CHAPTER IX

Semi-relativistic description
of particles with spin

1 Introduction

For single particles that move in external electromagnetic fields equations of
motion and of spin have been derived in a completely covariant way in the
preceding chapter. If a set of particles moves under the combined influence
of external fields and mutual interactions, a covariant description can be
obtained only in the framework of quantum electrodynamics. This would
take us outside the scope of the present treatise. However magnetic effects
are found already if the non-relativistic theory (in which only electrostatic
terms are effectively taken into account) is extended with terms up to and
including those of order ¢~ 2. Such a description will be the subject of this
and the following chapter. In point of fact we shall not even have to consider
all terms of order ¢~ 2, but only those which contain at least one magnetic
multipole term. Such an approximation can alternatively be described by
declaring magnetic multipole moments as being of order ¢°, and subsequent-
ly retaining only terms up to order ¢~ ': the so-called semi-relativistic approx-
imation.

The present chapter will be devoted to the study of the semi-relativistic
theory for a set of point particles with spin grouped into stable entities, while
the next chapter will contain the corresponding theory of continuous media.

2 The Hamilton operator up to order ¢~ for a system of
Dirac and Klein-Gordon particles in an external field

The wave equation for a single Dirac particle with mass 7 and charge e in an
external electromagnetic field with potentials ¢, and 4, is

Hop () = — 1 VD), ®
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where V is a four-component wave function and where the Hamilton opera-
tor has the form

H,, = ca'my,+ fmc* +ep (R, t). (2)

Here we used the 4 x 4 Dirac matrices « and B, and the abbreviation
e
Ty = Pop— ;AQ(R, 1. (3)

(No anomalous magnetic moment term has been included in the Hamil-
tonian.)

If one wants to describe a system of two Dirac particles one needs a wave
function which is an element of the direct product space of the wave func-
tions for particles 1 and 2, and hence a 16-c0mp6nent wave function, labelled
by two indices each running from 1 to 4. For such a system the Hamiltonian
describing the time behaviour of the wave function will be the sum of two
Hamiltonians of the type (2) and an interaction term. An approximate form
for the latter (tantamount to taking only terms up to order ¢~ 2 into account)
has been written down by Breit! in close analogy to the classical Darwin
Hamiltonian (which is valid up to order ¢~ 2, see problem 6 of chapter ITI).
It reads

Hiptop = —— 1 —La ' T(R, — R,)x
t,0p 47IR,—R,| =3 T(R, — Ry ) e, ), 4)
where ¢; and e, are the charges of the two particles, R, and R, their co-
ordinates and where the three-tensor T is given by

T(s) = U+ ;s;. (5)

Furthermore «; and a, are Dirac matrices operating on the first and second
index of the wave function respectively. (In the direct product notation, they
may be written as «®1 and 1®a respectively.) The total Hamiltonian of the
two-particle system has thus the form

2
Hy, = ) {capm o+ fim;c+e; 0 (R, 1)}

i=1

e A72 1 1g “T(R. —R,)
47ZIR1——R2§L 2% ( 1 2) “2} (6)

1 G. Breit, Phys. Rev. 34(1929)553, 36(1930)383, 39(1932)616; for a discussion from the
point of view of quantum electrodynamics, see for instance H. A. Bethe and E. E. Salpeter,
Quantum mechanics of one- and two-electron atoms (Springer-Verlag, Berlin 1957) p.
170fF, or A. L. Achieser and W. B. Berestezki, Quantenelektrodynamik (Teubner, Leipzig
1962) p. 4281T.
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with

Trop = Piop— %Ae(Ri, f). 7
The Dirac matrices 8, and 8, should be understood in the same way as «;,
and «,.

The Hamiltonian (6) contains the matrices a; and «,, which are odd in
the Pauli representation of the Dirac matrices that has been used in the pre-
ceding chapter. As a consequence the wave equation is in fact a set of 16
coupled wave equations. A similar situation of coupled equations arose for
the one-particle system with its four-component wave function. There it
turned out to be possible to write the set of four coupled equations as two
uncoupled pairs of coupled equations, one for the upper two components
and one for the lower two of the wave function. The advantage of this proce-
dure was that then positive and negative energy solutions could be considered
separately in a convenient way. In the present case we want to execute a
similar programme, again uncoupling the upper-upper part and the lower-
lower part from the other components of the wave function®. To that end
we first transform the wave function by means of a product of two Blount
transformations, as for the one-particle case. Then the first two terms of the
Hamiltonian get even form, as in (VIIL.143), if one considers only terms
linear in the external fields (or in the charges) and without derivatives of the
fields. If one is not interested in terms of higher order than bilinear in the
charges, the last term of the Hamiltonian (6) transforms into an expression
which is obtained by utilizing the product of the two Blount transformations
up to order e°, i.e. the product of the P-FW transformation operators
(VIIL56) both for particle 1 and particle 2. Then we obtain

2
) h
eSSy {ﬂiEni+ei<pc(Ri, 1)— eTEw B;0:B.(R;, 1)

i=1 :
e; hc

2E, (E —l—m ¢ )

where at the right-hand side the Weyl transform H of H,, has been written.

The first terms represent the two one-particle Hamiltonians of (VIIL.143).

