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synopsis 
The Maxwell equations are derived in covariant manner from the microscopic 

equations for the electromagnetic field in the presence of point charges. The polariza- 

tion tensor is given as an expansion to all orders in the atomic electromagnetic moments, 

defined in atomic rest frames. 

9 1. Introduction. The problem of deriving Maxwell’s field equations 
from Lorentz’ microscopic field equations is solved in this paper in a 
manifestly covariant way. First a covariant series expansion in terms of 
internal atomic quantities is given in the observer’s Lorentz frame (9 3). 
Then the proper electromagnetic multipole moments are defined in atomic 
frames, in which the atoms are momentarily at rest (3 4). With the help of 
the Lorentz transformation from the reference frame to the atomic frames 
(3 5) we find the Maxwell equations with polarizations given as series 
expansions in the multipole moments to all orders ($5 6, 7, 11). Some special 
cases are considered ($9 8, 9, 10) and previous work is discussed (9 12). 

5 2. The sub-atomic field equations. The microscopic equations for the 
electromagnetic fields e and b, produced at a time t and a position R by 
a set of point particles with charges e*(j = 1, 2, . ..). positions R,(t) and 
velocities dR,(t)/dt read as follows (if we use 80 and V to indicate differenti- 
ations with respect to ct and R) : 

V * e = x ej 6(Rj - R), 
i 

- &e + V A b = C ej(dRf/c dt) ~(RJ 

p*b=O: 

i3ob + j7 A e = 0. 

- 1713 - 

(1) 

R)J (2) 

(3) 

(4) 
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WV can cast these equations into covariant form by introducing the 
notations Z+(CC := 0, 1, 2, 3) for (ct, R), “7 for (ctj, Rj), i, for (20, v) 
/@(cc, @ = 0, 1) 2, 3) f or that antisymmetric field tensor with components 
(101, fo”, f03) = e and (f‘ 23, ,/:31, /I”) -: b. In this \\-a!. cyuations (1) and (2) 
are the cases C( = 0 and x :=: 1 , 2, 3 of 

C‘onsidering Xi! as a function h’;(s) of an arbitrar!- parametr’r s for each 
particle j, w~l can write (5) as 

(6) 

whcrc O(Q(Ri(s) - I\‘) is thcl four-dimensional tlelta function. The para 
meters s, which arc integration lyariablcs, may be chosen indcp~~ndcntl~ for 
each trajectory (i = 1, 2, . ..). 

The field equations (3) and (4) may bc written as 

;ti*Vj _ 0, (71 

where /*a0 has components (/*ol, j*Oz, /*O”) = -b an({ (i*““, /*31, /*12) = e. 

The covariant equations (6) and (7) g-i\.? thtl fields as mckasurcd in the 
time-space reference frame (ct, R). 

3: 3. 7‘he atomic series expansiolr. I,& us now suppow that the char& 
point particles (in practice electrons and nuclei) are grouped into stables 
entities (such as for instance atoms, ions, molecules, free electrons), which 
for the sake of brevity will be referred to as “atoms”’ Lye shall replace the 

k numbers the atoms and I 

split up the fields according 
numbering j by a double indexing ki, where 
their constituent particles. It is con\.enient to 
to 

j”” --_ c i?” !, 1 
k 

where the field /z” must satisfy the equations 

,rn 

(8) 

3,fx. “’ = ?_’ ekiJ (dR;;(s)/ds) 6(4)(Rki(s) - R; ds, 
i -co 

(9) 

which follows from (6). 
Let us now choose a privileged point Zik(s) describing the motion of atom 

/z as a whole, and introduce internal atomic parameters rki(~) by means of 

&i(S) = Z-b(S) i- %(S). (10) 

Introducing (10) into (9) and expanding the delta function in powers of 
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lki, we obtain 

a,& = x e,& C (- I)“@!)-lj (dR;/ds + drEi/ds)(rkz ’ a)n dt4)(&--R) ds, (1 1) 
i n=O --m 

where the dot now indicates the scalar product of two four-vectors. The 
first term at the right-hand side with the term n = 0 of the series expansion 
is 

