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TENSOR TO ALL ORDERS
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Synopsis

The Maxwell equations are derived in covariant manner from the microscopic
equations for the electromagnetic field in the presence of point charges. The polariza-
tion tensor is given as an expansion to all ordersin the atomic electromagnetic moments,
defined in atomic rest frames.

§ 1. Introduction. The problem of deriving Maxwell’s field equations
from Lorentz’ microscopic field equations is solved in this paper in a
manifestly covariant way. First a covariant series expansion in terms of
internal atomic quantities is given in the observer’s Lorentz frame (§ 3).
Then the proper electromagnetic multipole moments are defined in atomic
frames, in which the atoms are momentarily at rest (§ 4). With the help of
the Lorentz transformation from the reference frame to the atomic frames
(§ 5) we find the Maxwell equations with polarizations given as series
expansions in the multipole moments to all orders (§§ 6, 7, 11). Some special
cases are considered (§§ 8, 9, 10) and previous work is discussed (§ 12).

§ 2. The sub-atomic field equations. The microscopic equations for the
electromagnetic fields e and b, produced at a time ¢ and a position R by
a set of point particles with charges ¢;(j = 1, 2, ...), positions Ry(#) and
velocities dR;(¢)/d¢ read as follows (if we use dp and F to indicate differenti-
ations with respect to ¢f and R):

V'ezzjlefé(Rf—R), (1)

— d0e + V A b = X ¢j(dRy/c i) 6(R; — R), (@)
V-b= 07, (3)

b+ VAae=0. 4
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1714 S. R. DE GROOT AND L. G. SUTTORP

We can cast these equations into covariant form by introducing the
notations R*« =0, 1, 2, 3) for (ct, R), R} for (ct;, Ry), ¢+ for (do, V)
f*8(a, p = 0, 1,2, 3) for the antisymmetric field tensor with components
(f01, f02, f03) = e and (f23, /31, /12) == b. In this way cquations (1) and (2)
are the cases ¢« = 0 and o« == 1, 2, 3 of

0af9 = X ¢ [ (ARFARY) o(Ry — R) S(RY — K} K. (5)
J — 00

Considering R} as a function R}(s) of an arbitrary parameter s for cach
particle j, we can write (5) as

Opf*0 = 3 e [AAR] (s)[ds} 0D{Ry(s) — R} ds, (6)
J -0Q
where 0@W{Ry(s) — R} is the four-dimensional delta function. The para-

meters s, which are integration variables, may be chosen independently for
each trajectory (j = 1, 2, ...).
The field equations (3) and (4) may be written as

ff* 8 = 0, (7)

where f*#8 has components (/*01, j*02 /*03) — —p and (/*23, /*31, j*12) = ¢
The covariant equations (6) and (7) give the fields as measured in the
time-space reference frame (ct, R).

§ 3. The atomic series expansion. l.et us now suppose that the charged
point particles (in practice electrons and nuclei) are grouped into stable
entities (such as for instance atoms, ions, molecules, free electrons), which
for the sake of brevity will be referred to as “atoms™” We shall replace the
numbering 7 by a double indexing &, where » numbers the atoms and ¢
their constituent particles. Tt is convenient to split up the fields according
to

Y ®)
P’
where the field /2 must satisfv the equations
ool = 3 exs [ {AR(s)/ds} 0O {Ry(s) — R} ds, (9)

which follows from (6).
Let us now choose a privileged point Rz(s) describing the motion of atom
k as a whole, and introduce internal atomic parameters 7y;(s) by means of

Rki(S) = Rk(s) -+ 7’]”;(3). (10)

Introducing (10) into (9) and expanding the delta function in powers of
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714, We obtain

oo +oco
081 =3 ey 3 (—1)n(n!)~1 f (ARY/ds + dryy/ds) (rg: « ) 6@ (Rp—R) ds, (11)
i n=0 —oo

where the dot now indicates the scalar product of two four-vectors. The
first term at the right-hand side with the term #» = 0 of the series expansion

1S
+ o0

j*c = e/ (AR%/ds) 6@ (R — R) ds, (12)

where er = ); ex; is the atomic charge. Now, j; represents the atomic
charge-current density vector (cpg, fx) with components given by