The last term is the Weyl transform of the transformed interaction Hamil-
tonian. In view of (4) this interaction Hamiltonian consists of two terms

int ™ H} mt+HIl ints (9)

-(P;rne)E(R;, )} +H,,=H, 8

A,

1 It is unnecessary to decouple also the upper-lower part and the lower-upper part from
each other, v. Z. V. Chraplyvy, Phys. Rev. 91(1953)388, 92(1953)1310.
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with
Hyiop = U(DUL(2) — 82yt (YU ()= H, .
t,op P P( )47I}R1—R2] OP( ) Op( ) Iint» (]O)
Ao = — Uy (DU °1°2 4 T(R,—R,)a, Ul (1)U
t.op p 87, —R, | " T(R, 2o Ugy( YUer(2)

2‘—zlhjll,int' (11)

From the rules for Weyl transforms (VIIL.132) and the abbreviations
(VIIL.62)

h oU(i) au'(i)
L=- —U' o
;P (i) = - u() . (12)
one finds for (10)
I:Il.im = (1+§1'V1 +8 Vo + &V Vo +36, &1V, Y,
F36,E, Y, Vo4 -2 (13
26262 - Y2 Y2 )47IIR ZR,| (13)

Furthermore we find in the same fashion for the second interaction term (11)
Ay = F+3E,7V, F+3(V Y +38V, F+3(V, F)E,

38V SV F+ 38 Vi(Va FY & + 48, V,(V, F)E,

HV ) 6k (15 608 ) VL E

1

—H(V, V. F) : ( z%ﬁi—fle)ﬂ-el-vl(vw)fl

1
. 08, o¢

—% (i 22— (V,V F—}(V hi =2 —
( oP, szz) 2 V2 (2V2F) ( lon $2 2)
+2E, Vo (Vo F)E+... (14
with the abbreviation vV D 9
_ e @ T(R —R, )4,

87|R; —R,|

(15)
where

= U(i)e; U'(i). (16)
In deriving (13) and (14) we employed the identity, which follows from (12),

o*U(i) 1
PP, v = oP, ( ) g e 17)
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The transformed Hamiltonian, given by (8) with (9), (13) and (14) is not
in closed form. It contains series in the derivatives of the interparticle poten-
tial, occurring in (13) and of the function F (15), occurring in (14). In the
case of one single particle in an external field, such series (but there with the
derivatives of the external field) also appeared, at least in principle. But there
(as well as here for the external field terms) these series could be broken off
on the assumption that the external field did not change rapidly (on the scale
of the Compton wave length). Here, for the interaction terms (13-14), we
are not in such a simple situation, since the interparticle fields may change
rapidly. The series may still be broken off if a stronger assumption is adopted
namely that only terms up to a certain ordsr in ¢~ * should be taken into
account. In fact both (13) and (14) may be seen as series in powers of ¢~ ?, if
one realizes that &, is of order ¢~ ! and 0&,/0P; of order ¢ ™2, as follows from
the expressions (VII1.63). Therefore we shall limit ourselves from now on to
terms up to and including those of order ¢~ 2 (terms of higher order in ¢™!
can only be obtained consistently if one starts from an expression of more
general validity than (4)). In that case the expression (8) becomes
2 2 4 .
Hy, =3 [ﬁimic2+ﬁi 5—;« —BiTE —Bre, i’g ‘A (R;. 1)

32
i=1 ; 8mjc m;c

P;
Gi' Bc(Ri 5 r)ﬁi -
1; ¢ 2m; ¢

i b

e h
+ei(/)e(Ri9 t)_ 2 '

AEC(R,.,T)H +A,, (18)

where only terms up to first order in the external fields have been retained
and where now H,,, is given by (9) with (13-14), the latter without the
terms indicated by dots.

The Hamiltonianin (18) contains a number of terms which are already of
even-even form, i.e. they do not couple the upper-upper and the lower-lower
parts of the wave function with the upper-lower and lower-upper parts. The
interaction Hamiltonian H;, however contains also parts which are of even-
odd, odd-even and odd-odd character and hence do couple the upper-upper
and lower-lower components with each other and with the mixed com-
ponents. The general form of (18) is thus

A, 8 6,+8 0,+0,6,+0,0,, (19)

where &; and @, indicate even and odd parts with respect to the matrix
indices pertinent to particle 7. The odd parts in (19) may be brought into.a
more convenient form in the following way. Let us transform the Hamil-
tonian by means of an operator

Vop @ 14248281 Oy + 2,81 01 62+ (31 + 24 82)0, 0. (20)

[P
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Up to order e, e, this operator is unitary, if the A; are real coefficients. This is
seen by taking into account that the last three parts of the Hamiltonian (19)
are of order ¢, e,.

If the Weyl transform of Vopﬁop Vo'pI is calculated, one finds in the first
place a term which is simply the product VAV ' of the Weyl transforms
given by (19) and (20). Up to order e, e, this product is:

VAV -1 = G182+ ot C 8, +C, 0, -2/ E 8, C,—2,E,(, &,
_2{)*3(51+ﬁ1/3252)'*“/:4(52_'-/31/))ZEI)}@JC(’Z> (21)

where we used the (anti)commutation property,of f§; with even (odd) matrices
& (C;) and the fact that the terms independent of e, and e, in A are 3, i+
B E,. Werequire that the transformed Hamiltonian, part of which is written
in (21). contains no ¢, ¢, and ¢, &, terms. so we choose /, = 1/2E, and
4y = 1/2E;. Then the upper-upper terms (and the lower-lower terms) arce
no longer coupled to the mixed components through terms of the type
¢y Cyand (&, In order to achieve that the odd-odd terms do not give rise
to unwanted couplings, one may try to make them vanish as well. This gives
rise to a unitary operator which is singular and has therefore to be rejected.
However the odd-odd terms are harmless’ already if they are multiplied by
(I =B B2), because then this term gives zero if it operates on a wave function
which has only upper-upper or only lower-lower components. This is ac-
complished by choosing 25 and 7, as 1/{4(E;+ E,)}. Hence the unitary
operator (20) which we employ is

,
Lo 6 DER g0 )
E, 4(E +E,)

Then, up to order ¢~? and e;e,, the transformed Hamiltonian becomes,
employing the rule (VIIL.132) for the Weyl transform of a product,

1
Vi ld —— B, 8,0y + —
I3 252/;2 1Y2 2

. _ . hic?
Vop Hop Vopl =& E+i(1-4, B2)C, O, + Igﬁ (1+5, )4, 0, C,, (23)

142

where we used the fact that the terms with &, @, and 0, &, in (19) are both
of order ¢~*. (The Laplacian operating on the coordinates of particle 1 has
been denoted by 4, .) Hence in the transformed Hamiltonian again a term
(namely the last) appears that is of the unwanted kind discussed above.