$1~ = ek jTdR;jds) 6t4)(Rk - R) ds, 
--oo 

(12) 

where ek = Ci eki is the atomic charge. Now, j$ represents the atomic 
charge-current density vector (cpk, jk) with components given by 

pk = ek d(Rk - R), (13) 

jk = ek(d&/dt) 8(& - R). (14) 

Equation (11) can now be written as 

a,f’$ = j;z/c + a, C ek{ x (-l)“(n!)-i / (dR;/ds) rk* 

. (lki . api a4;(Rk 

n=l --m 

- R) dS $ 

+ 8, c ek;zo (- l)“(n!)-l/ (dr”,,/ds) &(rk{ l a)n-l dc4)(Rk - R) ds. (15) 
i -co 

Let us subtract a term of similar structure, but with r;Z,(dRl/ds), from 
the second term at the right-hand side and add it to the last, Then after a 
partial integration the equation takes the form 

,161 

+ (- l)“(n - l)(n!)-ij~;i(dr$i/ds)-(dr$/ds) &}(l’kd l a)@ 6(4)(&-R) ds]. 
--oo 

(17) 

The last expression is an antisymmetric four-tensor, which we shall call 
the polarization tensor. If we denote its components by (mk’, mz”, w$‘) = 
= pk and (vnE3, rnil, mL2) = mk, then equations (16) read for tc = 0 and 
tc = 1, 2, 3 respectively 

v’ek = pk - v’pk, (18) 

-aOek f v * bk = _ik/C + aOpk f v * mk, (19) 



and the magnetic 2n-pole moment 
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We shall now discuss the transformation of quantities defined in the 
reference frame (ct, R) to quantities defined in the atomic momentary rest 
frame, in order to be able to express the polarization tensor in terms of the 
atomic multipole moments as defined here. 

5 5. The Lorentz transformation from the Yeference frame to the momentary 

atomic rest frame. In the result of the atomic series expansion of § 3 internal 
quantities Ykt occur, which are measured in the reference frame (ct, R). 
However, as explained in the preceding section we wish to characterize 
the structure of the atoms by means of quantities which are connected to 
the purely spatial internal parameters &, which are measured in the 
momentary atomic rest frame. Therefore we must find the connexion 
between the two kinds of internal parameters. 

We now choose such a parametrization along the particle trajectories 
that for all Ki and all values of s one has 

Yap dRi(s)/ds - r&(s) +dRk(s)/ds = 0. (27) 

In fact this means that the parametrization along the trajectory of the 
privileged point of atom k induces a parametrization along the trajectories 
of the constituent particles Ki through the “perpendicular” projection 
expressed by (27) *). 

The condition (27), which is a covariant condition, has as a consequence 
that by transformation to the momentary atomic rest frame rici becomes 
purely spatial and thus equal to the atomic parameters rii of the preceding 
section. 

The Lorentz transformation with transformation velocity given by 

(28) 

(with so corresponding to to) reads 

R,%s) = ?‘k&‘(s) + ykPk’Rk(s), 

&c(s) = 8,‘.Ri(s) + Y&&o(S). 

(29) 

(30) 

Differentiation with respect to s gives 

dR;/ds = Yk dRka/ds + &k’dR;c/ds, (31) 

dRk/ds = fiii’dRi/ds + YkPkd&a/ds. (32) 

*) A possible many-valuedness of the parametrization s thus induced gives no difficulties if an 

appropriate prescription is imposed for the way of integration over s. 
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Similarly for the internal quantities one has the I,orentz transformations 

Y:<(S) = ykyiy(s) j- ~,$k-r&(s), (33) 

rki(.s) = C22, L - r&(s) + I/~/~~Y:.~!((s), (34) 

and for the derivatives 

dr$lds = Yk dr;.;‘lds _I- Yj,$k’d&‘/ds, (35) 

drki/ds = ai’ ‘drii/ds t YkPk dr~~‘lds. (36) 

Now in the momentary atomic rest frame both the temporal component 
r,$‘(s) and the atomic velocity which is proportional to dRK(s)/ds (cf. (28)) 
vanish at the moment for which s = SO. Thus, (31) and (32) become 

dR;lds = yk- dKj$‘/ds, (37) 

dRk/ds = YkPk dKiO/ds, (38) 

and (33) and (34) get the form 

$(s) = Ykpk’ rid(s), (39) 

rki(s) = 8,’ ’ rii(s) (40) 