Pk = €k 6(Rk — R), (13)
jk = 6k(de/dt) 6(Rk - R) (14)

Equation (11) can now be written as

o0 [~

+
Oaf? = fifc + 98 T e T (—1)Mn!)71 [ (ARE/ds) 7y

“(rgic 0)" 1 6 (Ry — R) ds +
oo +o00
+ 0 Yexi 2 (— 1)"(%!)_1f (drzi/ds) rii(rm + g)n-1 5(4)(Rk — R) ds. (15)
T n=0 )
Let us subtract a term of similar structure, but with %,(dR%/ds), from
the second term at the right-hand side and add it to the last. Then after a
partial integration the equation takes the form

ol = flc + egmif, (16)
with
0o +o00
my = Y gl[(— Dan )1 f{(dRg/ds) 75; — 74,(dR}/ds)}-

(ki s )16 (Ry — R) ds 4+

+ (=D — 1)(n!)“l} L (Afd5)— (@r3fs) P rae - 9)m=2 6 (Ry—R) di].
(17)

The last expression is an antisymmetric four-tensor, which we shall call
the polarization tensor. If we denote its components by (m}°, m2°, m3’) =
= py and (m23, mi, mi?) = my, then equations (16) read for « = 0 and

o = 1, 2, 3 respectively
Veexr = pr — V- pr, (18)
—doe + V A by = jrfc + oopr + V A my, (19)
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which are already of the form ol Maxwell’s inhomogencous cquations.
However, the polarization tensor (17) (which contains the atomic para-
meters 7g;, measured in the (¢f, R)-frame) must still be expressed in terms
of the proper atomic multipole moments.

§ 4. The atomic mudltipole moments. We wish to characterize the atomice
internal electromagnetic structure by means of parameters defined in a
Lorentz frame in which the atom as @ whole is at rest. Such a frame must
have a velocity v equal to (dR;/df), , with respect to the reference frame
(ct, R) of the observer. Time-space coordinates of the reference frame {¢f, R)
and the atomic frame (cf, R’} arc connected by the Lorentz transformation

of =yl -y 3R (20)
R—=Q 1R | -3, (21

/
where (with U the unit three-tensory,

Bomvicoy (1 gt U (1) BB (22)

‘

In the Lorentz transformation we introduced the three-tensor -1, 1t is the
mverse of a tensor

QU s (23)

a usctul quantity, which is related to the Lorentz contraction, as we shall
see.

Since the atom suffers accelerations, at every moment 4y one needs a
different atomic rest frame. Every atomic frame is therefore only a momen-
tary rest frame: only for ¢ = fy does the atomic velocity dRj/de" vanish.

In the atomic frame the atom s characterized by internal parameters
7k, which at the moment ¢ = ¢y are purely spatial vectors, e, r,Y = 0.
At that moment ¢ — {5 we have thus for the scalar product of the four-
vectors g and dRp/dr

r AR/ s dR A 0. (24)

{We shall see in the next section how the 7g; are related to the ry).
The atomic multipole moments are certain useful combinations of the
atomic internal parameters; the clectric 2%-pole moment is
pi = ()Y epi(rio, n=1,2..) (25)
i
and the magnetic 2%-pole moment
v =l )OS epi(ri) ™ A Fgjc, (n=12 .. (26)
-
where the powers indicate polvads of three-vectors and where

’ i ’ . Y 14
tio = ity o and  Fpp — (drg/dty, .
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We shall now discuss the transformation of quantities defined in the
reference frame (cf, R) to quantities defined in the atomic momentary rest
frame, in order to be able to express the polarization tensor in terms of the
atomic multipole moments as defined here.

§ 5. The Lorentz transformation from the reference frame to the momentary
atomic rest frame. In the result of the atomic series expansion of § 3 internal
quantities 7g; occur, which are measured in the reference frame (cf, R).
However, as explained in the preceding section we wish to characterize
the structure of the atoms by means of quantities which are connected to
the purely spatial internal parameters rg;, which are measured in the
momentary atomic rest frame. Therefore we must find the connexion
between the two kinds of internal parameters.