Y Z. V. Chraplyvy, op. cit.
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However, in contrast with the @ ¢, term of (19) (which is of order ¢?) it
is only of order ¢~ 2. It may be made to disappear by a final unitary trans-
formation with an operator

2.2
op = 1+ Pit P he (145, 62)4,0,0,. (24)
4(E,+E,) 16E, E,

Then the Hamiltonian gets the form (up to order ¢~ and e, e,):
Hop = Wy Vs Ho Vi ' Wil 22 6, 65+ 31— B, B,)0,0,.  (25)

If we confine ourselves to positive energy solutions, i.e. to wave functions
with only an upper-upper part, we may replace 8, and 5, by 1 so that the
last term drops out. Then we have for the Weyl transform of the Hamiltonian
effectively only the even-even part &; &', of the right-hand side of (18). The
even-even part of (13), up to order ¢~ 2, follows by making use of the ap-
proximate expressions for the even and odd parts of &; (v. (VILL63)):

. = h}}_}; . G = —hipia; (26)
’ c 2m; ¢

Substituting these expressions into (13) we find

2 N AR h? e e
Hl,int o l;l_'_ Z {fi@l_ﬁoz) VL + Al}} 1¢2 (27)

2 2.2 )
i=1 dm}c 8mjc 47|R, —R,|

If we use moreover the approximate expressions for &; (16):

&i,e = ﬁ —l » &i,o = a, (28)
mc

we find for (14) with (15), up to order ¢™2,

H11,im = —f; B{P, Py +3ih(6, AV )P, +3h(6, AV,)P,
€16 T(RI”"RZ)

. (29)
8rm,; m, IR, — R,

+3iH (e AV;) (62 A VL))

If we replace ff; and 3, by 1, we have found now for the complete Hamil-
tonian for positive-energy solutions, up to terms bilinear in the charges and
up to order ¢~ 2 (omitting :'tom now on the double circumflexes over H,,):

3
3
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2 4

; P: .

e = P P @ R, )
1 2m;  8m;ec

m; ¢

M

(__;

1

e n o fBe(Ria 1)— _EL AE(R,, t)}]
2myc \ 2m; ¢

2 P, A6V, 2
+ [H {ﬁQ o)V " “ﬂ _ae
i=1 dm:c 8m;c 4r|R, — R,|
_¢1e P"T(R; —R,)P,
8mm; my c*[R, —R,|

—{#(6; AV,)Py+h(a, AV,)P,
2 €16
T AV (@A V) L (30)

where in the last term we used the property of the tensor T(s) (5):
(anVy) T6) _ 2(aAVy) L (31)
4rs 4rs

for an arbitrary vector a.

The Hamiltonian® obtained contains in the first place the approximation
up to order ¢ ? of the one-particle Hamiltonians for particles | and 2. It
includes, apart from the non-relativistic terms, a kinetic term with the fourth
power of the momentum and two terms which couple the spin with the
electromagnetic field. Furthermore interaction terms appear, which apart
from the Coulomb term, are all of order ¢~ 2. One recognizes spin-orbit
coupling terms with the vector product of momentum and spin. Next terms
with the Laplacians acting on the Coulomb expression appear. They may
be written alternatively as?

2 2

- ——¢; ¢, 0(R; —R,). 32

i; 8777?02 1 €20(R; 2) ( )
Furthermore one encounters the quantum-mechanical analogue of a term
in the Darwin Hamiltonian of classical theory (see problem 6 of chapter III).
Finally two terms that couple the spin of one particle to the momentum of
the other, and a spin-spin interaction term occur. The last term may be

1 V. e.g. H. A. Bethe and E. E. Salpeter, op. cit. p. 181; A. L. Achieser and W. B.
Berestezki, op. cit. p. 431.

2 In the past confusion about this term existed. Instead of the operator corresponding to
(32) one found a non-hermitian operator by employing an elimination procedure for the
lower components of the wave function. Then the normalization of the wave function is
lost, so that non-hermitian terms appear (cf. A.1. Achieser and W. B. Berestezki, op. cit.).
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written in an alternative form by using the ancillary formula

Vs Vs “]—“ = /])sph Vs Vs "L" —%U(S(S), (33)
4ns dns

which expresses the double nabla operator acting on (47s)™ ! in its principal
value and a term with the three-dimensional delta function multiplied by the
unittensor U (v. problem 2 of chapter I1). Then the last term of (30) becomes

e e, h? e e
P 6,°V, 0,V L2 6,0, ——2— 5(R, —R,). 34
prir T T t6mm, mch|R1~RZI ! 26mlmzc2 ( ! 2) (34)

The Hamilton operator, given in {30) describes a system consisting of two
Dirac particles. The generalization to N Dirac particles is obvious. The same
procedure may be followed to bring the Hamiltonian into a form which does
not couple the upper-...-upper part of the wave function with the other parts.
The result is an expression like (30) but now with N one-particle contribu-
tions and 1N(N—1) pair contributions of the type given there.

