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Mode-coupling theory is used to determine the long-time behaviour of the Green-Kubo integrands
for the heat conductivity and the diffusion coefficients of an ionic mixture in a magnetic field.
It is shown that the presence of several species of particles with a different ratio of charges and
masses is a prerequisite for the validity of dissipative magnetohydrodynamics.

1. INTRODUCTION

In recent years the collective modes for a classical one-component plasma in a magnetic field have

been studied by using a projection operator formalism1,2. With the help of mode-coupling theory

the long-time behaviour of the velocity autocorrelation function3 and the heat-conductivity time

correlation function (or Green-Kubo integrand for the heat conductivity)4 have been determined.

The long-time tail of the heat-conductivity time correlation function has been found to decay as

t−1/2, owing to a coupling of two ‘gyro-plasmon’ modes. The same slowly-decaying long-time tail

has been obtained by using a method based on kinetic theory5,6. This slow decay implies that the

static heat conductivity coefficient for a one-component plasma in a magnetic field is divergent.

To investigate whether this divergency is a peculiarity of the one-component plasma we have

recently studied7 the long-time tails of the heat-conductivity time correlation function for an ionic

mixture in a uniform magnetic field. The mixture consists of particles of several species, all with

charges of the same sign, that move in an inert uniform background of opposite charge.

2. MODE SPECTRUM OF AN IONIC MIXTURE

The collective modes of a multicomponent ionic mixture are linear combinations of the partial

particle densities nσ(k), with σ labelling the s components, the total momentum density g(k) and

the total energy density ε(k) in Fourier space. The time development of these quantities is governed

by the Liouville operator L acting in phase space. Employing a projection operator P = 1−Q that

projects an arbitrary function in phase space on the set of linear combinations of nσ, g and ε, one

finds the collective modes as the eigenvectors of the (s + 4) × (s + 4)–dimensional matrix

Ωij(k, z) = −
1

V
< a∗i (k)Laj(k) > +

1

V
< a∗i (k)LQ

1

z + QLQ
QLaj(k) > , (1)

for small values of the wave vector k. The angular brackets denote an equilibrium ensemble average,



with V the volume. Furthermore, aj(k) are chosen from {nσ,g, ε}, while ai(k) are the adjoints

satisfying the relation V −1 < a∗i (k)aj(k) >= δij . The mode frequencies that govern the time

evolution of the modes follow as the eigenvalues z of the frequency matrix. For an unmagnetized

mixture the dispersion relation that determines the mode frequencies reads:

zs+2
[

z2 − zc(z) − ω2
p

]

= 0 , (2)

in lowest order of the wavenumber. Here ωp = qv/m
1/2
v is the collective plasma frequency, with qv

the total charge density and mv the total mass density. Furthermore, c(z) is given by:

c(z) = β lim
k→0

1

V
<

q∗v(k)

k
LQ

1

z + QLQ
QL

qv(k)

k
> , (3)

with β the inverse temperature and qv(k) =
∑

σ eσnσ(k) the fluctuation of the charge density. As

(2) shows the system supports s + 2 modes with vanishing frequency in the long-wavelength limit.

Two of these are viscous modes; the remaining s are mixed heat-diffusion modes. Furthermore, (2)

possesses two complex solutions zρ, with ρ = ±1, which are generalized plasmon modes. Both modes

are damped as a result of friction between the various components that oscillate out of phase. If

all components have equal ratios of charge and mass this damping mechanism is absent. Indeed, it

follows from (3) that c(z) = 0 in this case, since the electric current density is then proportional

to the total momentum density. As a consequence the frequencies of the plasmon modes are then

simply ρωp, as in the one-component plasma. We shall call a mixture consisting of particles with

equal charge-mass ratios a ‘well-poised’ mixture.