Since we measure internal quantities in the atomic frame, but external 
quantities (atomic positions, velocities etc.) in the reference frame, we need 
a few more consequences of the preceding transformation formulae. In the 
first place we want an expression for the second derivative of Rh(s) with 
respect to s. According to the Lorentz transformation one has 

daRh(s)/dsa = fiR,‘*d”Rk(s)/dsZ - ?IkPk daR;(s)/ds;‘. (41) 

Furthermore from (37) and (38) one has 

dRklds = Pk d$!/ds, (42) 

and by differentiation of this relation 

d2R&)/ds2 = Pk daR;(s)/dsa + &$,{dR;(s)/ds)? (43) 

Substituting (43) into (41), and using also 

a, “Pk = ykpk, (44) 

which follows from (22), one obtains 

daRj,(s)/dsz = a,‘.a,P,{dR~(s)/ds}2. (45) 

With the identity, which can be checked by using (22) and (23), 

fig1 . aOPk = YI;lfik’aO(Pkyk)> (46) 
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one obtains finally from (45) 

dsRi(s)/dss = $ ~k.ao(Pk~k){dR~(s)/ds}2. (47) 

A second result can be obtained from the invariant condition (27), which 
reads in the atomic frame 

Y;! dRkQ/ds - &*dRilds = 0. (48) 

Differentiating this relation with respect to s and taking into account 
(~;i~)~+, = 0 and (dRic/ds)S,SO = 0, one finds for s = SO 

dr;;(s)/ds = r$) . {dsR;c(s)/ds”){dR;,“(s)/ds}-1, (49) 

which, with (37) and (47), becomes finally 

dr;i(s)/ds = rL~*Qk*&Q& dR;(s)/ds. (50) 

In the magnetic multipole moment (26) a time derivative occurs which 

I 
- R’ 

Fig. 1. World lines of atom h and constituent particle ki in the momentary rest frame. 

is the limit of the difference of two purely spatial vectors divided by the 
corresponding time difference (cf. fig. 1): 

Lid = lim 
J&(Q) - Wi) - G&o) = 

tk’+tto’ tic - tica 

= lim 
Rks(s2) - &c(sd -- d&o) ( d%(s) 1 -l. t51j 

s1+*0 Sl - so [ 1 ds ls=s, 1 
The values si and ss of theyparameter s are related by (cf. fig. 1) 

Ii;,&) = Rio(~), (54 

or, with the splitting (lo), 

R;a(ss) + r;&) = R;“(Q). (53) 
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Taylor expansion of the left- and right-hand sides with rr+q~ct to sz ~~~ so 
and s1 - SO respectively gives 

(54) 

With the help of this relation, cxprcssjon (51) b~~corn~s aftC,r expansion of 
the numerator around SO: 

i.ii = c:dr~i(s)/ds}(dRkO(s)ids i tlr~.~(s)jds-1. (55) 

Using (37) and (50) this can bc written in thcx form 

d&(s)/ds = (yk~)-‘ii.i; 1 -t ytt+ S22*20(/3kyk)j dK;;(s);itls, (56) 

which gives the derivative of rii(s) in terms of the internal quantities rki 
and +,&, which occur in the atomic multipolar moments. 

9 6. Calczdatio~z of the $olarizatiox fcmor. \Vith the hr,ll> of thaw I-csults of 
the preceding section we now want to obtain expressions for the polarization 
vectors pk and mh_, illvolving the atomic multipole momellts defined in 4 4. 
Let us substitute into (17) the transformation for-mulac (39), (40), (42), (35) 
and (36) using also (50) and (56). Thcl integral over s can now b(l c~valuatr~tl 
with the help of the relation {dK~(s)/ds) ds = clR:!,.. Empio!.ing an itlentit!, 
which is valid for any vectors n ancl b, 

(SZJyL-a) A (S2;1-b) = ykS2/,-(~ A bj, 

the electric polarjzation ph_ can be cast into the form : 