We now choose such a parametrization along the particle trajectories
that for all 27 and all values of s one has

rei(s) ARY(s)/ds — ri(s) dRy(s)/ds = O. (27)

In fact this means that the parametrization along the trajectory of the
privileged point of atom % tnduces a parametrization along the trajectories
of the constituent particles ki through the “‘perpendicular” projection
expressed by (27) *).

The condition (27), which is a covariant condition, has as a consequence
that by transformation to the momentary atomic rest frame r;; becomes
purely spatial and thus equal to the atomic parameters ry; of the preceding
section.

The Lorentz transformation with transformation velocity given by

pemoie = (g ) Cigar )

(with sg corresponding to #p) reads
Ri(s) = yeREY(s) + viBr: Ri(s), (29)
Ry(s) = Q- Ri(s) + yeBrRi%(s). (30)

Differentiation with respect to s gives
dRY/ds = y dR}%/ds + yiBx-dR}/ds, (31)
dRy/ds = ;' dR/ds + yiBx AREO/ds. (32)

*) A possible many-valuedness of the parametrization s thus induced gives no difficulties if an
appropriate prescription is imposed for the way of integration over s.



1718 S. R. DE GROOT AND L. G. SUTTORP

Similarly for the internal quantities one has the Lorentz transformations

7eilS) = vrrii (s) + vaBie Tha(s), (33)
rrils) = QU rhils) + veBarid(s), (34)
and for the derivatives
dr0,/ds = pg drylfds + yeBi-drii/ds, (35)
dryg/ds = Q- drg/ds + pBr drtds. (36)

Now in the momentary atomic rest frame both the temporal component
712(s) and the atomic velocity which is proportional to dRj(s)/ds (cf. (28))

i
vanish at the moment for which s = so. Thus, (31) and (32) become

dRV/ds = vy dR}0/ds, (37)
dRy/ds = vy Bk dRO/ds, (38)
and (33) and (34) get the form
74(S) = YBr* Tkils), (39)
Tri(s) = Q71 ria(s) (40)

Since we measure internal quantities in the atomic frame, but external
quantities (atomic positions, velocities etc.) in the reference frame, we need
a few more consequences of the preceding transformation formulae. In the
first place we want an expression for the second derivative of Rj(s) with
respect to s. According to the Lorentz transformation one has

d2Rp(s)/ds2 = Q1+ d2R(s)/ds? — yBr d2R}(s)/ds2. (41)
Furthermore from (37) and (38) one has
dRy/ds = By dARY/ds, (42)
and by differentiation of this relation
d2Ry(s)/ds2 = By A2RY(s)/ds? + GoBk{dRY(s)/ds}2. (43)
Substituting (43) into (41}, and using also
Q' Br = viPr, (44)
which follows from (22), one obtains
d2Rp(s)/ds? = Qo Bx{dRY(s)/ds}2. (45)

With the identity, which can be checked by using (22) and (23),
Q1. 0Bk = vi ' Bo(Bryr), (46)



COVARIANT DERIVATION OF THE MAXWELL EQUATIONS 1719

one obtains finally from (45)
d2Rj(s)/ds? = it Q- o(Bryr){dRy(s)/ds}?. (47)

A second result can be obtained from the invariant condition (27), which
reads in the atomic frame

7p ARiO/ds — riyrdRj/ds = 0. (48)

Differentiating this relation with respect to s and taking into account
7.9 ._. = 0 and (dRj/ds = 0, one finds for s = s
ki/s=8o0

dr,2(s)/ds = rki(s) . {d2Rk(s)/dsZH{dRiO(s)/ds}1, (49)
which, with (37) and (47), becomes finally
dr9(s)/ds = rii* R 00{Bryr) ARY(s)/ds. (50)

In the magnetic multipole moment (26) a time derivative occurs which

'
to

— R'

Fig. 1. World lines of atom % and constituent particle k¢ in the momentary rest frame.

is the limit of the difference of two purely spatial vectors divided by the
corresponding time difference (cf. fig. 1):