If the ionic mixture is magnetized the dispersion relation that determines the mode frequencies

in order k0 gets a more complicated form:

zs
{

(z2 − zc − ω2
pk̂

2
‖)[z

2 − (ωB + ia)2] − z2[(ωp + b)2 − (b′)2]k̂2
⊥ − 2iz(ωB + ia)(ωp + b)b′k̂2

⊥

}

= 0 ,

(4)

with ωB = qvB/(mvc) the collective Larmor frequency. The symbols k̂‖ and k̂⊥ denote the compo-

nents of the unit vector k̂ = k/k parallel and perpendicular to the magnetic field, respectively. The

coefficients a, b, b′ and c depend on z. The last of these has been defined already in (3), while the

other ones have a similar form, with one or both of the factors qv(k)/k replaced by g(k). In the

magnetized case only s modes, viz. the mixed heat-diffusion modes, have a vanishing frequency in

the long-wavelength limit. The viscous modes merge with the generalized plasmon modes so as to

yield four generalized ‘gyro-plasmon’ modes. Their frequencies zλρ, with λ = ±1 and ρ = ±1, are

complex in general, so that these modes are damped. As in the unmagnetized case the dispersion

relation becomes simpler if the mixture is ‘well-poised’. In that case the coefficients a, b, b ′ and c all

vanish, so that the gyro-plasmon mode frequencies are the solutions of the relation:

z4 − (ω2
p + ω2

B)z2 + ω2
pω

2
B k̂2

‖ = 0 . (5)

This relation has the same form as that valid for the one-component plasma in a magnetic field.

Again the modes are no longer damped in the long-wavelength limit.



The modes are linear combinations of the particle densities, the total momentum density and

the energy density. For the unmagnetized mixture the plasmon modes are:

aρ(k) = β1/2 qv(k)

k
+

(

β

mv

)1/2 ωp

zρ
k̂ · g(k) . (6)

It should be noted that qv(k) is divided by a factor k, so that its contribution seems to grow

with decreasing values of the wavenumber. However, large-scale charge fluctuations are strongly

suppressed owing to the long-range Coulomb forces.

The gyro-plasmon modes in a magnetized mixture also contain a term proportional to qv(k)/k:

aλρ(k) = β1/2 qv(k)

k
+

(

β

mv

)1/2

vλρ(k̂) · g(k) . (7)

The vector vλρ depends on the coefficients a, b and b′, for z = zλρ.

To determine the mode frequencies of the mixed heat-diffusion modes in order k2 one may use

perturbation theory with respect to the wavenumber. In this way one proves that these frequencies

are proportional to the eigenvalues of the (s × s)–dimensional matrix:

Mij(k̂, z) =
s

∑

n=1

Nin lim
k→0

1

k2V
<

[

a(0)
n (k)

]∗
LQ

1

z + L
QLa

(0)
j (k) > . (8)

for z → i0, provided this limit exists. The elements of the matrix N are trivial thermodynamic

derivatives which need not be specified here. The basis set a
(0)
i (k) is given by:

a
(0)
1 (k) = ε(k) −

hv

qv
qv(k) , a(0)

σ (k) = nσ(k) −
nσ

qv
qv(k) , (9)

with σ = 2, · · · , s and hv the enthalpy per unit of volume. The derivation of (8) for a magnetized

mixture is rather complicated7. In fact, perturbation theory first yields an expression containing the

resolvent of QLQ and a few supplementary terms depending on the coefficients a(z), b(z) and b ′(z).

Upon introducing the resolvent of L one finds that these supplementary terms drop out.

3. LONG-TIME TAILS OF TIME CORRELATION FUNCTIONS

To assess whether the limit of (8) for z → i0 exists one studies the asymptotic behaviour of the

related time correlation functions:

Fαβ(k̂, t) = lim
k→0

1

V
<

[

Qk̂ · jα(k)
]∗

eiLtQk̂ · jβ(k) > . (10)

Here α en β take the values 1, · · · , s, with j1 ≡ jε the energy-current density and jσ ≡ gσ/mσ the

particle-current density of component σ = 2, · · · s. The long-time behaviour of these correlation

functions can be obtained by using mode-coupling theory. In fact, we may write for large t:

Fαβ(k̂, t) ' lim
k→0

1

2V

∑

ij

∑

q

Aα
ij(k,q)

[

A
β
ij(k,q)

]∗
exp {−i [zi(q) + zj(k − q)] t} , (11)

where the summations are extended over all collective modes and over all values of the wave vector

q of these modes. The mode-coupling amplitudes Aα
ij(k,q) are given by

Aα
ij(k,q) =

1

V
<

[

Qk̂ · jα(k)
]∗

ai(q)aj(k − q) > . (12)



The mode-coupling amplitudes A
β
ij(k,q) are defined analogously, with adjoint modes ai and aj .

Since the plasmon modes and the gyro-plasmon modes contain a term qv(k)/k the mode-coupling

amplitudes for these modes can be divergent in the long-wavelength limit. Indeed, one finds:

1

V
<

[

k̂ · jε(k)
]∗ qv(q)

q
g(k − q) >=

qv

qβ2
(k̂− k̂ · q̂q̂) , (13)

for small values of the wavenumbers.

Slowly decaying contributions to the mode-coupling expression for the time correlation function

Fαβ(k̂, t) arise if both modes i and j are undamped for small wavenumber. For an unmagnetized

ionic mixture the generalized plasmon modes can therefore be excluded from the sum over the modes

in (11). The contribution with the slowest decay arises from the coupling of the currents to a viscous

mode and to a mixed heat-diffusion mode. Since the mode-coupling amplitudes for this coupling are

of zeroth order in the wavenumber the resulting long-time behaviour of Fαβ(k̂, t) is proportional to

t−3/2, so that the Fourier transform Fαβ(k̂, z) is finite for z → i0. Hence, the transport coefficients

occurring in the frequencies of the heat-diffusion modes are all finite for a general unmagnetized ionic

mixture. If the mixture is well-poised, however, the above reasoning is not conclusive, since in that

case the plasmon modes are no longer damped for small wavenumbers. The coupling of the energy

current to a viscous mode and a plasmon mode is characterized by a mode-coupling amplitude that

diverges for small wavenumber, as follows from (13). As a consequence the time correlation function

F11(k̂, t) has a tail proportional to t−1/2cos(ωpt+ θ), with θ a phase factor. Owing to the oscillating

factor its Fourier transform is still finite as z goes to i0.

If a magnetic field is present the picture changes. For a general mixture the dominant con-

tributions to the tails of the time correlation functions stem from the coupling of the currents to

the heat-diffusion modes. The resulting tails are found to be proportional to t−5/2. However, for

the well-poised mixture in a magnetic field the situation is completely different. The gyro-plasmon

modes are no longer damped. The coupling of the energy current to two gyro-plasmon modes in such

a way that the zeroth-order mode frequencies in the exponent of (11) compensate each other leads to

a slowly decaying tail in F11(k̂, t) proportional to t−1/2, without an accompanying oscillating factor.

Hence, the transport coefficients appearing in the frequencies of the heat-diffusion modes for a well-

poised magnetized ionic mixture are divergent. The conclusion is that the presence of several species

of particles with different charge-mass ratios is necessary for the validity of magnetohydrodynamics,

at least if dissipative effects are to be included.

REFERENCES

1) L. G. Suttorp and A. J. Schoolderman, Physica 141A (1987) 1.

2) M. C. Marchetti, T. R. Kirkpatrick and J. R. Dorfman,
J. Stat. Phys. 46 (1987) 679, 49 (1987) 871.

3) L. G. Suttorp and A. J. Schoolderman, Physica 143A (1987) 494.

4) A. J. Schoolderman and L. G. Suttorp, Physica 144A (1987) 513.



5) A. J. Schoolderman and L. G. Suttorp, J. Stat. Phys. 53 (1988) 1237.

6) A. J. Schoolderman and L. G. Suttorp, Physica A 156(1989)795.

7) A. J. Schoolderman and L. G. Suttorp, in print.


