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In this paper three types of relativistic bound-state equations for a fermion pair with 
instantaneous interaction are studied, viz., the instantaneous Bethe-Salpeter equation, the 
quasi-potential equation, and the two-particle Dirac equation. General forms for the 
equations describing bound states with arbitrary spin, parity, and charge parity are derived. 
For the special case of spinless states bound by interactions with a Coulomb-type potential 
the properties of the ground-state solutions of the three equations are investigated both 
analytically and numerically. The coupling-constant spectrum turns out to depend strongly 
on the spinor structure of the fermion interaction. If  the latter is chosen such that the 
nonrelativistic limits of the equations coincide, an analogous spectrum is found for the 
instantaneous Bethe-Salpeter and the quasi-potential equations, whereas the two-particle 
Dirac equation yields qualitatively different results. 

1. INTRODUCTION 

The Bethe-Salpeter equation is a well-known instrument to study the properties of 
a pair of fermions that are strongly bound to each other [I, 21. In this formalism the 
bound states are described by a wavefunction x that depends on all components of 
the momentum-transfer four-vector q ~1. The explicit dependence of the wavefunction 
on the time component q” of q@ is a peculiar feature of the relativistic Bethe-Salpeter 
equation, which has led to difficulties in its interpretation, since it has no counterpart 
in the nonrelativistic theory. 

In the ladder-approximated form of the Bethe-Salpeter equation the interaction 
that causes the binding is represented by a potential function. The retardation effects, 
which are characteristic for a potential in a relativistic theory, necessitate the use of 
wavefunctions depending on q”. Indeed, when the potential is chosen to be instan- 
taneous in a privileged Lorentz frame, a reduced bound-state wavefunction may be 
introduced from which q” has been eliminated [3]. The reduced wavefunction satisfies 
an instantaneous Bethe-Salpeter equation which bears a closer resemblance to the 
familiar nonrelativistic bound-state eqiation. 

Several alternative approaches to the bound-state problem for instantaneous 
binding forces have been proposed in the literature. In the quasi-potential formalism 
[4-61 one arrives at a bound-state equation that differs from the instantaneous 
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Bethe-Salpeter equation in the neglect of some terms related to pair creation. A 
radical omission of all such terms leads to a two-particle Dirac equation that can be 
considered as a straightforward generalization of the ordinary Dirac equation of 
single-particle theory [7-91. 

In the nonrelativistic limit all these equations should yield the same coupling- 
constant spectrum, at least for suitable combinations of the five possible fermion 
couplings. For deeply bound states the approximations that lead to the quasi-poten- 
tial and two-particle Dirac equations are difficult to justify. In that case the principal 
motivation for the interest in these equations is their simpler structure as compared to 
the instantaneous Bethe-Salpeter equation. A judgment of the consequences of the 
various approximations can be given only when the resulting coupling-constant 
spectra are determined. 

In the present paper the properties of bound-states of two spin 4 particles with 
instantaneous interactions will be studied with the help of the three types of equations 
that have been mentioned. To obtain information about the bound states both 
analytical and numerical methods will be employed. The results will make possible a 
detailed comparison of the bound-state spectra so that the consequences of the 
various forms of the instantaneous approximations can indeed be assessed. 

In Section 2 the instantaneous Bethe-Salpeter equations for states with definite 
spin, parity, and charge parity will be derived. Moreover the normalization and per- 
turbation integrals for the wavefunctions will be established. Section 3 contains a 
discussion of the quasi-potential and the two-particle Dirac equations that follow 
from the Bethe-Salpeter equation by neglecting pair-creation terms. 

For general interactions between the constituent fermions the bound-state equations 
lead to integral equations in momentum space that are difficult to solve. Much simpler 
equations result if the coupling constants of the interactions satisfy some special 
constraints, as will be shown in Section 4. Part of these equations can even be solved 
exactly if the interaction potential has a Coulomb form. In the remaining sections of 
this paper we shall concentrate therefore on the equations for spinless states bound by 
such potentials. In Section 5 some general properties of the coupling-constant 
spectrum are derived. In particular, we shall prove a number of inequalities for the 
bound-state mass and the coupling constants. Furthermore the nonrelativistic limit 
of the equations will be studied. Section 6 contains the results of a numerical in- 
vestigation of the three types of equations for spinless states with negative parity. In 
Section 7 the conclusions of the paper are summarized. 

2. THE SPINOR BETEIE-SALPETER EQUATION FOR INSTANTANEOUS POTENTIALS 

The wavefunction x(q) for bound states of a fermion-antifermion pair satisfies the 
spinor Bethe-Salpeter equation 

(4 + P - 1) XMd - iP - 11 = in-1 i J- ddq’ V,(q - q’) Px(q’) P. (1) 
i=l 
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Here P@ is the momentum four-vector of the bound state with mass 2~~ (the mass of 
the constituent fermions is chosen as the unit of mass). The interactions characterized 
by the matrices ri, with rs = 1, TV = y”, I’* = CF, rA = yuy5, I’p = iy, , are 
determined by the potential functions Vi , which are proportional to a coupling 
constant h. 

With the help of the projection operators 

A,*(q) = $ + $(*a * q + ya)/E (P = i-l), (2) 

with E = (1 + qa)lj2 and a = y”y, the Bethe-Salpeter equation may be written as a 
set of four coupled equations [3]: 

4+(q) x(4) A”-(q) 
= i+[(qO + l B - pE)(qO - <B - vE)]-l id,+(q) 

‘< i j ddq’ vicq - q’) yorix(4f) riyofl,-(qj (p, LJ = 3&l). (3) 
i-1 

If the potentials are instantaneous in the rest frame of Pu, so that V, = Vi [(q - q’)“] 
integration over q” leads to an equation for the reduced wavefunction #(q) = J dqo 
x(q), viz. : 

(~i3 - a . 9 - Y’) #(q) + vW(9 - a * 4 + Y”> 

= -2 i$l j- dq’ v&a - s’)“l 

s [A++cq) yOri+(q’) rfyoil--(q) - /I-+(q) yorwd) rfyofl ,--(a. (4) 

Multiplication by the appropriate operators (2) shows that this equation implies the 
algebraic constraints 

The general form of the reduced wavefunction #(q) for bound states with angular 
momentum J, parity P, and charge parity C follows from its expansion in a complete 
set of Dirac matrices: 

by imposing the correct transformation properties with respect to rotation, space 
reflections, and charge conjugation. When the Pauli representation is chosen for the 
Dirac matrices (so that y” = p3, y = &o) and the transformation properties of 
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scalar and vector spherical harmonics (see Appendix A) are employed one finds for the 
wavefunctions #;I”“’ of states with parity P = (-)’ P’ and charge parity C = (-)’ C’ : 

where $ = q/j q I ; the scalar structure functions #$ depend on q2. For states with 
vanishing angular momentum J only the terms proportional to YJM show up; the 
structure functions multiplying YyJM vanish then. 

The conditions (5) lead to the following relations for the structure functions: 

$“l = ek 9 $4 = --4J!r2 9 (11) 

*v3 = *l-T3 = 0, (12) 

b4 = &A2 Y  94-5 = 0, (13) 

*‘43 = 0, *A4 = -Ph. (14) 

As (12) with (8) shows, bound states with P = (-)‘, C = (-)‘+l do not occur. 
States with P = (-)‘+l, C = (-)J+l are found only for J > 0, as follows from (14) 
with (10). 

Sometimes a spectroscopic notation is used to denote the quantum numbers of a 
bound state. In this notation a state is given as 28+1LJ with quantum numbers J, 
p = (-)M, and C = (-)L+8. The wavefunctions (7) (9), and (10) correspond then 
to states 3(J & l)J, lJJ, and “JJ , respectively. 

If the wavefunctions (7) (9) and (10) with (1 l), (13) and (14) are inserted into the 
instantaneous Bethe-Salpeter equation (4) and the coefficients of the Dirac matrices 
on both sides are compared one arrives at a set of coupled integral equations for the 
structure functions z,!J~ . For the 3(J & 1)’ states one finds, for instance: 

(15) 

The functions z,& and YJ at the left-hand sides depend on q, those at the right-hand 
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sides on q’. The potential functions Vi 2 Vj [(q - q’)2] are linear combinations of the 
potentials V, with coefficient matrix: 

When the equations (15) and (16) are multiplied by (YJM$)* or by (Y:““)* and 
summed over M an equivalent set of four scalar equations is obtained by using the 
identities (A9)-(A15) of Appendix A. These equations are collected in Appendix B, 
together with those for the other (P, C) combinations. For low values of J equivalent 
sets of equations have been given before in the Cartesian tensor formalism [lo; see 
also 1 I]. 

