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A systematic analysis of isospin sum rules is presented for the distribution functions of strong, electromagnetic and 
weak inclusive processes. The general expression for these sum rules is given and some new examples are presented. 

Recently a number of papers [l-3] have appeared in which lsospin sum rules and inequalities for inclusive pro- 
cesses are discussed. We shall present in this paper a systemaltc derivation, with the aid of the graphical technique 
of Yutsis, Levinson and Vanagas [4] (YLV), of all isospin sum rules (i.e. isospin equalities for distribution func- 
tions). Our procedure can be used, moreover, to derive all inequahties of the Lipkin-Peshkin type [ 11, but since 
these are incomplete and not necessarily of the optimal kind we shall restrict ourselves to the equalities. 

The general strong interaction process of interaction process of interest is given by 

Al+A2+Ag+A4+...+An+X. io 
The number of incoming particles has for obvious reasons been chosen as two, although the lsospin analysis is in- 
dependent of this feature of the scattering process. The symbol X stands for the sum over all unobserved particles. 
The distribution function** du for process (1) may be written as: 

du(al, . . . . an) = 
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where the isospin quantum number and its third component for particle i are Ai and 9, respectively; the X-particle 
is characterized by isospin quantum numbers (X, x) and an additional quantum number Q indicating the channel; 
4 are intermediate isospins with third components 4. The amplitudes T(11, . . . . Zn_2, X, Q) are to be considered as 
independent parameters. Working out the square and using the YLV graphical technique, one may write (2) in the 
form 

du(a 1, . . . . an) = C (-$ll-al+*q’+An-an F(ZI ,..., Zn_2,Z;, . . . . ZA_z,X) 

I1,...‘$-2 
Ii,...,$_2,X *I. 

-< 

Al 

1: 

*2 

(3) 

* On leave of absence from the Institute for Theoretical Physics, University of Amsterdam, The Netherlands. 
** By do we mean the Lorentz-invariant inclusive distribution function for any particular kmematical pomt; thus all our sum rules 

may equally be interpreted for the integrated cross-sections, etc. 
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wth parameters F satisfying, at most, polygon inequalities. Recoupling the isospins in a more Convenient way we 

get 

do(aI, . . . . an) = ($1 -alf...+An-=rl G(J1 )...) Jn, L, )..., Ln_3) J 

LI’...J,_3 

It follows immediately from the structure of the generalized Wigner symbol presented by the graph in (4) 
that the dependence on ui appears only in the external vertices involving two A’s and one J. Hence we may per- 
form the sum over all L’s for a fmed set of J’s_ Sum rules wrll now follow if the generalized Wigner symbol 
vanishes identically for some sets {JI ,..., J, } with Ji integers satisfying 0 G J, G 21,. Since in (4) each internal line 
carries zero third component of isotopic spin, the “internal” vertices withi + j2 + j3 odd identically vanish [4]. 
In addition, the isospins meeting at a vertex must satisfy the triangular conditions. Consequently the generalized 
Wigner symbol vanishes if the set {J1 ,...,J,} is “odd”, i.e. if 

2 Ji=odd 
1=1 

(5) 

and/or if the polygon conditions, viz. 

Ji>2+ (for j= 1, . . ..n). (6) 

1=1 

are violated, whereas it may be proved that for “even” sets {J1 ,..., J,} satisfying the polygon conditions there 
exists at least one set {Ll, ...,15~_~ > such that the generalized Wigner function is non-vanishing [ 51. Thus we may 
write 

Wq, . . ..+J = c’ fi (_)4-4 4 *l *i 

J1, . . . . Jn r=l 0 al -lZj )I H(Jl, ..,, JJ , 
where the sum c’ runs over all allowed sets. 

Now from the property of the 3j-symbol 

(7) 

(8) 

it follows directly that, smce only “even” sets occur m(7), do satisfies the charge-independence (CI) conditions 

do&, . . . . an) = do(--al, . . . . -a,) . (9) 

To extract from (7) the non-charge-independence (NCI) relations we use the orthogonality properties of the 
3j-symbols 141 and obtain the sum rules 

,) do&, . . ..a.) = 0 , (10) 
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where {J,, . . . . Tn } is an even set (with Ji integer and 0 G hi G 2A,) violating conditions (6). These form together 
the complete set of NC1 sum rules that follow from isospin considerations. 