Rii(sa) — Rigls1) — fia(so)

fri = lim - -
ti’—>tko” tk — tko
R; — Rj, — Tk dty -1
— lim Rl = Ril) = rhilo [J ) | B
81—>80 S1 — So ds IS=80
The values s; and sg of the!parameter s are related by (cf. fig. 1)
Rii(s2) = Ris1), (52)

or, with the splitting (10),
RiO(s2) + 74i(s2) = Ris1)- (53)
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Taylor expansion of the left- and right-hand sides with respect to s2 — s
and s; — sg respectively gives
[ ol |

R ] ST A

Sg — Sp =

With the help of this relation, expression (51) becomes after expansion of
the numerator around sp:

e = c{driy(s)/dsHARO(s)/ds |- dr2(s)/ds} 1. (55)
Using (37) and (50) this can be written in the form
df;“'(s)/ds == (’)/]‘-,C)‘]i';ﬁ{l F ‘)/].71'/’,71' . Szk'a(](ﬁk:/k); dfv\)}".(S)/’vds, (56)

which gives the derivative of ri;(s) in terms of the internal quantities rg;
and #f;, which occur in the atomic multipole moments.

§ 6. Calculation of the polarization fensor. With the help of the results of
the preceding section we now want to obtain expressions for the polarization
vectors pr and my, involving the atomic multipole moments defined in § 4.
Let us substitute into (17) the transformation formulac (39}, (40}, (42), (35)
and (36) using also (50) and (56). The integral over s can now be evaluated
with the help of the relation {dR{(s)/ds}ds = dR}. Emploving an identity
which is valid for any vectors @ and b,

(71 a) A (71b) = yrQr(anb), (57)
the electric polarization pj can be cast into the form:

pe = Eeki§:<n21 ﬁ(" ; 1 ><[;> (— 1)1 ()=t

1 n=1\p=00g=0

D UL Tri(yaBr TP (rhi Ry V) 10} 935(Ry — R) -

n—2 p 1 2
+Z X < ? b ><{; >(—1)" (n — D)~ o[ Trs(yePr: Thi)? -
p=0¢q=0

(rhet V) Plyrk Qe Go(Bryi)}] @ O(Rx — R) +
n—2

+E z( N ) o 0 B s (R (ke Fl)

“WBr Th)P (Phit Ry V)220 4y 1y Q- G0(Brye) ] 05 O (Rg — R))- (58)

Here the electric polarization is written in terms of the internal variables
ri; and f£i;, measured in the atomic rest frame, and the external variables
Br, vi, Rk, ;! and their derivatives; the position vector Ry enters only
in the delta function, as it should be.



COVARIANT DERIVATION OF THE MAXWELL EQUATIONS 1721

The internal variables rj; occur partly in combinations like Qp*ri;. The
tensor £ can be interpreted in terms of a Lorentz contraction, since for
every vector a one has
Qira=Q(ay+a)=a,+ (1 —pFtay (59)
where a is split into a part parallel with and a part perpendicular to the
transformation velocity ¢fBg. In view of this property of & we shall eliminate
in (58) the tensor ;! by means of the identity:
Q= Qi + yiPrb, (60)

which is a consequence of (22) and (23). With the help of this equation one
obtains from (58), upon splitting the third term and replacing p by p — 1
in the second term, # by # -+ 1 in the first part of the third term and p by
p — 1 in the second part of the third term:

Pr=XeuZX (=Drtnn—1—p —m)! (p — @) glm!}™1 7R Thes-

n pam
'(Vkﬂk' ri)) PHm(rky Qe V) 1=2=m} G3{(Bi- V)™ 6(Ry — R)} +
+(=Or{nn —1—p—m!(p—qg—1lglmliT

O Qe (v Br TP L

{yethe Qe 20(Bryi)}(rke Qi V)= 1-2-m] 5§{(Bx- V)™ 6(Rx — R)} +

+ (=)t + D — T —p—m)! (p—g)! gl m!}L-

B n (R (rhn F )}

(VB i) Ptk Qi V) 127 O8{(Br- V)™ O(Ry — R)} +

(= 1)2a0n —1— p—m) ! (p—q— 1)1 g m Uy~ 88~ [Ben (e rhin Fhle)}
“(eBr Tea) P Hyrt ki Qi 00(Biy) ki Lp- V) n-1-2-7] -