In the following we shall study in particular the equations for spinless bound 
states; for O++- states these equations are: 

while for 0-+ states one has 

(19) 

(20) 

The Bethe-Salpeter amplitude x(q) satisfies a normalization condition [12-141. By 
making use of the q” dependence that follows from (3) one may derive the normaliza- 
tion condition for the reduced wavefunction I/J(~); it reads: 

N .E .rr’~,~ 
s 

dq Tr(#+A++#/l-- - #tfl-+#n+-) = 1. (22) 

Likewise, the perturbation integral [15] for McB2/aX in terms of x may be rewritten in 
a form that contains $(q) only: 

x acB2/ah = -2.rr2N-1 s dq Tr[(E - Ed) $+11++&‘l-- -I- (E i- Q) #+~-+#~+-I. 
(23) 
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In particular, for 0++ and O-f bound states the normalization conditions are: 

N = 2~6,’ 
s 4 E9-l Re(&h) = 1, (24) 

N = 27~;~ s dq E Re(#,*#,,) = 1, (25) 

while the perturbation integrals for these cases read: 

x aeB2/ah = --2rN-l j dq [q-2E3 / #s I2 + E 1 &, j2 - 2q-lEeB Re(#i#rl)], (26) 

h arB2/ah = -2~rN-l s dq [E I #p I2 + E3 I #A2 I2 - 2E+ Re(#,*$,,)]. (27) 

Both the normalization and perturbation integrals have to be finite for physical 
bound states. As a consequence the structure functions must satisfy the constraints: 

iii q1/2#s = 0, lii q312*Tl = 0, (28) 

‘,g q2#.s = 0, 2-2 c12&-1 = 0 (29) 

for 0++ states and 

l&-f q3yp = 0, lii q3y*2 = 0, (30) 

(31) 

for 0-+ states. 
The integrals in (22) or (24), (25) do not have definite signs. When they are negative 

the wavefunction cannot be normalized by adjusting a multiplicative constant: ghost 
states are showing up in that case [2]. For nonghost states the perturbation expres- 
sions (23) or (26), (27) for AikB2/aA are negative, as one would expect for physical 
bound states. 

3. QUASI-POTENTIAL AND TWO-PARTICLE DIRAC EQUATIONS 

In the previous section bound-state equations for a fermion and an antifermion 
bound by an instantaneous potential have been derived from the Bethe-Salpeter 
equation. The general form (4) of these equations shows that the particle and anti- 
particle states of the fermion-antifermion pair are treated on an equal footing; at the 
right-hand side of (4) the contributions of these states can easily be distinguished 
with the help of the projection operators A*. When the binding forces are rather 
weak the particle states are expected to play a dominant role. Accordingly the first 
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term at the right-hand side of (4) is then more important than the second. If the latter 
is neglected altogether one arrives at the equation: 

(EB - a * q - ~‘1 $f(q) + #(q>(9 - a * q + r”> 

= -2 %il j- 4’ ViKs - c1’121 ~++(@I r”34-0 hO~--(q). (32) 

The way in which this equation has been obtained here from the instantaneous 
Bethe-Salpeter equation suggests that it is applicable only for states bound by weak 
potentials. However, equations of this type have been derived along different lines as 
well, viz., by using the quasi-potential formalism [4-61, so that they are supposed to 
have a much wider range of validity. 

When (32) is multiplied by projectors II*, the wavefunction 4(q) of the quasi- 
potential equation is found to satisfy, in addition to the constraints (5), the relation 

(33) 

As a consequence the structure functions #i defined in (7)-(10) with (ll)-(14) fulfill 
the supplementary conditions: 

h = P-%, , b-2 = E-%2 , (34) 

~5~2 = E-‘lbp , (35) 

#TO = -E-l&4. (36) 

The reduced equations for the structure functions that describe 3(J * l)J, lJJ, and 
“J, states follow straightforwardly by insertion of (7)-(10) with (1 l)-(14) and (34)(36) 
into (32). The results have been compiled in Appendix C. For Off and O-f bound 
states one finds in particular: 

The normalization and perturbation integrals for the quasi-potential wavefunctions 
follow directly from those for the wavefunctions of the instantaneous Bethe-Salpeter 
equation by using the constraints (33) or (34)-(36) in (22), (23), or (24)-(27). For 
Of+ states one gets then 

N = 2& 1‘ dq E2q-” 1 yGs 1’ = 1, w-4 

h hB2/aA = -4rN-l 1 dq E2q-2(E - Q) 1 #s 12, (40) 
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while for O-+ states the results are: 

N = 27~;~ 
s 4 I #P I2 = 1, 

h ag/ah = -477-N-l 
f dq (E - Eg) I +jl 12. 

(40 

(42) 

In contrast to the normalization integrals for the instantaneous Bethe-Salpeter 
equation those found here are necessarily positive: the quasi-potential equation is 
free from ghost states. Correspondingly the derivative XaEs2/ah is negative definite for 
all solutions. The finiteness of the normalization and perturbation integrals is guaran- 
teed if the structure functions $s and Z& fulfill the asymptotic conditions (28)-(31). 

An alternative approach to describe a fermion-antifermion pair bound by an 
instantaneous potential consists in postulating the validity of a two-particle Dirac 
equation for the bound-state wavefunction [7-91. In the present notation it may be 
written as: 

= -2 i 1 4 J’iKq - q’)2] y”P#(q’) Q/o. (43) 
i=l 

Formally one can arrive at such an equation by omitting in the quasi-potential 
equation (32) the projectors /1 ** at the right-hand side. As a consequence the Dirac 
wavefunction 4(q) does not have to satisfy constraints like (5) or (33); its general 
form is given by (7)-(10) for states with definite spin, parity, and charge parity. 

The scalar equations that can be deduced from (43) for general values of the bound- 
state spin J have been collected in Appendix D. The 0++ and 0-+ equations are found 
to be: 

(44) 

(45) 

(46) 

and 

(47) 

(48) 

(4% 

respectively; 4 stands for q/l q 1 as before. 



RELATIVISTIC BOUND-STATE EQUATIONS 405 

The wavefunction of the two-particle Dirac equation may conveniently be nor- 
malized by requiring 

N = s dq Tr($+#) = 1, (50) 

so that ghost states are excluded a priori. The perturbation integral for h&,/ax is 
found to have the form: 

h &,/ah = - *N-l s dq Tr[#+(a . q + y” - 4 # + #+#(a .9 - Y’ - 41. (51) 

For 0++ states the normalization and perturbation integrals become: 

N z T-l 
s ds (I #s I2 + I #vl I2 + I #TI I”) = 1, (52) 

A h/ah = (d-l j” 4 [4 #s I2 + I #vl 1’ t I #TI I”> 

- 2 ReWs*h + #1$1$~1)1, (53) 

while the corresponding integrals for 0-+ states follow by replacing the indices S, Vl, 
Tl by T4, A2, P, respectively. The perturbation integrals are convergent if the asymp- 
totic behavior of the structure functions is consistent with the conditions 

‘,‘~% q3+bi = 0, (54) 

;+z qy& = 0, $z q4 Ret#T#d = 0, (55) 

with i = S, Vl, Tl (or T4, A2, P) and j, k = S, TI (or T4, P). 
Up to now the bound-state equations were considered in momentum space. All 

equations discussed so far can in principle be studied in position space as well. How- 
ever, the instantaneous Bethe-Salpeter and quasi-potential equations have a rather 
complicated form in position space owing to the occurrence of factors E = (1 + q2)lj2 
in the (1 projectors. In contrast, the two-particle Dirac equation gets a simpler form 
by transforming to the position-space representation. When the wavefunction q(r) = 
J dq exp(iq . r) Z/J(~) is expanded in Dirac matrices in a way analogous to (7)-(10) 
(viz., by replacing 4, YJM($, and Y;‘“‘(fi) by -2, YJM(P), and -i Y:“‘“(i.),respectively, 
and writing the coefficients as #i(r) instead of &(q)), one easily obtains from the 
position-space version of (43) a set of coupled differential equations for &(r) [7-9, 
16-201. For O++ and O-+ states these equations read: 

97$s + ( f + +) $Tl = -%$L, (56) 

WJYl - JTl = c&l, (57) 

(58) 



406 

and 

L. G. SUTTORP 

where the potentials are defined as T;ri’(r) = l dq exp(iq . r) Vi(q). It should be noted 
that Eqs. (56)-(61) can not be found by directly taking the Fourier transform of 
(44)-(49) since the structure functions &(r) are not defined as the Fourier transforms 
of $4-ll. 

A salient feature of Eqs. (56)-(61) is that some of them are purely algebraic, while 
the others are differential equations of first order only. The sets of coupled equations 
are equivalent to single second-order differential equations: 

Alternatively one may write down second-order equations for &I and &, by elimi- 
nating $s and & , respectively. The potentials are seen to occur in the combinations 
cB f Fi , The solution of the bound state equations may therefore possess singulari- 
ties at finite values of r, even if the potentials are regular there. In fact, the position of 
these singularities is found by putting cB i pi(r) = 0. 

The normalization and perturbation integrals as given in (50) and (51) can be 
translated to coordinate space in a straightforward way. For 0++ states in particular 
one gets then, on a par with (52) and (53): 

N = 7+GW3 f dr (I JS I2 + I VL I2 + I ST~ I”>. (64) 

A WaA = (TN)-l GW3 J dr [4l $s I2 + I & I2 + I Jr1 I”> 

- 2 Re{(&s*ldr + dk> &-lIl. (65) 

The integrals for O-f states have a similar form, with S, VI, Tl replaced by T4, A2, P; 
in the last term (C&@/C&) &.i goes over in (&,@/dr) Jr4 . 