The physical systems consist usually of electrons and nuclei. The couplings
of the electrons with the external field and with each other are described by
terms of the form (30). Since the nuclei are much heavier than the electrons,
their spin effects can often be neglected: hyperfine splittings are small cor-
rections only. Therefore we shall describe the nuclei from now on as par-
ticles without spin, i.e., as Klein—-Gordon particles. To find the Hamilton
operators for the interaction of a Dirac and a Klein—Gordon particle and of
two Klein-Gordon particles in a form comparable to (30) (for the inter-
action of two Dirac particles) one has to start from an expression that comes
instead of (4). Just as the latter formula for two Dirac particles can be derived
from quantum electrodynamics, one may obtain for the interaction of two
Klein~-Gordon particles 1 and 2:

_ele e eB )it (Proy (Pao (TR RN s,
4n|R; —R,| 8c? | m, \ m, 4R, —R,]| /]
where the Feshbach-Villars representation (chapter V1L, section 4) has been
employed. The interaction between a Klein-Gordon particle 1 and a Dirac
particle 2 is given by
e _aea(ttin) Py TR =R)u| g
47|R, —R,| 4e | m, = 4n|R,—R,| |

(As compared to (4) one finds here that the Dirac matrix « for a Dirac
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particle is to be replaced by (t3+1t,)P, /me for a Klein-Gordon particle.
Moreover anticommutators have to be added for the latter case.) If one takes
the same steps as those which led from (4) to (30), one finds from (35) and
(36) an expression like (30) for the Klein-Gordon particles but without
¢-terms and the term with the Laplacian. In this way one finds for a collection
of electrons and nuclei (described as Dirac and Klein-Gordon particles in

the present model) that the Weyl transform of the total Hamiltonian is given
by

P2 e.e; P
HpeY-tqe ¥ %% i yvolom o Pogm ol
P 0 2m; it 8n|R;— R Z ' l%( 1) m;c ol ”t)f
p# e e; P, . P
D et ZIV(R.—R) LS
T 8m}c? i,j(izaéj) 167(02[R,.—R4,-! m; (& 2 m;
’ i f i j
+ > EEJ; f(-l-pi /\ai) V-2 (-ll /\ai) 'VJ R
i dm; e | m; m; ] 4n|R;~R||
r eieihz ]
- e e (G AV ) (6 AV )
i.j(iza&j) 8m,m; c? ( FoiA V) 47iR;—R|]
, ee; h? e;h [ P,

— L= R, —R)— > -6 IB(R,, ) —
i.j(iZ—#.i) 8m?c? ( J) g'Zm-ca 1 (R 1) 2m;c

I 1

ANE(R;, r)}

= H(l. .., N; 1), (37)

where the rest energy terms have been suppressed. The primes indicate that
the summations concerned are extended only over the electrons. (One should
note that a single prime at a double summation sign means that only the
summation over the first index is to be limited to the electrons.)

3 The field equations and the equations of motion for a set
of spin particles

[n this section we shall first study the equations of motion and in connexion
with them the field equations. The Hamilton operator that specifies the
system is given by expression (37).

The equations of motion for the electrons and nuclei will follow by evalu-
ating the commutators of their position operator with the Hamiltonian. The
position operator for electron / reads up to order ¢ %

Xi,op = Ri+ B > (38>



476 SEMI-RELATIVISTIC QUANTUM PARTICLES D CH. IX

as follows from (VIIL68) of the preceding chapter. The position operat.or
found there is valid only for a free particle. However by comparison with
(VIIL.150) it may be seen that up to order ¢~ ?the posi.tion operator does nqt
change (at least not with terms in the potentials) lf an external field is
switched on. For the nuclei the position operator is simply

i (39)

X R

i,op =
as follows from (VII1.204).

The equation of motion for an electron i will follow by taking first the
commutator of (38) with the Hamiltonian (37). With the rules for Weyl

transforms (in particular (VI.A161)) one finds up to order ¢™2:

0H h 0H

_ iy _ ]l B )
bn = g, = g W Xl =m0 op '
or explicitly
P, e; PP,
bop = AR, -
' m;  m;c 2m;c

G, ANY, ——— .
2 7 J _ .
iFn 8emym; IR, —R;|  iFo 2mym;e 47|R;— R}

The second time derivative is found by taking once more the commutator
with the Hamiltonian and adding an explicit time derivative. Then one finds
an equation of the form

dy; i Jv;,
m; ‘*L;E = my g [Hops 0 0p] +m1; —éf—? 2f, (42)

where f; is the Weyl transform of the force on the electron. It is conve.ni.ent
to study first its part f;., which depends on the external fields. Ret.ammg
only terms linear in these fields (and linear in the charge e;) we obtain

€;

fie - eiEe(RiDt)+ PiABe(Ri: t)
€; e 2
— —— PiPrE(R;, t)— — PiE(R;, 1)
mic? ®:. 1) 2mic?

+ Zeih [{ViBe(Ri’ o, +3{V,E(R;, )} (npic /\ai)} ) (43)

i i
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The total force has a similar structure. It becomes:

fi=ee(R, 1)+ — P;nb(R; 1)

i

— L PPre(R, 1)~ — PRe(R,, 1)+ ST [{Vi b(R;, )},
mjic 2m;c m;c
2
+1{Vie (R, 1)) (—’i /\a'i):} -G R, ), (44)
m;c 4mfc

if only terms bilinear in the charges are included. Only the last term of (44)
is of a type that did not occur in (43). The other terms contain, instead of
the external fields E, and B,, the Weyl transforms of quantities e, and b,
which will be called the total fields acting on the particle. They are of the form

e(R, 1) = E(R, 1))+ Y e;R, 1),

J(#1) (45)
b(R, 1) = B(R, )+ Y, by(R, 1),
J(#i)
with partial fields
ej(R, If) — "ejV 1 + G;: . Pj'V PJ'T(RJ—R}
4n|R;—R|  2mjc 4n|R; —R|
e h 1
+ L V(P AG)V —
m’c? (Fine) 47|R;—R)|
e h 1 n* 49
— —LP:Vg,;AV — + -~ V5(R;~R),
2mjc 4niR;—R|  8mic
bR ) = -5y A ( P, )— LN
m;e 4n|R;—R| 2m;e 4n|R; —R|