(PP SR — RY. (6)
The indices are bounded as a result of the occurrence of factorials in the
denominators; thus in the first term for instance one has 0 << g < $ and
0 <m <n—1—p. Next we want to regroup the terms in a different

way by carrying out one of the time derivatives in the first and third term.
After a final relabelling of indices » + m — p and ¢ + m — g (61) becomes

pr=3E (—1)tn — NH{n—1—-p)(p—q)!g—m)!iml}

n pgm

OB (yrBr) P 1 0o{(” + Br A ¥IM) i yU(Bryr)e Vr-1oPY]
<08 ™{(Br V)™ 6(Rr — R)} +
LSS (—)r (= Dialn— 1= p)L(p— )l (g— m) lm 1

n pgm
p2e+1

-0 {o(yrBr)P~2:(Br A vi¥) ivR(Bryr) T P27} OFT{(Bi- V)™ 6(Ri — R)}),
(62
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where we introduced the abbreviations (cf. (25), (26)):
w = Qi = (n!)! X exi(Rp i)™, (63)

!

Vi = Qv = nin + 1)11-1 ) Cri(8p Tk Uy (ks A Frifc)).  (64)
'

The multipole moments p{’ and v{"' occur only in these combinations with
the tensor &; this can be cxplained in terms of a Lorentz contraction of
the internal variables, as was shown above (59).

In connection with (62) a remark about the tensor notation must be
made: the outer product sign in front of v{’ stands for an outer product
with the vector rj; A fi; contained in the dyadic tensor v{"; the con-
tractions take place with the vector rj; in v{". Furthermore the product
25 100, which occurs in the first term as p = ¢, is to be considered as unity.

Up to now we obtained an expression for py onlv. From (17) it can be
deduced that my can be obtained from pj by replacing the non-contracted
vectors in (58) in the following way:

QpThi > —Br A (g Thi), (65)
Bie A {Qi (Tha A Fha)) — Qi (Thi A o). (66)
In (62) one must make the following transformations:
e L L (67)
Brn v i (68)

Thus the expressions for py and my, show aremarkable analogy. ['urthermore
the leading terms in both expressions are symmetric with respect to an
interchange of electric and magnetic multipole moments. The second term
in (62) and in the corresponding expression for my is due to a relativistic
correction (§ 8).

§ 7. The polayization tensor expressed with spatial derivatives of multipole
densitres. The expressions for pp and my of the previous section contain
time derivatives of the delta function. Now these derivatives can be ex-
pressed in terms of spatial derivatives with the help of the relation:

Using a generalized ‘‘chain rule’” of differentiation the higher order time
derivatives of the delta function can be reduced in a similar way to a sum
of spatial derivatives each with a factor in front of it. In fact, eq. (62) for
Pr contains the linear combination:

D(q) 6(Ry — R) = ﬁ{mf(q — m) "L o {(Br- V)™ O(Ry — R)}. (70

m=4{
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From this definition it follows that
Dg)=0if g<0,D(g)=1if ¢g=0,D(q) =0 if ¢ = 1. (71)

For ¢ > 2 the result of the application of D(g) to the delta function can be
formulated in a convenient way with the help of diagrams. A diagram is
here a set of squares arranged in columns of decreasing height. The inter-
pretation of these diagrams is apparent from the examples

[0 —(BeV)SRy — R),

— > (@BuP)S(Re — R), (72)

= (Bx*V)(60Bx"¥) 6(Rx — R).
Each diagram is provided with a numerical factor
H{nz—lni 1}H{m;—mj+1'}1 (73)

where #; is the height of the column ¢ and my is the width of the row 4. Thus
e.g.

> (3% 1 x 1)(4! 2121 2)-1 (3®8x-F)(20BxF)2 6(Rx — R). (74)

O

The numerical factor of diagrams with a column of height 1 vanishes.