4. BOUND-STATE EQUATIONS FOR INTERACTIONS WITH Vi # 0 

The coupled equations in momentum space derived in the preceding sections are in 
general difficult to solve. Simpler uncoupled equations arise if the interactions between 
the constituent particles are such that only one of the potentials Vi differs from zero, 
while the other Vj (withj # i) vanish identically. 
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The instantaneous Bethe-Salpeter equations (1 Q-01) for spinless bound states 
reduce to a single scalar equation when the constituent particles interact only via pure 
S’, A’, or P’ potentials; in fact one finds in these cases: 

$ (E2 - 6~‘) #s = j- dq’ G$s , 

E(E” - Q) #A2 = - s da’ VJ&AZ 9 (67) 

; (E” - cB2) t,bp = - j- dq’ Vi&. (68) 

The first equation describes O++ states, the second and third O-+ states. From (24) and 
(25) it follows that the solutions of these equations correspond to nonghost states 
with positive norm; the derivatives Mc,~/&I, as given by (26) and (27), are negative 
definite. For OT b states with pure V’ or T’ coupling and for O-+ states bound by pure 
T’ interactions equations are found that are analogous to (67), (68), and (66), respec- 
tively, apart from an extra factor $ . 6’ in the integrands; alternatively one may write 
these as vectorial equations. 

The instantaneous Bethe-Salpeter equations (66)-(68) may be compared to the 
quasi-potential and two-particle Dirac equations for the same type of interactions. 
From (37) and (38) with (35) one obtains for the three cases: 

(69) 

(70) 

(E - CB> tip = - ; j- dq’ V;& , (71) 

while (44)-(49) give 

& (E2 - 6~~) #s = - s dq’ G#s > 
EB 

BB 
2- 42 (E2 - EB2) 74x12 = - j- 4’ %#A, 9 

; (E2 - EB2) #p = - 1 dq’ &#p . 

(72) 

(73) 

(74) 

All these equations are free from ghost-state solutions. The sign of the derivative 
X&JilX, which may be derived from the general expressions (40), (42), and (53) is 
negative for all equations except for Eq. (72) and (73). The two-particle Dirac equation 
for 0++ states bound by pure S’ interaction has only solutions with an anomalous 
positive sign for XkB/&I, while this derivative may have either sign for O-+ states with 
pure A’ coupling. 
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The equations in coordinate space that correspond to (72)-(74) are readily found 
from (62~(63); they read: 

( -5f- + 5 -g) Js + (Eg2 - l)(l + $pk) i& = 0, dr2 

( $ + 5s) JP + (Q2 - 1 - EB y$) $P = 0, 

( 25 + S-g) $%p + (ES2 - 1 - Q;) & = 0. dr2 

These equations are seen to be of Schrodinger form, with an effective potential that is 
a function of the potential pi . In (76) this function may cause a singular behavior of 
the wavefunction even for regular potentials p: ; no such singularities are present in 
(75) and (77). 

5. GENERAL PROPERTIES OF THE EQUATIONS FOR SPINLESS BOUND STATES 
WITH COULOMB-TYPE POTENTIALS 

In this section and the next one the bound-state equations will be studied for the 
special case of binding potentials of the form V,( [(q - q’)2] = &-lAj (q - q’)-2. 
Such potentials may be considered as the instantaneous limit of the retarded potentials 
that occur in the Bethe-Salpeter equation for fermions bound by the exchange of 
massless bosons; the latter equation has been investigated in detail in the literature 
[2,21-281. 

The equations for spinless bound states have been given in (18)-(21) (37)-(38) and 
(44)-(49). In the following some general properties of these bound-state equations will 
be derived, while in the next section the results of a numerical analysis will be 
presented. 

a. Integral Identities for the Wavejiinctions and Inequalities for the Bound-state Mass 

Coulomb-type potentials are homogeneous functions of the momentum transfer q2; 
this feature may be employed to derive an integral identity for the reduced wave- 
functions #(q). Let us consider as an example the instantaneous equations (20) (21) 
for O-f states bound by a mixture of A’ and P’ potentials. If (20) is acted upon by the 
operator q . a/aq - 1 and a partial integration is performed at the right-hand side the 
result is: 

( 
a %YJ - 1 1 [(I + q2y2 #A2 - %(l + q2F2 #PI 

44 =-- 4T j- 4’ (q 2 q1j2 4 l -& $A’). (78) 
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Multiplying this equation by &!& , integrating over q, and using (20) again one gets 

j- dq [[(q.; - 1) (1 + q')'/'] 1 4~2 I2 - EB [(cl * f - 1) (1 + q2?12] p:,&=j 

E j- 4 (1 + q2Y2 (q?h * $ /JP - @q . f 9442). - B (79) 

When (21) is treated in an analogous fashion an equation with the same right-hand 
side as (79) is found. Subtracting these one arrives at the following integral condition 
on #J,,?. and J& : 

j- 4 l[(q *; - 1) (1 + q2)3/2] 1 #A2 1' 

-I- [(q -i - 1) (1 + q2Yz] [I $P I2 - 29 fW$?&)lf = 0. (80) 

This identity is especially interesting for pure P’ coupling. In that case one has GA2 = 
E~&/E~, so that (80) becomes 

s dq J?-~[E~(~ - 2cB2) + cB2] 1 I,&. I2 = 0; (81) 

alternatively, this relation may be obtained directly from (68). Since the integrand is 
positive definite for all 68’ < 4 one must conclude that the instantaneous Bethe- 
Salpeter equation for 0-+ states bound by pure P’ interactions has only loosely bound 
state solutions with cB2 > a. This statement will be corroborated by the numerical 
results presented in the next section. In [21] the instantaneous Bethe-Salpeter equation 
with pure P’ coupling is solved analytically for Ed 2 = 0. The solution does not fulfill 
the conditions (31), however, so that the integral (27) diverges; the physical inter- 
pretation of such solutions is questionable. 

A relation analogous to (80) or (81) can be derived from the instantaneous Bethe- 
Salpeter equation (66) that describes 0++ states with pure S’ coupling; it reads: 

I dq [3q-2E(l - Q~) + E-%B2] 1 lcIs 1’ = 0. (82) 

Since the integrand is positive for all q it follows that the instantaneous Bethe- 
Salpeter equation (66) has no bound-state solutions at all. 

Identities similar to (81) and (82) follow for 0 ++- and 0-+ states with pure T’ coupling. 
In the former case only weakly bound-state solutions exist, while in the latter case no 
bound states are found. The integral conditions that may be obtained for the wave- 
functions of the quasi-potential and the two-particle Dirac equations are not given 
here explicitly, since they do not lead to equally strong conclusions about the bound- 
state spectrum. They can be used, however, to transform the integrands of the pertur- 
bation integrals. Tn some cases a definite conclusion about the sign of the latter can be 
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reached in this way; in particular it is found that the solutions of the two-particle 
Dirac equation for 0++ states with V’ - T’ coupling and for 0-+ states with A’ - P’ 
coupling have a negative derivative X&,/ah (this could not be inferred from (53) or 
(73)). 

b. Inequalities and Exact Results for the Coupling Constants 

The general form of the integral operators occurring in the bound-state equations 
can be used to obtain inequalities for the coupling constants. Such an inequality may 
be derived in the case of the instantaneous Bethe-Salpeter equations (20)-(21) that 
describe 0-+ states bound through P’, A’, and T’ interactions by introducing first 
functions 9)A and vP instead of +A and tip in such a way that the equations for vi 
contain a symmetric integral kernel. This is achieved by writing qi = zj=A,P T& 
with a matrix 

-EB T&l) = -& (“,’ (E2 _ tg2)1,2). 

The bound-state equations in terms of P)~ get the form: 

W(Q) = 1 j- 4’ ~iih, 4’) T-+l’), 
j 

with the kernel 

&fi(q, q’) = _ &+E-VE’+(E2 - E~~)-‘/~ (E’2 - 6B2)-1’2 (q - q’>-” 

(83) 

x (E2 - cB2)lj2 0 
I( 

(1, - q ’ q’(1r 0 (E’2 - EB2)li2 Eg 
EB E2 0 A, I( 0 

so that indeed Mii(q, q’) = Mji(q’, a). The functions &q) are elements of a Hilbert 
space with norm xi s dq ] ~)Jq)j~, the finiteness of which is guaranteed by the condi- 
tions (30)-(31). 