The partial fields generated by particle j have been written here for the case
that j is an electron. In the sums of (45) all particles occur. For nuclei one
has to retain only the first two terms of e ;- and the first term of b Iz

The total force (44) on electron i gets a simpler interpretation if one intro-
duces the fields at the position X ; rather than at R;. Since the difference
between these quantities is of order ¢, such a change of arguments of the
fields affects only the first term in (44). One has, with (38),

e(Xe, 1) = e(Re, )+ "0 Pry ok ), (47)
dmie
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Then the equation of motion (42) with (44) may be written as

i, Cizw =fi = eie(Xi, )+ S5 PiAb(X, )~ 2 P,Pre(X, 1)
t

m;c mjc
e; e h
— — Ple(X., 1)+ —— {”Vib X;, H}o;
2mjc? { ) 2m;c Vib( X
2
Ve ) (1 Aai)] + G ge(x, 0. (48)
11 € dmjc

The Weyl transform of the force contains in the first place the Lorentz force.
present already in non-relativistic theory, supplemented here by two relativ-
istic corrections. connected with the motion of the particle. Then two spin
terms appear, which couple the space derivative of the magnetic field with
the spin of the particle and the space derivative of the electric field with the
spin in motion. One should note that here, in analogy with the classical
theory for the orbital magnetic moment. the vector product of the momentum
(divided by m;¢) and the spin magnetic dipole moment e;fio,/2m,c occurs
and not just half of it as in (44).

The equation of motion for the nuclei may likewise be derived from the
Hamiltonian (37). For the velocity operator one finds then the same result
as (41). For the second derivative one obtains, after multiplication with m1,,
an equation like (48) but without spin terms and with a factor 8 instead of 4
in the denominator of the last term.

In deriving the equations of motion we encountered certain expressions
(45) with (46) which have been called the Weyl transforms of the total
fields (acting on particle /) and which occurred in the equations of motion
(48). The sums e and b of the external fields (E,, B,) and all partial fields
(e;, b;):

e(R, 1) = E(R, 1)+ ) e{R, 1),
J

49)
b(R, 1) = B(R, 1)+ 2 bR, 1)

satisfy equations that follow from the explicit expressions (46), namely

Ve = p*=V-p,
—Oppe+VAb =c j+Vam,
Vb =0,

Ogpb+V e =0,

(50)
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where dgpa = ¢ 710 pa = ¢ a, HYp+0,a (cf. (VI.72)) with the Hamiltonian
H (37) and where the sources have the form

Pt = ¢;8(X;~R),
J

c<j= Z‘Ej‘ P;6(X;~R),
1. C

i om;
. €;h " 51
p ~§; i;;;z-c—z (Pj/\aj—z‘;hV)o(Xj—R), (51)
, e h -
m=73"%" 5 5X,~R).
7 2m.c :

J

(The primes at the summation signs indicate that the sum has to be extended
over the electrons only.) The delta functions occurring here contain the
position X;; (38) of the electrons in their arguments. One should understand
them as an abbreviation of the expression (cf. (47))
5(X,—R) = 6(R,~R)+ "% "Pi v sr. _R) '

j i~ R) 35 Vio(R,—R) (52)
dm’c
(The use of X instead of R; is only significant in the first expression of (51),
since in the others it gives rise to terms of order ¢73.) In the derivation of
(50) with (51) we retained only terms linear in the charges, as is consistent
with the fact that in the Hamiltonian (37) only terms bilinear in the charges
have been included.

The equations (50) with (51) contain in their source terms charge and
current densities of the same form as the non-relativistic ones (v. (VL73)),
except for the occurrence of X j» and moreover polarization and magnetiza-
tion densities p and m due to the presence of spin. Terms of this type occur
here already at the sub-atomic level in contrast with what was the case for
point particles, as treated in chapter VL.

Owing to the use of the position operator X ; (which has covariant charac-
ter; v. the preceding chapter), the polarization p contains a term due to the
spins in motion which has a form similar to that of the relativistic classical
expression for a composite particle, namely with the vector product of the
velocity P;/m; and the magnetic moment e;he2m;c .

The equations of motion (48) and the field equations (50-51) show —
as compared to their non-relativistic counterparts (VL73) and (VL81) -

! If the non-covariant position R; had been used one would find only half of this term: cf.
J. M. Crowther and D. ter Haar, Proc. Kon. Ned. Akad. Wet. B74(1971)341, 351.
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which terms have to be added if spin effects are included (up to order ¢~?).
In addition we have to discuss the equation which describes the change in

time of the spin for the electrons. It may be obtained by calculating the com-

mutator of the spin operator with the Hamiltonian. From (VIIL79) of the

preceding chapter it follows that up to order ¢~ ? the spin operator for elec-

tron i is

S —ih{ (P,,(,p/\o')/\P“,p (53)

i,op —
2mzc2

Although the spin operator, given there, pertains to a free particle, it follows
by comparison with (VIIL.151) that up to order ¢~ ? the spin operator does
not change if external fields are present.

The spin equation follows by taking the commutator of (53) with the
Hamilton operator (37). One finds, with the rule for Weyl transforms, up

to order ¢~ 2,

8100 = ! [Hop, s “h o, Ab(R;, 1) +c7! (—% /\a'i) relR;, 1)} )

ds h ’ 2m;c m;
(54)

3

The fields e, and b, at the right-hand side are given by (45) with (46). They
are taken at the position R;. Application of formulae like (47) shows that
one may write X, instead of R, if one wishes: the difference leads to terms of
order ¢™3. For the same reason one may replace 4#q; by s,.

The equation (54) shows that a moment is exerted on the spin if it is not
parallel to the magnetic field and if its vector product with the velocity
P,/m; is not parallel to the electric field.