The simplest examples of (10) involve one or more of the following 3j-symbols: 

(A : “J 
cc (-)“-A& 

(: : “,) 
a (-)“-” (3a2-A(At 1)); 

(: : “J 

(11) 

a(-)“-A {5a3ta[l-3A(A+l)]}, 

where factors independent of u have been omitted. When we limit ourselves to reactions for particles with isospin 
< 3/2, only two types of NC1 relations exist, those with pi = 2, Ji= 0 (all j # I) or those with Ji = 3,4 = 1, Jk = 0 
(all k # i, 1); explicitly, 

c (3+ 2) do@, . . ..a.) = 0, when A, = 1 , (124 
01, . . . . an 

c (4z”- 5) da&, . . ..s) = 0, whenAi=+, (12b) 
al, . . . . an 

c (2043 -4lu& da&, . . ..uJ = 0, whenA,=$,Aj2:. (13) 
al,.. ,Qn 

These equations clearly show that some sum rules may be built from those mvolvmg fewer particles by summing 
over the thud components of isospin of the extra particles; this can be understood as an extraction of the extra 
particles from the X state. 

A recoupling of the external legs in (4) does not yield new independent sum rules for da*. However, recoupled 
versions may be used to derive sum rules involving composite isospin states from which all inequalitres of the 
Lrpkm-Peshkm [l] type follow. 

By adding and subtracting the sum rules (10) and the CI relations (9), a subset of equahtres may sometimes be 
constructed in which one or more of the particles has fixed charge. For instance, when A, <A,, sum rules for a 
particular charge of i may be omitted; when Ai+Ai<Ak, sum rules m which both the charges of i and j are kept 

fixed may be found. 
For the reaction NN + nnX two NC1 sum rules exist, associated with the Jsets (0, 0, 2, 0) and { 0, 0, 0, 2). 

These involve distribution functions containing n R o O, which are experimentally difficult to measure, a difficulty 
that becomes even more troublesome when considermg a system with more outgomg pions. However, in this case, 
by subtracting the two NC1 relations and using the CI equations as well, we obtain the equation 

(14) 

da(pplr’rr*) t do(pnn’rr+) + da(pnn°K) t do(pp’n-) = da(ppn+n’) + da(pnn+n’) + da(pnn-no) + du(ppn-rr’) 

which does not contain distribution functions for no pairs and which, to the best of our knowledge, has not pre- 
viously been given. This sum rule, which mvolves proton-proton and proton-neutron incoming systems, may be 
useful in the analysis of inclusive proton-deuteron data. 

For mclusive weak processes we have to construct sum rules without involving neutral spurions It turns out 
that both for AS = 0 and AS = +l this is equivalent to considering sum rules with spurions of fixed charge. Con- 
sequently, as previously discussed, for AS = + 1 at least one of the particles involved must have rsospm > 1, while 
for AS = 0 it must have isospin > 2. The explicit sum rules then follow by use of (12a), (12b) and (13) together 
wrth the CI relations (9). The srmplest examples have already been quoted elsewhere [2,3]. 

The electromagnetzc processes involve neutral spurions with I = 0 and I = 1, and interference terms between 

* Unless it IS known that certam resonance production dominates, m which case (4), with the appropriate external legs labelled by 
the lsospm quantum numbers of resonance, may be used as well 
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these two may occur in do. Three graphical representations of generalized Wigner symbols must be considered, 
viz., for spurion external legs with isospins (0, 0), (0, 1) and (1, 1). In the presence of the interference term (9) 
no longer holds; only violations of the polygon conditions common to all three graphs will yield sum rules*. 
Smce the spurous wave have a defmte charge there must be, in this case, at least one particle with isospin > z in 
order to get a sum rule. Examples are 

da(TD + A++X) + 3do(yD+A’X) = 3do(yD+A+X) + do(yD-+ A-X) (15) 

and the related sum rule obtainable from this equation by extracting an antinucleon from the X state, line-revers- 
ing it and suppressing the deuteron: 

c du(yN+A++X) - 3du(yN+A+X) +3du(yN+AuX)-do($‘J+A-X) = 0. (16) 
N=p,n 

In this paper we have discussed all isospin sum rules that may be derived for strong, electromagnetic and weak 
interactions. The general form of the non-charge-independence relations has been written in (10) and the specific 
cases for particles with isospm < + have been given in (12) and (13). A couple of new sum rules have been presented 
m (14) and (16). In the general analysis the graphical techmque gave a considerable simplification as compared to 
a purely algebraic method, particularly m the proof of the completeness of the set of sum rules obtained. 

One of the authors (LGS) acknowledges the financial support of the Netherlands Organization for the Advance- 
ment of Pure Research (ZWO). Both authors would like to thank Prof. Abdus Salam, the International Atomic 
Energy Agency and UNESCO for hospitality at the International Centre for Theoretical Physics, Trieste. 

* For processes where, due to dynamical consrderatrons, one of the graphs dommates, more sum rules may be obtamed For 

example, m mclusrve p photoproductron a one-pion-exchange model, in which the p is assumed to be produced at the photon 

vertex, mvolves only the I = 0 spurron and leads to sum rules such as dp(yp + 0’) + do(yp + p-) = 2do(yp -+ 0’). 
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