(57) 

.(ykPk’rk+ (rki’a;1’v)n-2-p{l S-yh_r;ci’~k’bg(PkYk)}] agn(&. - R) 
> 

(58) 

Here the electric polarization is written in terms of the internal variables 
rict and i;Cg, measured in the atomic rest frame, and the external variables 
Pk, yk, Gk, a,’ and their derivatives; the position vector Rk enters only 
in the delta function, as it should be. 
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The internal variables r& occur partly in combinations like S2k. r&. The 
tensor S2k can be interpreted in terms of a Lorentz contraction, since for 
every vector a one has 

%*a = %*(a// + a,) = a, + (1 - 8:)’ a//, (59) 

where a is split into a part parallel with and a part perpendicular to the 
transformation velocity c/?k. In view of this property of !& we shall eliminate 
in (58) the tensor S2;l by means of the identity: 

a;1 = ak + YkPkPk, (60) 

which is a consequence of (22) and (23). With the help of this equation one 
obtains from (58), upon splitting the third term and replacing p by p - 1 

in the second term, n by n + 1 in the first part of the third term and p by 
p - 1 in the second part of the third term: 

Pk = c ek$ c c ((-l)“-l{%(%-l-p - m)! (p - q)! ~!m!}-ia;-“{&‘r~i* 

‘(YkPk’r6i)~~~(~nri2’Slk.~)n-1-~-m) a;((pk’v)m 6(Rk - R)) + 

+(-1)“{?+2- 1 -p-m)!(P-q- l)!q!m!}-1. 

‘aE-Q-l[ak’ &(Y,$k rii)p+m-l’ 

‘{~kr~~‘~k’~O(~kYk)}(r$i’~k’~)n-l-p-m] a;{(pksv)” d(Rk - R)) $ 

+ (-l)“-l{(n+ l)(n-l-p-m)!(P-q)!q!m!)-i. 

'i$-'[pkA {&'(rj&A i&/c)}' 

'(YkPk'rjci)P+m(Tjci'~k'~)"-l-p-m]ag{(p,'~)~s(Rk - R)} + 

+(-l,“{n(n-l-p-m)! (p-_4-l)!q!m!}-1a~-Q-1[Pk”{~k’(ric2h +ii/C)}’ 

‘(YkPk’r~Z)P’“-1{ykr~i’~k’~O(~k~k))(r~i’~k’~)12-1-p-m]’ 

*a;((Pk*~)” d(Rk - R))). (61) 

The indices are bounded as a result of the occurrence of factorials in the 
denominators; thus in the first term for instance one has 0 < 4 < p and 
0 < m < fl - 1 - p. Next we want to regroup the terms in a different 
way by carrying out one of the time derivatives in the first and third term. 
After a final relabelling of indices p + m + p and q + m + q (6 1) becomes 

Pk = zPFm(-l)“-‘(n - l)!{(?‘+ 1 -$‘)!(p-~)!(~-?‘%)!??‘6!}-1* 

‘a;-q-‘[(ykPk)P-q i aO((@ + Pk A $‘) i y;(Pkrk)q b+l-P)] ’ 

‘&-m{(pk’~‘)” d(Rk - R)} + 

+ z r, (-l)~(lz-- I)!{?++ 1 -P)!(P-q)!(q-Wz)!m!}-i~ 
n Pclm 
Paz+1 

‘~~-q-‘{~O(yk~k)P-‘i(~ k A $‘, i$(PkYk)’ vn-l-p} a:-“{(Pk’~,” Wk - R)}, 

(64 
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where we introduced the abbreviations (cf. (25), (26)): 

&’ = S2;# = (%!)_I c Q&2,* &)Tl, (63) 

The multipole moments pi!” and vi.“’ occur only in thescl combinations with 
the tensor S2k; this can bc cxplaincd in terms of a 1,orentz contraction of 
the internal variables, as was shown above (59). 

In connection with (62) a remark about thtb tensor notation must bc, 
made: the outer product sign in front of v,; (“I stands for an outer product 
with the vector r-ii A iit contained in the dyadic tensor v(i”‘; the con- 
tractions take place with the vector t-ii in VI;“‘, Furthermore the product 
a,;‘&, which occurs in the first term as t, = y, is to be considered as unity. 