4 The semi-relativistic approximation

To derive equations for stable groups of particles we start from the equations
for the Weyl transforms of quantities pertaining to point particles with spin,
that have been given in the preceding sections. By making Taylor expansions
of quantities occurring in the latter equations, we obtain expressions which
contain multipole moments of orbital and spin character that characterize
the stable groups as a whole.

In the following not all terms of order ¢~ ? will be retained in the multipole
expanded quantities, but only those for which at least one of the factors ¢~ *
is contained in a magnetic orbital or spin multipole moment. An alternative
way to express this procedure consists in considering both the electric and
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magnetic multipole moments as quantities of order ¢°, and subsequently
retaining only terms of order ¢!, In this way we shall obtain a set of approx-
imate equations, which we shall call the ‘semi-relativistic limit’ of the theory.
(In classical theory (v. chapter IV) we employed a similar approx1mat10n )
The reason for considering such a truncated form of the ¢~ %-equations is
that in this way all magnetic interaction terms, especially those due to
magnetic multipole moments in motion, are taken into account, while effects
as the Lorentz contraction of the electric multipole moments are left out.
The latter effects are indeed much smaller than the former, since they con-
tain the velocity of the atom as a whole instead of an intra-atomic velocity.
As a result one finds then expressions which show an analogy between elec-
tric and magnetic contributions (v. sections 5 and 6).

5 The equations for the fields due to composite particles

The first pair of sub-atomic field equations (50) with (51) reads, if instead
of the summation index j we introduce a double index ki where k labels the
stable groups (atoms) and i their constituent particles:

h
Ve = 3 €,;0(Xu—R)— Z e’*f ! (Pkl/\a'k,) V5(X,—R)
ki

k,i

h?
+ 3 Gt 5 40(Xy—R), (59)
ki 8;71
-~ kz PkL - ekz
_Gope+VA (Xkl_R)+ Z V/\G'/‘Ié(X,”
ki M ki 2myc

The quantity P,;/m,; occurring at the right-hand sides of the equations may
be replaced by 9,pX,;, where the symbol O stands for a Poisson bracket
with the Hamiltonian H (37). This is justified since we limited ourselves in
the right-hand sides of (55) to terms linear in the charges and up to order ¢~ 2.
We now introduce a privileged point R, for each atom k. The relative
coordinates of the particles with respect to this point will be denoted by

rii = X —Ry. (56)

Then, by making a Taylor expansion of the right-hand sides of (55) one gets
the expressions
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- 1a(n)
pE_ Z (_ 1)"— IV’I : Z (p'l(cn) c anspm A vk)é(Rk_R)a

c 1+60p{2(—1)"“‘v"‘1 X 85(R—R)} (57)

FVALY (1t Z(v<">+c‘“<">Avk)5(Rk R)},
n=1
where the definition of the semi-relativistic approximation has been em-
ployed to suppress a number of terms. The atomic charge and current
densities’, that occur here, are given by

=Y ¢, 5(R,—R),

(59)
j= ;ekvké(Rk_R)
with v, defined as d,p R, i.e. by a Poisson bracket of R, with the Weyl trans-
form of the Hamiltonian plus an explicit time derivative. Furthermore the
expressions (57) contain the electric and magnetic multipole moments, de-
fined as
B = 0ot 0%, W = Vet ot (59)

with their orbital and spin parts

E’i'l(c”c))rb = ;:*'Z €xiFiis

o = (251 7T e (o (60
50 = o _:1)' Y et 1 A (Bop i),

Ot = Y M"Ziﬂo’kr

Vedoin =
fospin (n=1)17 2myc

The symbol & indicates that a symmetrization has to be performed on the
asymmetric tensor in front of which it appears. The moments are all defined
with the help of the internal coordinates r;; (56). We note that here such pure-
ly space-like quantities have been employed as internal coordinates, in con-
trast with what was done in classical semi-relativistic theory. For that reason

* These atomic quantities should not be confused with the sub-atomic quantities (51),
denoted by the same symbols.
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we now want to introduce multipole moments expressed in terms of quanti-
ties ry;. The latter will be defined in terms of r,; and its derivative in a way
completely analogous to the classical treatment (v. (IV.A100)):

P = rytie” z(arP R riu(0p R)+c™ (0 Ry) 1 Op 1y - (61)

Substituting the inverse of this expression (up to order ¢~2) into (57) with
(59) and (60) one finds

p=V-p,
(62)
C—1j+aopp+V/\nl,
with the electric and magnetic polarization densities
p=2 (=1 TIVTE Y (=T v A v )S(R,— R),
" ’ (63)

m = Zl(—l)"”IV""lf;(v,(‘")+c p" A v )O(R,—R).

The semi-relativistic multipole moments p{” and v{" that occur here are
defined by expressions of the same form as (59-60), but with r;, instead of

"k i :
( ( _
p = k:'o)rb + p‘l(cr,ls)pin > v = Vl(c,,lc)rb + Vl(c,:gpin ) (64)

with orbital and spin parts:

n) _ 1 m
Mz ore = _‘Zeki"ki»
n: i

( _ 1 . eyh 1
p‘kngpm = ' yz : ," {(aOPrkx)/\akL} = p‘l((”gpln>
(n— 1). ; 2mkic (65)
(n)y _ 1
Vk':crb = Z il ’kl/\(a()?}kl) = Vlgngrba
(n+ 1)'
() _ 1 p e A ()
k.spin = T ki Oki = Vispin-

(n=D!'T 2mye¢

Since all terms of order ¢™* are to be neglected, in fact only the orbital
electric multipole moments @{",, and ", are different.