Now the prescription for D(g) (Rz — R) can be formulated as: write all
diagrams with ¢ squares, interpret with the correct factor (73) in front of
it and take the sum. As a consequence of the preceding remark D(g) will
contain no diagrams with a column of height 1, and therefore no terms with
Bx'V 3(Ry — R). The expression for py (62) now becomes:

Pu(R, ) = X X (—1)mt(n— ) {(n—1— p)! (p—q) 72 5~ [(yaBr)P~9i-
n pgq
“Oo{(Bf” + Br A ¥V ivE(Bryr)? V1-7}] D(q) 6(Rx — R) +
+ X S0 — D — 1= p) (P — )1} B~ {oo(yBr)?
" p2g+1
(B A ¥i) ivE(Bryr)? P17} D(g) 8(Ri — R). (75)
Analogously the expression for my becomes (remembering (67) and (68)):

mi(R, ) = 5 T (— 1w (1= 1)1 {{n —1—p)! (p—g) 71 B~ [(uBr)=e:-

“do{(vi" — Br A 1) iv%(Bryr)? V7-1-2}] D(g) 6(Rx — R) +
+3 E (=02 —Dlnn — 1 —p)! (p — @1} B HoolyuBr)P2

IJ>¢1+1

WV 1y%(Bryr)? V1-2} D(q) 6(Rx — R). (76)
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Here the final results are reached in a form with spatial derivatives of
multipole densities; time derivatives also ocenr but since the nabla oper-
ators onlv act on the delta function they might be written in front of the
expressions.

§ 8. The polarization tensor {n the atomic frame. In the momentary atomic
rest frame (c¢f’, R’) the polarization tensor gets a particularly simple form,
since in the leading terms of (75) and (76) only the term with p - 0,9 =0
remains; the other term in p, disappears altogether whereas in my only
the part with ¢ == 0 is left over. I this wav we obtain

PHR' ) = X (1)t s (P =1 o(Rg ~ R). (77
no1
MR, 1) = (- D (P Lo(RE - R -
n= 1

oo 71

+ 3 S (=D — Dl 1 — pu-epBurivi (V) -1-» o(Rp — RY).
He1 e |
(78)

It should be noted that in mj a term appears which depends on the ac-
celeration épfB); 1t represents a special relativistic effect,

§9. The polavization in the wonrelativistic approximation. We o shall
consider two kinds of nonrelativistic limiting cases of our general formalism.
In the first conception we shall consider all atomic multipole moments as
constants without considering whether they contain factors ¢! Then,
neglecting terms of order ¢=2 or higher, since now 2, ~ 1 and Qp ~ U,
and since only terms with p .= 0 and ¢ == 0 remain, we find from (75) and
(76)

Pr(R, 6 = (1) Yy & B nvi)iPn-18(R: — R), (79)
w1

me(R, ) ~ > (—1n- v Brapl)iVr-LH(R; — R). (80)
noe=1

These formulae show a svmmetry in the sense that pg contains terms due
to moving magnetic multipoles v, just as my contains contributions from
moving electric multipoles p{".

In the second place we may consider the nonrelativistic limiting case,
taking into account the fact that the magnetic multipoles v{"’ contain a

factor ¢=!. Then one is left with

Pe(R, #) = X (—1)n i iP-1 5(Rg — R), (81
n=1

mu(R, ) ~ 3 (— 171w — Bp n wi)iPn-10(R; — R).  (82)

n=1
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These are the formulae found in the nonrelativistic expansion to all orders$).
Now no terms with moving magnetic moments appear.

§ 10. The polarization tensor to lowest multipole orders. The polarization
wensor (p, m) as given by (75) and (76) contains the atomic multipole
moments, which are defined in the momentary rest frame. Let us consider
the case in which only one of these multipole moments is different from zero.
Then in all Lorentz frames only terms with this particular multipole moment
will occur. Since the polarization tensor is a covariant quantity these terms
with only one multipole moment form a covariant tensor too. This means
that (p, m) consists of a sum of terms which are all antisymmetric tensors,
and each of them contains one multipole moment only.