The norm /) M /I of the operator (85) may be estimated by writing first 

(with Mi, the operator for pure i’ coupling) and using then the theorem [29]: 

(87) 

which is valid for any choice of the positive definite functions gi(q). If these are chosen 
for the A’ and P’ cases as 

sdq) = (q2 + a2F1 c T&d ci (88) 
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with cA = 1, cP = eB , and as g;(q) = q-lg$(q) for the T’ case, one finds upon evalua- 
ting the integrals and taking the limit a * 0: 

II Ml1 d t.rr2 syp @-YE2 - dY (E2 I-& I + i fl,+ I + q2 IAd). (W 
a 

Since one must have I] M // >, 1 in order to fulfill the bound-state equation this in- 
equality implies a lower bound for the coupling constants. If (89) is weakened some- 
what by inserting an extra factor E2 in front of I A, / one arrives at the simple relation: 

(I A, 1 + 1 AA /)[&~l(l - 6~~)~“~ O(czj3” - i) + B(h - Eg2)] + i ~4~1 >, 4Tre2. (90) 

With the help of (89) one may prove in the same way as in [29] that the spectrum of 
bound-state energies 2~~ is discrete for all coupling constants satisfying ] A, / + 
I A,, j + j A, 1 < 47~-~. For pure A’ coupling the spectrum is discrete for all A, , 
while for pure T’ coupling we know already that no bound-state solutions exist. 

Bounds for the coupling constants of the 0 f i instantaneous Bethe-Salpeter equation 
are obtained along similar lines; one finds an inequality of the same form as (90) 
with A,, A,, and A, replaced by A,, A,, and A,. , respectively. The spectral 
properties are completely analogous to those of the O-‘m equations given above. 

When the same majorization technique is applied to the quasi-potential equations 
(37)-(38) one gets for 0-+ states 

(1 A, ! -t 1 A, I) ;I;-(1 - $--1/2 + j A, I [I f (1 - $)1/2]--1 > 47--z, (91) 

while for O-‘-~++ states an analogous relation, with P, A, T--t T, V, S, is found. The 
bound-state energy spectra are discrete if xi i /Ii I < 8~~ (in the case of Of-1 states 
with pure V’ and O-+ states with pure A’ coupling the discreteness of the spectrum can 
be established for all AJ. 

One may try to use the above methods for the two-particle Dirac equations in 
momentum space as well. In general, however, the integral kernel that occurs in these 
equations cannot be brought in a symmetric form by a suitable redefinition of the 
wavefunction. This can be achieved only for 0 ++ states with pure S’ or T’ and O-i- 
states with pure P’ or T’ couplings. The resulting bounds are of no importance, since 
in these cases the two-particle Dirac equation can be solved exactly. To find the 
solutions it is more convenient to introduce the position-space representation, as in 
(62)-(63) and (75)-(77) with Pi = &~&-l. 

For 0++ states with pure S’ coupling Eq. (75) reduces to a Schrodinger equation 
with Coulomb potential the eigenvalues of which are A, = -4r-l(n + 1) 

2 EBU - EB >- 112, with nonnegative integer n. The modulus of A, is seen to increase for 
decreasing binding energies 2(1 - l s); this anomalous behavior could be inferred 
already quite generally in the preceding section. Even worse, infinitesimally weak 
binding energies (Ed --f 1) are found here to be realized only for a coupling constant 
tending to infinity. Hence one must conclude that the two-particle Dirac equation is 
pathological for 0++ states with S’ binding. Similar conclusions can be drawn for the 
two-particle Dirac equation describing O-+ states with pure T’ coupling. In fact, if 



412 L. G. SUTTORP 

(63) is transformed by means of (59)-(61) to an equation for &, one arrives again 
at a Schrodinger equation, with solution (1, = -4+(n + 1) ~(1 - ~~~)-l/~, II > 1. 

The Dirac equation (77) for O-+ states with pure P’ interaction is likewise an 
ordinary Schrodinger equation, with solution (1, = -&r-l(n + 1) $(I - ~~)l/~, 
y1 > 0. Its vectorial counterpart, describing 0 ++ states with pure T’ interaction, has the 
same spectrum (with IZ > I), as follows by rewriting (62) in terms of &.I . No ano- 
malous behavior as found above occurs in these cases. 

For 0++ states with pure V’ and for O-i- states with pure A’ coupling the Dirac 
equation becomes a SchrSdinger equation with a potential of the form a/(r + b); for 
the latter case the equation has been written down in (76). For negative b 
(corresponding to /lA > 0) this potential is singular on a sphere around the origin. 
Bound states for such singular potentials have been studied recently in connection 
with bag models [20]. For the nonsingular case, with ~.l~ < 0, the coupling constant is 
determined by the zero points of a confluent hypergeometric function [30], at least for 
S-wave solutions. For 0-i states with pure A’ interaction one finds in particular: 

U[l + gmgy1 - EB2)p2 A,, 2, -7&(l - $y2 A,] = 0. (92) 

This transcendental equation for (1, can easily be solved numerically; the results will 
be given in the next section. An analogous equation for O++ states with pure I” 
coupling is not available; in that case one needs a P-wave solution of the Schriidinger 
equation. 

The equations (62) and (63) still have the form of a Schrodinger equation for O++ 
states with V’ - T’ couplings and for O-f states with P’ - A’ interactions. Since both 
cases are quite analogous we shall limit ourselves to a consideration of the O-f states 
for which the Dirac equation is: 

( f + 3) (g + [EL? - I - V(r)] & = 0, 

with the effective potential 

(93 

When (1, is positive this potential is singular for r = &TE;‘LI,, while no such sin- 
gularity shows up for AA -=c 0. As a consequence the character of the bound-state 
solutions will change radically as AA goes through zero. 

For the nonsingular case a coupling-constant inequality can be found by comparing 
the equation to an exactly solvable Schrodinger equation. In fact, since one has for 
A* <o: 

V(r) > &7rE&lp + Eg2AA) r-l, (95) 

the following bound for the coupling constants can be established: 

A, + E;2AA < -4~-%;‘(1 - Q2y2. (96) 
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Another inequality for the coupling constants of the mixed P’ - A’ equation 
follows, in the special case (1, < 0 and fl, > 0, by requiring Ed to be larger than the 
minimum of the potential V(r); one finds in this way: 

4 + Ei2[1 - (1 - 6B2)1’2]2 (1‘4 < 0. (97) 

From the general properties of the effective potential (94) one may prove with the 
theorem given in [31] that the spectrum of bound-state energies is discrete for all 
coupling constants satisfying the inequalities fl, < 0 and LIP + E;‘L~, < 0. 

c. Nonrelativistic Limit 

The properties of weakly bound states with small binding energies and couplings 
can be derived from the nonrelativistic limit of the relevant equations. This limit 
follows by regarding both 1 - cg2, L’& , and q2 as small quantities. 

The nonrelativistic limit of the instantaneous Bethe-Salpeter equation for 0-f 
states may be studied conveniently in the representation (83)-(85). In fact, let us try 
to solve (84) in the nonrelativistic approximation by assuming VA to be small com- 
pared to vP . The second equation contained in (84) then becomes: 

w4-d = - & MA + 4 j- dq’ %@I’) 
(E2 - +y/2 (E’Z - 6B2)1/2 (q _ 4’)” (98) 

of which the eigenvalue spectrum is 

AA + A, = -4?+(n + l)(l - $)1/2 (n = 0, l,...). (99) 

The contribution of T’ couplings to the binding strength turns out to be negligible in 
comparison to that of the other coupling types. The first equation of (84) determines 
P)A as 

VA(q) = ‘,lA@A + b-l (E2 - EZ32)1’2 g)P(q), (100) 

so that indeed 1 9)A I < / vP / , at least if AA//l, is not too close to - 1. It should be 
remarked that the above derivation of the nonrelativistic limit breaks down in the 
case of pure T’ coupling. In that case the instantaneous Bethe-Salpeter equation does 
not possess solutions describing O-m+ states. 

For 0++ states the nonrelativistic limit of the instantaneous Bethe-Salpeter equation 
may be discussed in an analogous way. The eigenvalue spectrum has the form (99), 
with (A’, P’) replaced by (I”, T’), while n must be greater than 1. In this case the S’ 
interaction does not contribute. 

The quasi-potential equations (37)-(38) are single integral equations, the non- 
relativistic limit of which is easily established. For O-+ states one gets 

(E - cd !JP = - $ r-Y& + 4 s dq’ (q’2q&2 (101) 
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with a spectrum 

A, + A, = -4 (2)%-yn + l)(l - Q/Z (n = 0, l,...). (102) 

As expected the spectra (99) and (102) coincide for E~ N 1. For pure T’ coupling the 
general inequality (91) implies that a nonrelativistic limit does not exist. The O++ 
quasi-potential equation leads to results analogous to (lOl)-(102). 

The nonrelativistic spectrum of the two-particle Dirac equation can be derived 
from its position space representation (62)-(63). We shall limit the discussion to 0-+ 
states again; for O++ states one may proceed analogously. The potential (94) occurring 
in the equation for O-+ states bound by a mixture of A’ and P’ interactions may be 
written approximately as: 

V(r) = $T(A, + A,) r-1 (103) 

for A, < 0. With this approximation the eigenvalue spectrum is found to coincide 
with (99). For pure T’ coupling the two-particle Dirac equation has no nonrelativistic 
limit: the coupling constant tends to infinity in that case, When T’ and A’ or P’ 
couplings are present simultaneously the two-particle Dirac equation (63) has no 
longer a simple Schrbdinger form; the behavior of the solutions in the nonrelativistic 
limit cannot be deduced easily in that case. 