The expressions (63) show a complete symmetry between the electric and
magnetic multipole moments, just as the corresponding classical expressions
(IV.57) and (IV.58). In particular one finds now a contribution to the electric
polarization, due to magnetic multipole moments in motion. The multipole
moments that occur here contain contributions due to the occurrence of spin:
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the definitions (65) show how multipole moments for spin particles have to
be defined such that they add to the orbital multipole moments that occur
already in non-relativistic theory (v. (VL.87)).

6 The laws of motion for composite particles

a. The equation of motion

The equation of motion for a composite particle in a field will be obtained
from the equation (48) for its constituent particles, which may carry spin.
From the derivation given in (38-48) it follows by inspection that the left-
hand side of (48) has as Weyl transform m; 05 X+ (e;A*/8mic?)4,¢(X;, t)
so that (replacing i by k7) one may write (48) in the form:
Ol {1 +3c7%(01p X,1)* 1010 X1

= ex;e(Xps, 1)+ € (0,p X)) A b(Xi 1)

A ~ -
+ i [{Vii b(Xyi» 1)} 0+ I{Vkiet(xkia1)}'{(0zPin)/\°'ki}]
2my; ¢ .
e h
+ S e(Ku 1), (66)
8mp; c? weXi 1

where the fact has been used that in the right-hand side of (48) P,;/my; could
be replaced by 0,5 X,; (up to terms of order ¢~ and bilinear in the charges).
The fields which occur here are given by the expressions (45) with (46). The
equation (66) is valid for the electrons. For the nuclei an equation like (66)
but without spin terms and without the last term follows immediately from
(48).

The equation (66) bears a close resemblance to the classical equation
(IV.A87), the difference being that extra spin terms occur here and that all
quantities are Weyl transforms of operators. Just as in chapter IV we want
to define a central point that characterizes the composite particle as a whole.
To that end we introduce now an operator X, ,, with Weyl transform X, in
such a way that the Weyl! transform of the relative position r,; = X;;—X,
satisfies the equation (cf. (IV.A101)):

L2 A N2
Y Mtk My (Oep i) P

- — e,ie i - -
+e? }., PO B Frtce 2'”ki(0tP X 7O rki)} = 0. (67)
J(#Fi) 87’C|Xkl—XkJ|
(The order of the matrices occurring here does not matter, since only terms
up to order ¢~ 2 are to be retained.) The factor |X:—X,;| 7 is defined in a
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similar way as in (47). From (67) follows the expression for the central point
X, in terms of X, (38-39)

1 1
Xk = — E n'lkiin"“ Ty Z %rnki(al? rk")zy'ki
my 1 mpc i
€ -
AT "ki+mki(OtPXk)'l'ki(atl’rki)} : (68)

i) 8lry — 1yl

At the right-hand side the relative positions r,; are to be understood as
Xii—mg VY m X (or Ry—my ! Y. Ryy), since only terms up to order
¢~ ? are to be included.

From (66) one may derive an equation for the atoms as a whole by taking
a sum over the electrons and nuclei. If one intréduces now quantities r;, de-
fined in (61) (with X, instead of R,), one finds as the left-hand side of the
equation of motion the Poisson bracket derivation 0,p of a quantity that has
the same form as (IV.A109). The right-hand side of the equation of motion
may be split again into three parts: an intra-atomic, an external and an
interatomic field contribution. The Weyl transforms of the fields are given
by (45) with (46) instead of (IV.A111). In the former spin terms and a deriv-
ative of a delta function occur for the electron contributions, which are
absent in the latter. Another difference is that the latter contains terms with
accelerations, which are missing in the former, because they are effectively
quadratic in the charges. As a consequence the intra-atomic contributions
to the right-hand side of the equation of motion are the sum of terms that
are the counterparts of those of (IV.A112) and an extra spin contribution
—0.pg, With g, given by

; el h 1
T Ok

gr =

S (69)
7 7
iy 2my; ¢ dnlr—ryl

For the Weyl transform of the equation of motion for the composite
particle as a whole we obtain thus on a par with (IV.Al 13):

Orp Pmk%—%c_zmk W37y my (O ) 47 > w»e",*i?’fj-jw‘ vk+gk:l
\ ; 1,0 i) 8nlrg;— 1y
= Z el e(Xi, )+ ¢ (0 Xur) A B(Xsi, 1)}
+c %0, [Z 9% {(atP 1) e(Xess O+ (00 X, )1 e(Xpi, 1)

5 N, z)ﬂ Lyl [{vki b(Xei. 1)} 0
¢

my, i 2my;c

+C—I{Vki e(Xui» 1)} {(0p Xi) A i)+ A e(X, Z)} > (70)

My €
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with v, = 0, X, the Weyl transform of the velocity and 5, = Y myr g A
d,p1y; the (non-relativistic) orbital inner angular momentum. The quantities
e and b are the Weyl transforms of the interatomic and external fields.

If the external fields change slowly one may make a multipole expansion
of the external field terms at the right-hand side of (70) and retain only the
charge and dipole terms. Then one finds, in semi-relativistic approximation,
with the definitions (64) and (65) for the semi-relativistic multipole moments
defined with respect to X, for the external field contribution f of the right-
hand side of (70) (cf. (IV.A118)):

fie = a{EXi, )+ o AB (X, 1)}
H{VeE(Xi, 0}(i” = 7D Av) + {V B(X,, Oy e m Ay
+c7 0D AB(Xy, )= vl AE(X, 0}, (71)
where the Maxwell equation VAE, = —d,B, for the external fields has been

employed. If a single composite particle moves in an external field the semi-
relativistic (Weyl-transformed) equation of motion becomes thus:

Op(mevi+g4) = fis, (72)
where at the left-hand side only those ¢~ 2-terms that contain spin vectors
have been retained. As compared to the non-relativistic equation
(VL.98-100) one finds here, apart from an extra term g, at the left-hand side
due to the presence of spin, a term that couples the magnetic dipoles in
motion with the gradient of the electric field at the right-hand side and more-
over a term with the vector product of the orbital magnetic moment and the
electric field. The latter is the magnetodynamic effect, from which the spin
part 1s absent here, since the electrons are supposed to carry only normal
magnetic moments (v. (VIIL158)). Furthermore both the electric and mag-
netic dipole moments contain spin contributions. The fields E, and B, are
taken at the centre X, of the composite particle.