The terms can, therefore, be grouped in arbitrary manner, e.g. according
to their order in powers of internal coordinates rj; and #j;. Another
classification groups together the electromagnetic moments of a certain
multipole order. (We note that the electric and magnetic multipole moments
ri” (25) and v{" (26) are of order » and n + 1 respectively in the internal
coordinates). Let us give explicitly the lowest order terms of py = pb’ 4
PP+ p¥ —...and mp = m + m® + mP® + ..., where (n) indicates
the multipole order. From (75) and (76), using the prescription for D(g), one
finds:

terms with dipoles (n = 1):
PR, 1) = (5 + Pi~ vV) 8(Ri — R), (83)
m (R, ) = (v — Be A i) 8(Rx — R); (84)
terms with quadrupoles (n == 2):

PR, 1) = —yiPr- ol + Bra vi”) v} Rk — R) —
(1 + Br A vP) ¥V O(Ry — R) —
— 30o(ykBr)- (v A Br) yx (R — R), (85)
mI(R, t) = —yiPio{(vy — B » &) v} O(Rx — R) —
—(? — Be A i)V O(Ry — R) +
+ 300(yeBr) v’y 6(Rx — R). (86)
(The reader is also reminded of the vector notation, where Bj A v{¥:

represents a contraction with rj; and an outer product with rj; A #4;).

§ 11. The Maxwell equations. The inhomogeneous “atomic field equations”
for the total atomic fields e = 3y ex and b = 3z b, due to all atoms
together, can now be obtained by summation over k& of equations (18) and
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(19):
Veie =p ~V-p, (87)
—doe +V Ab=jjc-t cép -+ VArm. (88)
(The homogeneous atomic field equations arc (3) and (4)). Here we have
introduced the quantities

p=XprJ]=2jr P =X Pr,m =3 my, (89)
I k IS IN

where pg, fk, Pr and my are given by (13), (14), (75) and (76). The expressions
for p and m are series expansions in terms of the atomic multipole moments
p{ and v{¥. The solutions of (87) and (88) arc thus serics expansions in
terms of the multipole moments. These series converge if the reference point
of measurement is outside the atoms.

With the definitions of the fields

=e+p, h=>b—m, (90)

one can cast the atomic field equations (87) and (88) into the form
V-d=p, (91)
—dod + V an h = jjc. (92)
The macroscopic clectromagnetic quantities are defined as averages over
sets of atoms which occupy macroscopically small regions, but which on
the microscopic scale contain enough atoms, such that principles of statistical

mechanics may be applied to them7). Let us indicate these macroscopic
quantities as

‘e>=E, 'b- =B, <d> =D, ch> = H, (93)
pr =0, o =J. (94)

Since averaging and time-space differentiations commute ), we can write
(91), (92), (3) and (4) respectively as:

VD =g, (95)

—¢oD 4V A H = Jc, (96)
V-B =0, (97)

¢%B + V A E=0. (98)

These are Maxwell's equations, where we have now expressed all quantities
as averages over microscopic quantities in a completely covariant form
with multipole expansion up to all orders.

§ 12. Discussion of previous work. Dillenbachl) was the first to
generalize Lorentz’s derivation of Maxwell’s equations from electron theory
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in a covariant way. His treatment was limited to uniformly moving solids
and yielded an expression for the electromagnetic moment tensor in the rest
frame of the substance in terms of the atomic electric and magnetic dipole
moments. Pauli2) transformed these formulae to an arbitrary frame, in
which the substance was moving as a whole.

Kaufman3) generalized the nonrelativistic treatment of Mazur and
Nijboer4) to a covariant theory. He used a relation like (27) but justified
this in terms of proper times which is not possible. However, since he did
not employ this interpretation he got correct expressions up to dipole
moments for arbitrary motion of the atoms. He defined the dipole moments
in the atomic rest frames, but introduced a slightly different magnetic
moment. This would only lead to different results in a higher order
multipole moment approximation.

Bacry?5) gave a relativistic theory, but did not define the atomic moments
in their rest frame. His final expressions do not contain all effects of moving
multipoles.

De Groot and Vlieger$) derived the relativistic polarization tensor to
second order in the atomic parameters ri; and #%;, but their treatment was
not manifestly covariant. They introduced a relativistically covariant way
of averaging?).

This investigation is part of the research programme of the “Stichting
voor Fundamenteel Onderzoek der Materie (F.O.M.)”, which is financially
supported by the “Organisatie voor Zuiver Wetenschappelijk Onderzoek
(Z.W.0.)".
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