6. NUMERICAL ANALYSIS OF THE EQUATIONS FOR O-f STATIS BOUND BY 
P’ AND A' COUPLINGS 

The study of the general properties of the three types of bound-state equations in 
the preceding section leads to the conclusion that for 0++ with V’ - T’ and for O-+ 
states with P’ - A’ coupling a consistent picture is obtained : the sign of the deriva- 
tive ha~,~/ah is negative (at least for the nonghost states), the nonrelativistic limits 
coincide and the general spectral properties are similar, although not completely the 
same. In contrast, the equations for 0 ++ states with pure S’ and for O-+ states with 
pure T’ couplings have a pathological character: in particular it has been found that 
the nonrelativistic limit does not exist in these cases. For general mixtures of couplings 
the situation is less clear; in the nonrelativistic limit it was found, however, that the 
instantaneous Bethe-Salpeter and quasi-potential equations are insensitive to the 
strength of the S’ and the T’ components in the O++ and O-f equations, respectively: 
the binding is dominated by the V’ - T’ and P’ - A’ components. 

The structure of the Of+ V’ - T’ and O-f P’ - A’ equations is quite analogous. In 
fact, the former may be considered as the vectorial counterparts of the latter. It is 
reasonable, therefore, to concentrate a numerical investigation on the O-+ equations 
with a mixture of P’ and A’ couplings. Inspection of the matrix (17) shows that such a 
mixture of P’ and A’ interactions includes purely vectorial binding forces as a special 
case, viz., for LIA = -$L$ . 
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Numerical estimates for the coupling constants /I, and fl, that give rise to 
O-+ bound states with mass 2~~ can be found by making use of a variational principle 
of Rayleigh-Ritz type [26, 32-361. For the instantaneous Bethe-Salpeter equations (20), 
(21) with Vi = &r-‘&q - q’)-2, one may derive such a principle by first writing the 
equations in coordinate space as: 

jQr) = - $mlAr+JA(r), (104) 

j&(r) = -~7rApr-1~p(r). (105) 

Here $,+ , qP are the Fourier transforms of $J~, Q/J~, while fA, j& are the transforms of 
the functions xa = E(E2#A - E&~) and xP = E($, - E~#,J, respectively. Upon 
multiplying the first equation by fi , the second by @ , adding the results, and in- 
tegrating over r one gets: 

tn j dr r-Y& I $A I2 + 4 I $P 12>, (106) 

where at the left-hand side the momentum-space representation has been introduced 
again, so that xA and xP could be eliminated. When this equation is varied at constant 
cB by writing & + SI& and L’& + Cl, one finds the relation 

sA, j dr r-l j JA I2 + 64 1 dr r-l I $P I2 = 0 (107) 

for functions $A and qP that satisfy the bound-state equations. Hence the sum 
/l = I flA I + I d, j of coupling constants can be determined by evaluating, for fixed 
partial strengths pi = L&/A and fixed Ed , the values of the quotient 

1 .f dr r-GA I GA I2 + pp I & 1”) -=- 
A 16~~ .f 4 [E3 I $A I2 - 2& Re($,*#Al,) + E I #p I21 (108) 

that are stationary with respect to variations of & and & . 
A second independent variational principle for /l-l follows from (104) and (105) by 

multiplication with A,%$ and A&$ , respectively, addition and integration over r; 
this procedure yields the variational quotient; 

1 4~~ s dq E-‘(E2 - eB2)-l [I xA I2 - 2~ Re(x;xA) + E2 I XP I”1 -z- 
A J dr ‘(pi1 I f4 I2 + ppl I jTp I”) 

3 (109) 

which depends on the functions xi and fi only. 
To obtain the deepest bound states (the “ground states”) for given strengths of the 

coupling constants one must determine from either (108) or (109) the greatest value 
of (1-l that yields (for fixed values of fA and pP) a bound state with given Ed . This can 
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be achieved by writing & or xi as a linear combination of trial functions and solving 
the ensuing generalized matrix eigenvalue problem of the type A . x = /l-lB . x. For 
positive-definite matrices Bij a generalization of the Hylleraas-Undheim theorem [37] 
states that the greatest eigenvalue changes in a monotonous way when the matrix 
size increases by including a greater number of trial functions. If the trial functions 
are part of a complete set (in the space of functions satisfying the appropriate bound- 
ary conditions) this eigenvalue will converge monotonously to an eigenvalue of the 
original integral equations. Inspection of the denominators of (108) and (109) now 
shows that in general only the $ variational principle will lead to a fl-l value with the 
convenient properties just described. The x variational principle has a positive definite 
denominator only if pA and pP have the same sign. For that reason the IJ principle has 
been used mainly for the numerical work; part of the eigenvalues have been checked 
by employing the x principle as well. 

A useful set of trial functions for #J~ and Z/J~ in momentum space is 

&(q) = (1 + $--“-’ (n = 1, 2,...), (110) 

with a2 = 1 - l B2. The solutions of the instantaneous Bethe-Salpeter equation in the 
nonrelativistic limit are indeed linear combinations of functions of this form, with 
VA = vP = 1, as follows from (98) and (100) with (83). In general VA and vP will be 
different from 1; the constraints (3 1) imply VA > 4 and vP > 0. 

To evaluate the variational quotient (108) we also need the position-space represen- 
tations of the trial functions; they have the form [38]: 

$A9 = 4-+f 4 4 Wqr) &&II 

= I~TT~/~($z)~+~+~/~ [T(n + v)]-’ rn+v-3/2K,,+v-3,2(ar). (111) 

Information about an optimal choice for the parameters VA and vP can be obtained 
by considering the asymptotic behavior for large q of the equations (104) and (105) in 
momentum space. The Fourier transform of r-l&(r) is found to be [38] : 

F.T.[r-l$Jr)] 

= an-l/2r(n + v - $)[I+ + v)]-’ 2F,(n + v - 8 ) 1, $ ; -q2/a2). (112) 

A comparison of the asymptotic terms in the momentum-space versions of (104) and 
(105) now shows that for 0 < v, < 4 one must have VA = vP + 1 and 

(113) 

if vP > 4 neither vA nor (1, can be related to v, . It should be noted that this asympto- 
tic analysis makes sense only if large values of q2 really play an important role in the 
bound-state wavefunction. In particular, it is not suitable to discuss nonrelativistic 
bound states since then q2 is of order 1 - l B2 and hence small compared to 1; 
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accordingly the factor E = (1 + q ) 2 l/2 in the bound-state equation may be replaced 
by unity in the nonrelativistic limit, as has been done in the preceding section. 

For values of/l, in the range --47~-~ < (1, < 0 the relation (113) can be employed 
to determine vP in a self-consistent way: a choice of vP gives, with the help of the 
variational principle, a value of fl, from which vP can be found again by means of 
(113). If fl, is positive this scheme does not work. In that case vP and V~ have been 
chosen such that fl has the smallest possible value for a given number of trial func- 
tions. Bound-state solutions with fl, < -4n-? have not been found; the stationary 
values of the variational quotient in that region turned out to depend strongly on the 
number of trial functions. 

The integrals that result upon substituting the trial functions (110) and (111) in 
(108) are readily evaluated. The numerator becomes an integral over the product of 
two modified Bessel functions and a power of r, which may be expressed in terms of 
gamma functions [38]. The denominator is found to be a linear combination of 
integrals 

s 

il. q”(] + qy 
4 ~ 

0 (1 + a-2q2)2v+p+l 

_ ~ ,1;2 T(P i 2% - 1) 1 
4 T(p + 2v + a> 2F,(P+2v+ 1&+2v+;;-!+), (114) 

with p == 1, 2,.... When the hypergeometric functions for p = 1 and 2 have been 
calculated numerically one can use recursion relations to obtain the integrals for 

P 3 3. 
The stationary values of the Rayleigh-Ritz quotient are found now by solving the 

associated generalized matrix eigenvalue problem. A suitable method for this purpose 
is the so-called QZ procedure [39], which is a generalization of the QR algorithm. The 
values of fl-l given by this procedure turn out to converge rapidly with increasing 
matrix size. Matrices of dimension <25 were in all cases sufficient to reach an ac- 
curacy of four digits; often the obtained accuracy was much better. 

The results of the numerical work on the instantaneous Bethe-Salpeter equation 
have been collected in Tables I-IV and in Figs. l-3. For pure P’ and pure A’ inter- 
actions the coupling constants that correspond to the states with deepest binding are 
given by the curves with labels 0.0 in Fig. 1 and Fig. 2, respectively. It is seen that the 
qualitative behavior of these curves is quite different. For pure P’ coupling the solu- 
tion breaks off at a critical value & = 0.789, corresponding to fl, = -4~-~~. This 
could be expected since it has been proved on general grounds in the preceding section 
that no bound states with cB2 < 0.5 exist in this case. A similar discontinuous behavior 
of the coupling constant for a finite value of Ed 2 has been found in a numerical analysis 
of the covariant Bethe-Salpeter equation for a fermion pair with massless-boson 
exchange [26]; the instantaneous approximation clearly has not resulted in a qualita- 
tive change of the coupling-constant spectrum. For pure A’ coupling, on the other 
hand, the coupling constant is a continuous function of cB2 in the whole interval (0, 1); 
for cB2 = 0 in particular fl, has a finite value. 
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FIG. 1. The coupling constant Ap of the instantaneous Bethe-Salpeter equation as a function of 
the bound-state mass 2~) for p = AA/f& = 1, 0, and -0.5. 