Up to now we obtained an cxprcssion for pk only. From (17) it can b(s 
deduced that WZ~ can be obtained from pk by replacing the non-contracted 
vectors in (58) in the following way: 

!&‘rki -+ -pk h (&‘rici), (65) 

Pk h {firz’(rbi r\ Pii)) + Q,+‘(rii h +k[). 

In (62) one must make the following transformations: 

(66) 

(67) 

(68) 

Thus the expressions for pk and mk show a rc>markable analog!-. 1;urthermorc 
the leading terms in both expressions arc symmetric witn respect to an 
interchange of electric and magnetic multipole moments. The second term 
in (62) and in the corresponding csl)rcssion for rnk is due to a relativistic 
correction (9 8). 

4 7. Tile ~olurizatio~u tcusor cxfwrssed with ybatial derivatives oi multi$olc 

densities. The expressions for pk and mk of the previous section contain 
time derivatives of the delta function. Now these derivatives can be ex- 
pressed in terms of spatial derivati\Tes with the help of the relation: 

&d{&(t) - R) = -pk’v fi(Rk(f) - Rf. (69) 

Using a generalized “chain rule” of differentiation the higher order time 
derivatives of the delta function can be reduced in a similar way to a sum 
of spatial derivatives each with a factor in front of it. In fact, eq. (62) for 
pk contains the linear combination: 

D(q) a(& - R) = ${l?t!(r/ - ?‘?%) !)-1 a;-“L{(/&‘~)m a(& - R)). (70) 
,,L = 0 
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From this definition it follows that 

D(q) = 0 if q < 0, D(q) = 1 if q = 0, D(q) = 0 if q = 1. (71) 

For q > 2 the result of the application of D(g) to the delta function can be 
formulated in a convenient way with the help of diagrams. A diagram is 
here a set of squares arranged in columns of decreasing height. The inter- 
pretation of these diagrams is apparent from the examples 

q + 

El- 
EP- 

(72) 

Each diagram is provided with a numerical factor 

n {(% - I)(%!)-1) n {(rnj - q+1)!)-1, (73) 
i i 

where nr is the height of the column i and mj is the width of the row j. Thus 
e.g. 

P 

-+ (3 x 1 x 1)(4! 2! 2! 2!)-’ (a~3)Pk97)(ao/3k97)2 6(Rk - R). (74) 

The numerical factor of diagrams with a coIumn of height 1 vanishes, 
Now the prescription for D(q) S(Rk - R) can be formulated as: write all 

diagrams with q squares, interpret with the correct factor (73) in front of 
it and take the sum. As a consequence of the preceding remark D(q) will 
contain no diagrams with a column of height 1, and therefore no terms with 
Pk.V S(Rk - R). Th e expression for pk (62) now becomes: 

Pk(R, t) = x 2 (- l)n-l (%- 1) ! {(fi- l- p) ! (p-q) !}-1 i?;-*-l [(ykpk)p-qi . 
A PP 

‘h((~~’ + Pk * XII”‘) i$(Pk?‘k)’ vn-l-P}] D(q) d(Rk - R) + 

+ c x (- I)“(% - I)! {f%(% - 1 - p)! (9 - 4) !}-1 a;-q-1{80(ykpk)p-~i’ 
12 PQ 

pa+1 

‘(Pk A $‘, i$(pkyk)’ t+l-p) D(g) d(Rk - R). (75) 

Analogously the expression for mk becomes (remembering (67) and (68)) : 

??2k(R, t) = z 2 (-l)“-l(%-l)! {(G -l-p)! ($-tj)!)-l i?;-P-l[(yk&)P-~;’ 

n PC? 

* W(v, b) - bk A @‘)!$(PkYk)q Fn-l-p}] D(g) d(Rk - R) + 

+ c 2 (--ljn (% - I)! (?t(% - 1 - p)! (p - q)!)-1 8;-q-‘(&,(,fkPk)P-qi’ 
7% 

.sx+ 1 

‘$+$(PkYk)q m--l-p} D(q) d(Rk - R). (76) 
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Here the final result5 AI-( rc~achc~l in a form \vitll sI);Ltial tltv-i\-;rti\.c,s of 

multipolc~ densities; time (lvri\xti\.~~s albd) occili- but yiiicc* tllc, 11;1111;~ olx’r- 

ators onl!y act on thcl tl(Llta functioil tlic,\~ might lx’ \vf-itt(q! in front of tllc, 

expressions. 

