(62), one finds : 

v;(R) = c g (-vl+na 
a(#to) nt,na=1 xkz 

; p(nl)*) l MB 
a 0 

. 
21 

(V 
m-1 : 

k 1 
+hI* 

a ) 
a 
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1 
+ w n1- 1 

k2 
1 

i @)* ,, VI). MB,’ (Vgp-’ i VP’ A j72) 

a 

x AlA2 & (G(k& -I- k,Rz) 

-5 #(RI + R2)3 @(RI + Rz)} 1 + (01 ++ B), 

with G the function given in (29). Due to the properties VI. MO, = 0 and 

M,Y;& = 0 of the matrix element MB, only the term with two laplaceans 

in the product (Vl& - UAl) l MB,* (r& - UA2) contributed. As a conse- 

quence functions with single arguments Rr or R2 could be suppressed. 

Finally the contributions due to the fifth type of diagrams in fig. 1 are 

to be calculated. Again terms with electric and magnetic multipole moments 

should be treated separately. Using the reality of the sums of products of 

matrix elements given in the preceding section one obtains a sum of 

seven terms, each with a different integral. If these integrals are evaluated 

one recovers the terms contained in VI (58), with (63) inserted, together 

with several extra contributions : 

w 
7Ip-1 G(k& + k&z) 

l 

2 
; $Qj* A v2) l (vra-l i ybms)* A v2) AlA 

RI& 

4 
(V 

??%S!-1 
2 i vbma)* A v2) A,A2 & (G(h%R1+k,Rz) 

+ &&(Rl + R2)3 log(R1 --I- Rz)} 1 + (01 w B) + WR)* 

Again only functions with double arguments are present. The sum of (B.S), 
(B.7) and (B.8) may b e s h own to be equal to the expression (57) with (58)- 
(60), derived in the main text. To that end one has to rewrite the matrix 

elements M,, and MBO. In fact, by inserting intermediate states in a suitable 
commutator expression, one may prove the sum rule 
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M -- c a,- 

g 2i(-l)nl-tna 

tic 
{(V 

nl__ 
1 :P A VI) a 

a(#~) nl,na=1 

The last matrix element can be written in terms of multipole matrix ele- 

ments with the use of (53) and (63). 

The outline of the evaluation of the dispersion energy given here shows 

that the use of the interaction hamiltonian (B.1) for the general case of 

arbitrary multipoles does not lead to a simplification in the calculations. 

On the contrary, due to the necessity of splitting the contributions in 

their electric and magnetic multipole parts the number of integrals that 

are to be calculated here is larger than that in the main text. The situation 

is different if one is interested in the lowest-order multipole contributions 

only. Then, the method of the present appendix permits a short derivation 

of the dispersion energy 59 8). 