1.5 

-% 
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0.0 0.2 0.4 0.6 0.8 2 1.0 
B 

FIG. 2. The coupling constant AA of the instantaneous Bethe-Salpeter equation for p-l = 1, 
0.5, 0, and -0.5. 



RELATIVISTIC BOUh%-STATE EQUATIONS 419 
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FIG. 3. The coupling-constant spectrum of the instantaneous BetheSalpeter equation for 
es2 = 0.1, 0.3, 0.5, 0.7, and 0.9. 

TABLE I 

Coupling Constants n = 1 Aa i + j Ap j, with A,,i < 0, f$ < 0, of the Instantaneous 
Bethe-Salpeter Equation as a Function of the Bound-State Mass Parameter Q? and the 

Coupling-Mixture Coefficient p = Il,jll, 

d \ 
P 0.1 0.2 OS 1 2 5 10 

0.95 0.2718 0.2770 0.2866 0.2937 0.2979 0.2992 0.2989 

0.9 0.3638 0.3773 0.4039 0.4239 0.4356 0.4388 0.4377 

0.85 0.4164 0.4397 0.4885 0.5269 0.5491 0.5543 0.5519 

0.8 0.4420 0.4754 0.5510 0.6143 0.6506 0.6577 0.6540 

0.7 0.75 13 0.8341 0.8476 0.8381 

0.6 1 .OOl 1.024 1.007 

0.5 1.150 1.196 1.167 

0.4 1.366 1.323 

0.3 1.538 1.475 

0.2 1.715 1.626 

0.1 1.902 1.777 

0.0 2.104 1.929 



420 L. G. SUTTORP 

TABLE II 

Coupling Constant rl of the Instantaneous Bethe-Salpeter Equation for flA > 0, Ap < 0 

CBS \ P 0.0 -0.1 -0.2 -0.5 

0.95 0.2652 0.3134 0.3674 0.5540 

0.9 0.3470 0.3989 0.4522 0.6041 

0.85 0.3890 0.4368 0.4829 

0.8 0.4048 

TABLE III 

Coupling Constants d of the Instantaneous Bethe-Salpeter Equation for AA < 0, /lp > 0 

\ ES2 
P 

0.95 3.896 1.763 0.7751 0.4379 0.3615 0.2979 

0.9 4.015 2.006 I .042 0.6279 0.5239 0.4346 

0.85 4.124 2.182 1.233 0.7767 0.6540 0.5459 

0.8 4.223 2.324 1.386 0.9037 0.7672 0.6443 

0.7 4.399 2.554 1.632 1.119 0.9637 0.8188 

0.6 4.554 2.741 1.831 1.303 1.135 0.9753 

0.5 4.695 2.903 2.000 1.465 1.291 1.120 

0.4 4.823 3.045 2.150 1.612 1.434 1.257 

0.3 4.943 3.175 2.285 1.748 1.568 1.388 

0.2 5.055 3.294 2.409 1.874 1.694 1.514 

0.1 5.161 3.404 2.523 1.992 1.814 1.635 

0.0 5.261 3.507 2.631 2.104 1.929 1.754 

-0.5 -1 -2 -5 -10 -03 

TABLE IV 

Critical Values of p = /I,/Ap for the Instantaneous Bethe-Salpeter (IBS) and the 
Quasi-Potential (QP) Equation 

Q2 PC (1f.W PC (QP) EB2 pe (IBS) PC (QP) 
- 

0.0 4.327 1.682 0.6 1.063 -1.102 

0.1 3.790 0.598 0.7 0.505 -1.356 

0.2 3.251 0.134 0.8 -0.062 -1.600 

0.3 2.709 -0.232 0.9 -0.642 -1.839 

0.4 2.164 -0.548 1.0 -1.24 -2.07 

0.5 1.615 -0.835 
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The other curves in Figs. 1 and 2 represent the coupling constants for some mixtures 
of P’ and A’ interactions. The discontinuous character of the LI, coupling constant is 
not affected by the addition of a not too strong A’ interaction. In particular, for 
p = fl&lp = -0.5 (corresponding to a pure V coupling) the curve breaks off at a 
critical value & = 0.878. From Fig. 2 it is found that a relatively weak admixture of 
P’ coupling to the pure A’ interaction is enough to introduce the characteristic dis- 
continuity in the curves. 

For pure V coupling the spectrum of the instantaneous Bethr-Salpeter equation has 
been investigated recently by Kellett [IO]. The numerical results in that paper are 
obtained by inserting a set of trial functions in the momentum-space equations and 
solving the (nonhermitean) matrix eigenvalue problem that arises after numerical 
evaluation of the momentum-space integrals. In this way values for the coupling 
constants of the deepest bound states are found that turn out to be systematically 
higher than those presented here. The reason for this discrepancy is not clear; it is 
probably due to the use in [IO] of trial functions with a too simple asymptotic be- 
havior for large 4. 

A better insight in the qualitative aspects of the coupling-constant spectrum for the 
deepest bound states may be gained with the help of Fig. 3, where curves of fixed caZ 
in the fl, - flA plane have been drawn. It is seen that all curves break off when fl, 
reaches the value -4~~. For E 82 == 0 this happens at pc : 4.327 and for cB2 ---, 1 one 
finds pc + - 1.24. The critical values of p for intermediate cgZ are given in Table IV; 
pc is found to be an almost linear function of eBZ. In the fl, direction the coupling 
constants are bound as well: for all cB2 > 0 one finds A, > - I .754, the equality sign 
being fulfilled for eB4 = 0 (independent of p). 

Yn view of these general spectral properties one may distinguish several intervals in 
the range of possible p values. For positive p both the A’ and P’ couplings contribute 
to the binding potential that is attractive if fl, < 0, A, < 0. If p > 4.327 (so that A’ 
coupling dominates heavily) bound states with any haa in the range (0, I) may be 
produced. For 0 < p < 4.327 (corresponding to a more important P’ coupling) the 
solutions exhibit the P’ discontinuity discussed above: only bound states with l Hz 
above a critical value (that depends on p) are realized. 

When p is negative the picture is more complicated as may be expected since now 
the A’ and P’ forces are opposing each other, one being attractive, the other repulsive. 
Bound states come about as a result of the balancing of the interactions. If p < - 1.24 
the A’ coupling wins: bound states of all •~2 are found for interactions with A, < 0 
and fl, > 0. For -1.24 < p < 0 the balancing of the two interactions is delicate: 
the coupling constants that give bound states are found to lie on two branches, with 
different signs for A, and A, . The branch with A, < 0, A, > 0 gives bound states 
for all cg2. However, if - 1 < p < 0 the coupling constants remain finite for cB2 --f 1, 
so that weak binding forces are not enough to produce loosely bound states; these 
solutions clearly have no nonrelativistic limit. For -1.24 < p < - I the solutions 
with fl, < 0, Ll, > 0 behave normally in the nonrelativistic limit. The solutions on the 
other branch, with AA > 0, (1, < 0 have just the opposite properties: normal non- 
relativistic behavior is found on this branch for -1 < p < 0. The dominating P’ 
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coupling then gives rise to the well-known discontinuity in the spectrum. The change- 
over of the normal nonrelativistic behavior from one branch to the other at p = -1 
could be inferred already from (99) since it implies that (1, + fl, must be negative in 
the nonrelativistic limit. 

The coupling constants of the quasi-potential equation (38) may likewise be obtained 
by determining the stationary values of a Rayleigh-Ritz quotient: 

1 J dr r-‘@A I $A I2 + PP I & I”> -=- 
A 32~~~ f 4 (I.3 - 4 I $P I2 ’ 

(115) 

where $A is the Fourier transform of $A = E-l+, . This variational principle, which 
is the counterpart of (108), follows directly by multiplying (38) with $p*, integrating 
over q, and introducing the position-space representation to transform the resulting 
double integral over q and q’ to a single integral over r. Since the denominator in (115) 
is again positive definite the eigenvalues of the quasi-potential equation are approxi- 
mated monotonously when a linear combination of an increasing number of trial 
functions is inserted in the variational quotient. 

As trial functions for #P we shall take once more functions of the form (110). The 
asymptotic form of the quasi-potential equation for large q2 can be used to determine 
v. For -8~~ < (1, < 0 a value of v, with 0 < v < +, follows in a self-consistent 
way from 

(cf. (113)), while for (1, > 0 the parameter v is fixed by requiring (1 to be minimal for 
a fixed number of trial functions. For (1, < -8~~ convergent stationary values of the 
variational quotient have not been found. 

To evaluate the numerator of (I 15) analytical expressions for both qP and qA = 
F.T. (E-1#P) must be available. For that reason we have chosen a = 1 in the trial 
functions. Owing to this choice a large number of trial functions will be needed to 
approximate the nonrelativistic solutions of the quasi-potential equation. Hence the 
variational principle will lead to slowly converging values of (1 when eB2 approaches 1. 
In practice, however, it turns out that 15 trial functions are enough to determine /l 
in four digits up to eB2 = 0.95. 