$ 8. 7‘11~ fzvlari~atio~~ trusor iu the domic /YLI~C. 111 tlicx monic~ntar>- atomic 

rest frame (c-t’, R’) tlic Iwlai-ization tcwd)l gc+. 2. ~x~rticularl\~ -;iniplt~ forn~. 

since in thcx lcatling terms of (75) ant1 (76) only- thca ttarm \\,ith p 0, Q ~~ 0 

remains ; the other term in p, tlisaplxw> dtog(~th(~r ~v11c~cx~ in rril. 0111~. 

the part with Q ~~:: 0 is left o\~r. In this UX\. \\Y’ obtain 

4 9. T/1(, jwlfwltatiou iu tilt, Il~~i/i,i’/ati7~i.st1(. cl~~ro.~i~rzcltl’c,rl. \\~c~ shall 

consider two kinds of nonrvlati\.istic limiting case’s of our gc~neral formalism. 

In thy first conception WC shall consitler all atomic multilx)l~~ mom~~nts a.5 

constants without consiclvring ~\~h~thc~r thv\- contnin factors C.-I. Then, 

neglecting terms of order ~‘1 or highei-, siiicc. no\v yk Y 1 a11(1 Qk z= U, 

and since only terms nith 1 0 ant1 q 0 remain, \vv fintl fl-om (75) ;tnd 

(76) 

pk(R, t) ‘v ; (-l~‘~l(jl;,!” : j3,< A v;,!“) i v)~--‘ri(R~ - R), (79) 
,, I 

mk(R, f) +( ~~~ 1)‘~ ‘(v;,!’ /In A p:!“, ir,jpL h(Rk ~~ R). (801 

Thaw form&c sho\v ;L svmmctr\~ in the sc’ns(b that pk contains terms clucl 

to lnO\~i~lg rKigr&c InLdtip(Jlvs Vi\!’ ‘, j7lst as rnk contains contrihutionx from 

moving electric multipoles p.!:). 

In the second place we may consider the, nonrclati\+stic limiting CXC’, 

taking into account the fact that thcs magllctic multipolcs vi;” contain a 

factor c-1. Then one is left with 

M 
p/JR, t) ‘v 2; (- l)+.~ic)“i~n--’ d(Rk ~- R), 

n- I 
(81) 

m/JR, t) Y 2 (- 1)” ~l(v;!” ~ /lli A &!‘I) ivn-lb(Rk - R). (82) 
,a- 1 
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These are the formulae found in the nonrelativistic expansion to all orderss). 
Now no terms with moving magnetic moments appear. 

9 10. The polarization tensor to lowest mz&ipole orders. The polarization 
kensor (p, m) as given by (75) and (76) contains the atomic multipole 
moments, which are defined in the momentary rest frame. Let us consider 
the case in which only one of these multipole moments is different from zero. 
Then in all Lorentz frames only terms with this particular multipole moment 
will occur. Since the polarization tensor is a covariant quantity these terms 
with only one multipole moment form a covariant tensor too. This means 
that (p, nr) consists of a sum of terms which are all antisymmetric tensors, 
and each of them contains one multipole moment only. 

The terms can, therefore, be grouped in arbitrary manner, e.g. according 
to their order in powers of internal coordinates ri,i and tit. Another 
classification groups together the electromagnetic moments of a certain 
multipole order. (We note that the electric and magnetic multipole moments 
pp’ (25) and VP’ (26) are of order n and n + 1 respectively in the internal 
coordinates). Let us give explicitly the lowest order terms of pk = pp) + 
pi” + pJ;j’ - . . . and mk = ,r) + rnr’ + UZ~‘) + . .., where (n) indicates 
the multipole order. From (75) and (76), using the prescription for D(q), one 
finds : 

terms with dipoles (n == 1) : 

pil’(R, t) = (&’ + )!?k A $?) S(R, - R), 

rr$‘(R, t) = (I$’ - Pk * i-p) S(Rk - R); 

terms with quadrupoles (n = 2) : 