The numerical results as given in Tables V-VII and Figs. 4-6 show that the spec- 
trum of the quasi-potential equation has the same qualitative features as that of the 
instantaneous Bethe-Salpeter equation. In particular, from the curves in Figs. 4 and 
5 one finds that for dominating P’ coupling the bound-state solution breaks off at a 
finite value of eg2, whereas no such discontinuity occurs if the A’ coupling dominates. 
In Fig. 6 the curves of fixed cB2 in the (1, - /l, plane have been drawn. All these 
curves break off when A, becomes -8+; for cB2 = 0 and cB2 + 1 this happens when 
p reaches the values 1.682 and -2.07, respectively (see Table 1V for intermediate 
values of cg2). The coupling constant Ll, has no uniform lower bound. Just as for the 
instantaneous Bethe-Salpeter equation the domain of p values may be divided into 
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FIG. 4. Solutions of the quasi-potential equations for p = 1,O and -0.5. 

FIG. 5. Solutions of the quasi-potential equation for p-l = I, 0.5, 0, and -0.5. 
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FIG. 6. The coupling-constant spectrum of the quasi-potential equation for ce2 = 0.1, 0.3, 0.5, 
0.7, and 0.9. 

TABLE V 

Coupling Constants A of the Quasi-Potential Equation for AA < 0, Ap < 0 

CB2 \ P 0.1 0.2 0.5 1 2 5 10 
___---- 

0.95 

0.9 

0.85 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0.0 

0.2820 0.2843 0.2893 

0.3950 0.4010 0.4137 

0.4791 0.4893 0.5112 

0.5477 0.5626 0.5948 

0.6563 0.6815 0.7371 

0.7394 0.7758 0.8583 

0.8035 0.8516 0.9643 

0.8509 0.9107 1.057 

0.8814 0.9524 1.136 

0.8916 0.9722 1.195 

0.2941 

0.4258 

0.5322 

0.6257 

0.7915 

0.9406 

1.080 

1.213 

1.343 

1.467 

1.581 

0.2986 0.3030 0.3050 

0.4374 0.4484 0.4533 

0.5521 0.5711 0.5793 

0.6552 0.683 1 0.6953 

0.8433 0.8922 0.9134 

1.020 1.094 I.126 

1.192 1.297 1.342 

1.366 1.508 1.568 

1.547 1.735 1.814 

1.743 1.991 2.094 

1.971 2.310 2.447 

2.382 3.026 3.257 
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TABLE VI 

Coupling Constants A of the Quasi-Potential Equation for (la > 0, f$ < 0 

\ Eg2 P 
- -- --* 

0.95 

0.9 

0.85 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0 -0.1 
- ~~ ..-- .~. .--. .~- 

0.279 1 0.3367 

0.3877 0.4627 

0.4667 0.5515 

0.5297 0.6204 

0.6265 0.7223 

0.6974 0.7934 

0.7495 0.8428 

0.7857 0.8747 

0.8064 0.8903 

-0.2 

0.4062 

0.5502 

0.6477 

0.7205 

0.8236 

0.8914 

0.9360 

0.9625 

0.9723 

-0.5 -1 

0.7288 1.527 

0.9054 1.557 

1.001 1.577 

I .062 1.593 

1.139 1.612 

1.183 1.620 

1.207 

1.216 

TABLE VII 

Coupling Constants n of the Quasi-Potential Equation for rl, < 0, lip > 0 

Eg Am P -2 -5 -10 --03 
~- -- __-- 

0.95 0.9900 0.4706 0.3790 0.3073 

0.9 1.541 0.7109 0.5693 0.4590 

0.85 2.043 0.9216 0.7340 0.5890 

0.8 2.528 1.120 0.8877 0.7095 

0.7 3.494 1.503 1.182 0.9381 

0.6 4.490 1.887 1.475 1.163 

0.5 5.549 2.287 1.777 1.393 

0.4 6.703 2.716 2.098 I .637 

0.3 7.998 3.191 2.453 1.904 

0.2 9.523 3.745 2.864 2.211 

0. I 11.50 4.456 3.388 2.600 

0.0 16.24 6.140 4.624 3.507 

five separate intervals (with boundaries p = 1.682, 0, - 1, -2.07) that are charac- 
terized by a different qualitative behavior of the coupling constants as a function of 
cB2. The discussion is closely analogous to that given before and will not be repeated. 

The coupling constants of the two-particle Dirac equations for 0-+ states with 
P’ - A’ interactions can be obtained from a variational principle that is based on the 
momentum-space representation (47)-(49). A more convenient starting point, how- 
ever, is given by the position-space equation (63) or (93) with (94). 

Since the effective potential (94) becomes singular for positive AA , the two-particle 
Dirac equation will have a spectrum comparable to that of the instantaneous Bethe- 
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Salpeter and the quasi-potential equations only for the case AA < 0, to which we shall 
confine ourselves in the following. Some numerical work on the singular case has been 
reported in [20]. 

The eigenvalues 1 - cB2 of the equation (93) may be determined from the stationary 
values of the variational quotient 

1 - CB2 = 
s dr $$[d2/dr2 + 2r-1 d/dr - V(r)] zjp 

SW&l2 . 

TABLE VIII 

Coupling Constants 4 of the Two-Particle Dirac Equation for AA < 0, /lp < 0 

(117) 

\ CBS2 P 

0.95 0.2921 0.2912 0.2911 0.2930 0.2972 0.3039 0.3133 0.3185 

0.9 0.4244 0.4217 0.4214 0.4258 0.4366 0.4540 0.4792 0.4939 

0.85 0.5349 0.5294 0.5286 0.5360 0.5544 0.5848 0.6305 0.6581 

0.8 0.6366 0.6275 0.6260 0.6365 0.6634 0.7086 0.7793 0.8239 

0.7 0.8335 0.8137 0.8098 0.8265 0.8727 0.9535 1.089 1.181 

0.6 1.040 1.003 0.9948 1.018 1.086 1.211 1.434 1.599 

0.5 1.273 1.209 1.195 1.224 1.319 1.498 1.840 2.112 

0.4 1.559 1.450 1.426 1.461 1.588 1.835 2.339 2.777 

0.3 1.945 1.755 1.715 1.755 1.922 2.260 2.994 3.694 

0.2 2.546 2.189 2.121 2.166 2.389 2.858 3.948 5.098 

0.1 3.820 2.979 2.849 2.893 3.213 3.918 5.681 7.775 

0 0.1 0.2 0.5 1 2 5 10 

TABLE IX 

Coupling Constants rl of the Two-Particle Dirac Equation for AA < 0, /lp > 0 

0.95 

0.9 

0.85 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

-2 -5 -10 --co 

1.695 0.5279 0.4108 

0.9000 0.6682 

1.334 0.9358 

1.898 1.236 

4.019 2.018 

15.38 3.281 

5.865 

15.58 

0.3259 

0.5148 

0.6992 

0.8926 

1.336 

1.903 

2.681 

3.834 

5.742 

9.545 

20.93 
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FIG. 7. rl,-curves for the two-particle Dirac equation with p = 1 and 0. 

0.5 

\ 

FIG. 8. AA-curves for the two-particle Dirac equation with p-l = 1, 0.5, 0, and -0.5. 
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As trial functions linear combinations of the Coulomb wavefunctions 

&(r) = p-Q-a’ (n = 1, 2,...) (118) 

are employed. The parameter a = (1 - ca2)1/2 is found in a self-consistent way by 
successive approximations: each time the result of the variational procedure is used to 
obtain an improved value for CI. 

FIG. 9. The coupling-constant spectrum of the two-particle Dirac equation for E$ = 0.1, 0.3, 
0.5, 0.7, and 0.9. 

Numerical values for the coupling constants LI, and AA < 0 as a function of l B2 are 
given in Tables VIII-IX and in Figs. 7-9. For pure P’ interactions one recovers the 
coupling constants of the SchrSdinger equation for the Coulomb problem, viz., 
(1, = -45~-k;‘(l - cB2)l12. For pure A’ interactions the results agree with those 
following from the confluent hypergeometric function in (92). In neither of these cases 
the solutions display the characteristic discontinuity that we encountered for the 
instantaneous Bethe-Salpeter and quasi-potential equations (see Figs. 7 and 8). For 
mixed A’ - P’ interactions with positive p = /IA/flP bound states of any eB2 in the 
interval (0, 1) can be formed; for cB2 + 0 the coupling constants tend to - co. If p is 
negative a singularity of a new type shows up: for - cc <‘p < - 1 the coupling con- 
stants become infinite already for a positive value of l B2, so that deep binding (with 
cgZ N 0) is no longer possible; for --I < p < 0 no bound-state solutions have been 
found. 
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7. CONCLUSION 

In this paper we have studied three types of instantaneous equations for bound 
states of a fermion pair, viz., the “instantaneous Bethe-Salpeter equation,” which 
follows straightforwardly from the corresponding covariant equation by insertion of 
an instantaneous potential, the “quasi-potential equation,” which is obtained when 
some pair-creation terms are supposed to be negligible, and the “two-particle Dirac 
equation,” which is a direct generalization of the ordinary Dirac equation. 