(83) 

(84 

pi”(R, t) = -Yk/&‘&{(@ + Pk A I$‘) Yk) d(RI, - R) - 

- ($’ + Pk A t$‘)*~ d(RI, - R) - 

- @,,(YkPk) ’ (xi2’ A Pk) Yk d(Rk - R), (85) 

mi2’(R, t) = -ykPk’iiO[($) - Pk A &j”) Yk} 6(Rk - R) - 

-($’ _ Pk A f$‘, *v a(Rk - R) + 

+ @O(YkPk) ‘$‘yk d(Rk - R). (86) 

(The reader is also reminded of the vector notation, where Pk I, vi2) ; 
represents a contraction with rhi and an outer product with rig F, +&). 

3 1 1. The Maxwell equations. The inhomogeneous “atomic field equations” 
for the total atomic fields e = zk ek and b = xk bk, due to all atoms 
together, can now be obtained by summation over k of equations (18) and 



(19): 
p*e = p -- V-p, (87) 

-aa e -+- r A b = jjc I- 2,0p _t B A m. (88) 

(The homogeneous atomic field equations are (3) and (4)). Herc~ we have 
introduced the quantities 

where pk, jk, pk and mk are given by (13), (14), (75) and (76). The expressions 
for p and m are series expansions in terms of the atomic multipole moments 
pt’) and vi?). The solutions of (87) and (88) arc thus series expansions in 
terms of the multipole moments. These series con\.erge if the reference point 
of measurement is outside the atoms. 

With the definitions of the fields 

d=e+p, h 

one can cast the atomic field equations 

-b-m, (90) 

(87) and (88) into the form 

V-d = pq (91) 

-&d + V A h = j/c. (92) 

The macroscopic electromagnetic quantities arts defined as averages over 
sets of atoms which occupy macroscopically small regions, but which on 
the microscopic scale contain enough atoms, such that principles of statistical 
mechanics may be applied to them’). Iet 11s indicate these macroscopic 
quantities as 

/e> Z E, /by = B, cd\ I= D, ih\ = H, (93) 

::p; = p, <j) = J. (94) 

Since averaging and time-space differentiations commute 7)) WV can write 
(91), (92), (3) and (4) respectively as: 

c7.D = !,, (95) 

-POD f V A H :-= J/c, (96) 

V-B = 0, (97) 

FOB + V A E = 0. (98) 

These are Maxwell’s equations, where we have now expressed ail quantities 
as averages over microscopic quantities in a completely covariant form 
with multipole expansion up to all orders. 

3 12. Discussion of previous work. I>allenbachr) was the first to 
generalize Lorentz’s derivation of Maxwell’s equations from electron theory 



COVARIANT DERIVrlTION OF THE MAXWELL EQUATIONS 1727 

in a covariant way. His treatment was limited to uniformly moving solids 
and yielded an expression for the electromagnetic moment tensor in the rest 
frame of the substance in terms of the atomic electric and magnetic dipole 
moments. Paulis) transformed these formulae to an arbitrary frame, in 
which the substance was moving as a whole. 

Kauf mana) generalized the nonrelativistic treatment of M azur and 
Nij boera) to a covariant theory. He used a relation like (27) but justified 
this in terms of proper times which is not possible. However, since he did 
not employ this interpretation he got correct expressions up to dipole 
moments for arbitrary motion of the atoms. He defined the dipole moments 
in the atomic rest frames, but introduced a slightly different magnetic 
moment. This would only lead to different results in a higher order 
multipole moment approximation. 

Bacry5) gave a relativistic theory, but did not define the atomic moments 
in their rest frame. His final expressions do not contain all effects of moving 
multipoles. 

De Groo t and Vlieger 6) derived the relativistic polarization tensor to 
second order in the atomic parameters r;i and i.ig, but their treatment was 
not manifestly covariant . They introduced a relativistically covariant way 
of averaging 7). 

This investigation is part of the research programme of the 
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