The consequences of the approximations that led to the instantaneous equations 
can be estimated by investigating the coupling-constant spectra. To that end the 
general equations for bound states of arbitrary spin, parity, and charge parity have 
been applied in this paper to the special case of spinless states bound by interactions 
with a Coulomb-type potential. The spectral properties are found to depend strongly 
on the type of fermion coupling, as characterized by the lab& s’, V’, T’, A’, P’. This 
can be anticipated already by studying the nonrelativistic limit. In this limit neither of 
the equations has a solution that describes a O++ state bound by pure S’ coupling or 
a 0--- state with pure T’ interaction. If a mixture of couplings is present, however, 
nonrelativistic solutions do exist and all three equations give identical values for the 
coupling constants; the I/‘, T’ and A’, P’ components turn out to give the dominating 
binding forces in nonrelativistic Of + and O-l- states, respectively. 

The properties of the instantaneous equations for states with strong binding are in 
accordance with the nonrelativistic results. For O++ states with S’ coupling and O-f 
states with T’ interaction the three equations have a completely different coupling- 
constant spectrum. Whereas the instantaneous Bethe-Salpeter equation has no solu- 
tions at all for these cases, the two-particle Dirac equation predicts bound states with 
masses that increase when the interaction becomes stronger; the quasipotential 
equation possesses solutions only if the coupling constants are larger than a critical 
value. 

A more consistent picture is expected for 0 ++ states bound by V’ or T’ couplings 
and for 0-- ‘- states with A’, P’ interactions. For the latter case this has been checked 
by a numerical analysis of the coupling constants that correspond to the ground- 
state solutions. The results, as presented in Figs. 1-9, show that indeed the coupling 
constants A, and A, of the instantaneous Bethe-Salpeter and the quasi-potential 
equation have a similar qualitative behavior as a function of the bound-state mass 
2~~ , although the numerical values are rather different for deeply bound states. A 
peculiar feature shared by both these equations is the occurrence of a lower bound on 
the coupling constant (1, . As a consequence the ground-state solutions for dominating 
P’ interactions break off at finite values of Ed (see Figs. I and 4). Such a behavior is 
also displayed by the covariant Bethe-Salper equation for O-i- states with pure P’ 
coupling, as has been shown before. 

The two-particle Dirac equation yields a coupling-constant spectrum with some- 
what different properties. The characteristic discontinuity in the solution for domina- 
ting P’ coupling is not found here (see Fig. 7). Moreover a singularity at a finite inter- 
particle distance shows up in the position-space representation of the bound-state 
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equation, when the coupling constant A, becomes positive. As a consequence the 
analogy with the other equations is completely lost for /IA > 0. 

It must be concluded that the approximations that have led to the two-particle 
Dirac equation have brought about essential changes in the global properties of the 
bound-state spectrum, so that it cannot be used as a substitute for the instantaneous 
Bethe-Salpeter equation. The quasi-potential equation on the other hand combines 
the advantages of a relatively simple structure and a spectrum that is qualitatively 
analogous to that of the instantaneous Bethe-Salpeter equation, at least for the O-f 
state solutions discussed here. 

APPENDIX A: VECTOR SPHERICAL HARMONICS 

The vector spherical harmonics are defined in terms of the ordinary spherical 
harmonics YLM as: 

with eh = ~(e, i iev)/2’la and e, = e, . They may be used to construct 2 x 2 matrix 
eigenfunctions of the z component and the square of the operator J = -iq A V,, + 
$[c,]. In fact, when one introduces the electric and magnetic spherical harmonics 

yy'" = J+l 1/Z 112 
2J-f 1 ) y%1+(2J:1 YM J.J+l > 

which are related by 

yin”) M = iyy’ M * 4, yse)M = iyS”‘M h $, C44) 

one can prove that a complete set of eigenfunctions is given by YJM, YJM 
u - q, u * YyQ”, Q * Y$“‘j”. The eigenfunctions may be grouped into two sets on the 
basis of their space-inversion properties, since one has: 

K"(-q) = (4" Y,"(4), 645) 

yyy-G) = (-)J+l yyyq, (‘46) 

yyy-$) = (-)J y$?-($)* C47) 

These eigenfunctions have been employed in Section 2 to construct bound-state 
wavefunctions. 
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To derive scalar bound-state equations identities must be used that give the contrac- 
tions of the scalar and vector harmonics with their complex conjugates. By employing 
the coupling theorem 

YWT = c [ WI + 1)(2.& + 1) 1/Z 

JM 
q2J + 1) ] C(JlOJ20 I JO) C(wflJ2~2 I JW YJM (A8) 

and the basic contraction relation 

with z = 4 . G’, the following set of contraction formulas may be proved: 

4n(2J + 1)-l c [YJM($ $]* . $YJM(G’) = zP.,(z), 
M 

4n(2J + l,-‘c [Y:“‘“($)]* . Yy)“($) = P?(z), 
M 

4~(2J + 1)-l c [Y$m’M(e)]* . Y:m’M(i’) = PJ(z), 
M 

4n(2J + I)-‘c [YJM($ij]* . Yy)“(tf) = P;(z), 
M 

4~(2./ + I)-’ 2 [  YJ”($ $]* .  Y:m’M(Gr) = 0, 

M 

4~r(2J + 1)-l 1 [Ys”‘“($)]* . Y$?(Q = 0; 
M 

here the abbreviations 

fJ” = [J(J + l)]“” (25 + I)-’ (PJ-, - PJ+l), 

PY = (21 + 1)-l IV + 1) PJ-1 + JPJ+Il 

have been used. 

(A9) 

(AlO) 

(All) 

641’4 

(A13) 

6414) 

(A151 

(Al@ 

(A171 

APPENDIX B: INSTANTANEOUS BETHE-SALPETER EQUATIONS FOR GENERAL J 

In this appendix the scalar equations are collected that foIlow from the Bethe- 
Salpeter equation with instantaneous interaction, as given in (4). The structure func- 
tions &(q) have been defined in (7)-(10), with (ll)-(14). The potential functions Vi 
depend on (q - q’)2, the Legendre polynomials PJ and its linear combinations PJe and 
P;‘, as defined in (A16)-(A17), are functions of z = $ . i$‘. 
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E(h - wh) = - f 4’ (f’; -$ v;#s + E%&,), 032) 

E $r,-~ ( h) = - f 4’ V&‘& + PJ*G+TJ, (83) 

E@,h - wjW = - j- 4’ (PJ~V;$TI - f’~qq’V~~rz + P3’&,). (B4) 

For bound states with J = 0 the structure functions #y, and lGTZ vanish identically; in 
that case only the equations (Bl) and (B3) (which are then equivalent to (18) and (19)) 
survive. 

lJ., : 

E(~5~&42 - w,M = - j- 4’ f’dv:, - qq’zv;) #a , 

E(#P - 4~2) = - j- 4’ Pd’h,b . 
For J = 0 these equations reduce to (20) and (21) of the main text. 

3JJ : 

(B5) 

036) 

E(h, + 4nJ = - j- 4’ PJ’;$v, , 

E(E2h + w,W = - j- 4’ (P.rv/ - P;“qq’G) &-,q . 

Bound states of the type 3JJ occur only for J > 0. 

037) 

w3) 

APPENDIX C: QUASI-POTENTIAL EQUATIONS FOR GENERAL J 

Equations of the quasi-potential type are obtained from the general form (32) by 
insertion of (7)-(10) with (ll)-(14) and (34)-(36). When the same abbreviations as in 
Appendix B are used the results are as follows: 

3(J i 1h : 

(E - 4 +s = ; j- dq’ ][$ v$ - f’s & (v; + -WV;)] #s 

(E - Q) I,& = - ; j- dq’ j[PY (v; + -&, v;) - I’,+&, VA] 4~2 



RELATIVISTIC BOUND-STATE EQUATIONS 433 

lJJ : 

(e-~B)~~~,---~jdql[P,(v~+~V;j-P;E~v~]~yl. cc41 

The equations (C2) and (C4) apply only for states with J > 0; (Cl) and (C3) reduce 
for J = 0 to (37) and (38) of the main text. 

APPENDIX D: TWO-PARTICLE DIRAC EQUATIONS FOR GENERAL J 

The scalar equations in momentum space that follow from the two-particle Dirac 
equation (43) by insertion of the wavefunctions $(a) given in (7)-(10) have the follow- 

VW 

(W 

(D3) 

(D4) 

CD3 

(W 
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3JJ : 

wh - &a + b-s = s 4’ P.dGh , CD111 

Q&h-G + *v4 = s da’ PJ+h, 0312) 

(D13) 

(D14) 

In particular, 31, states (0+-b) are described by structure functions z+GS, $v, and &I 
that follow from (Dl), (D2), and (D4), while for lo,, states (0-+) the equations (D7)- 
CD91 for & , 4~~ , and h apply. 
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