For a set of composite particles which move in each other’s fields, there
also exist interatomic contributions to the right-hand side of (70). If the
atoms are outside each other one may make a multipole expansion both for
the sources of the interatomic fields and for the particles on which the fields
act. One finds then in the semi-relativistic approximation a double multipole
expansion in terms of electric-electric, magnetic-magnetic and electric—
magnetic multipole moments. Only the former two terms are written down
here for brevity’s sake:

i 1
L L S v, Vn . (n)Vm s (m)
o —fee l(;{) kn,;;:o B YW X — X

< 1
) Vn—l . ('n) V . Vm—l . V(m)/\V .
+l(;k)an,mZ=1( kv AV) (VT Dy ) 4n[X, — X,

(73)

§6 LAWS OF MOTION OF COMPOSITE PARTICLES 487

In the general case that the atoms are at arbitrary distances of each other
one may write the sum of the forces due to the external and interatomic fields
as the sum of a long range and a short range part. The long range part fi
is given by the sum of (71) and (73). The short range part f; equals the differ-
ence of the unexpanded interatomic field contribution and the expanded one
(73). We write down only those terms of 2 that are the unexpanded counter-
parts of £ —fk. They read

fi=-3 3 [1—C_Z(arr’"ki)'(atp"lj)

1(Fk) i]
_ fi 17

+e 2‘{azp("ki—"1i)}' f(“i— Ot L O'zj) /\Vki‘

7 2my, m; f

hZ

dmymy;

_ €. €y ’
+¢7? (O'ki/\Vki)'(O'lj/\Vki):, Vi — _(fk] _kaé)' (74)

4”lei”“lel

The terms with spin only apply for the electrons, not for the nuclei. The total
equation of motion in semi-relativistic approximation becomes

Op(my v +g,) = f- +fe (75)

with both long range and short range forces at the right-hand side.

b. The energy equation

The energy equation for a composite particle is obtained by multiplying
equation (66) by 8,,X,, and summing over 7. Then one finds, by introducing
the relative positions r,; and using (67), for the left-hand side an expression
which is the analogue (in fact a Weyl transform) of (IV.A121). If one defines
subsequently, just as in (IV.A122), a quantity #,; by means of the definition

=4 g 1,242 1,72, (8
Yii = OpFrit2C "0 Op P+ 3¢ "0, (0rp 1y )0,

+e 20 (0,p Fii)Oep P+ o 5 Wrge(Xp, 1), (76)
My €

one finds for the left-hand side of the energy equation the Poisson bracket
O.p of a quantity that has the form (IV.A124). At the right-hand side of the
energy equation appears the sum of an intra-atomic, an interatomic and an
external field contribution. For the first of these one gets, by making use of
the field expressions (46), a result that is the sum of an expression like
(IV.A125) and extra terms depending on spins and on the delta function
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8(ry;—r;), namely (up to terms bilinear in the charges):

e ;i ey e
— [uk*%vk'gk‘“ > { k, k’, 4+ X o f 5( Fii rk,)ﬂ (77)
i, i(7# 5y \8mt|rg; — 8m

(in the last term the summation over 7 is confined to the electrons), where we
employed the abbreviation u, given by

h o,
Uy = Z {1 + - 5 l’ki'(O'ki A Vki)
i (T D) My C
h? €4i i
o (GuA V(oA vk,.)} _ Gl (75)
dmymy;c 81|y — 1yl

(in the second term the summation over 7 is confined to the electrons; the
same applies to both i and j in the third term) and g, given in (69). (In (78)
we included the Coulomb energy although it drops out in (77); this will turn
out to be convenient in the following.) As the energy law, up to order ¢ ™2,

we find now an equation which is the counterpart of (IV.A126), namely

-2 4 212 22 2 . -u_l-
Op \:%mk vl:cl "‘%C ny v + Z (%mki Fri ‘*ﬂlﬁc Mg Fii O + ¢ mk; ”la)
7

- €; €,
+7c g Z — Kk [rkl T(’kz ’k_]) 'k/—'_vk}
i i) Snlrkl ,kj!

- . eneh?
—c g Z “k_'_,sz S(Vkl ’kj)+uk+vkgkj}
=i 8my;

e h

= Z ei(Orp in)'e(ina t)"‘ Z’ (6,p in)' [2 {Vki b(sz f)}"’ki
ki ki

ny; C

,h
+ _eﬁh JVl\ze(Xkl’ t)} J’(alPXIcz)/\akz}_,_ 8 % C Alnze(XI\u 1)}

2my; 2 mg;

+¢ 720, [Z e {—s—'i Ae(X,, t)
7 my,

+2(0rp Fri) e(Xui» e+ 07 (X ’)} '”k} . (79)

where the tensor T has been defined in (5) and where e and b are the sums
of the external fields and the interatomic fields due to the other atoms.

If the external fields change slowly a multipole expansion of the cor-
responding terms at the right-hand side of (79) may be performed. The
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dipole terms read in the semi-relativistic approximation

l//ll\"e = ekvk.Ec(XIw t)_'_vk.{VkEc(Xk» t)}.(”l((l) ¢ ! (1)/\1?)

. 0B (X, 1
e A P E (i )= 0 e an B
+Cop{ViopinBo(Xi, 1)} +2¢~ "0 {(Vhiors A V) (X, 1)} (80)

where we employed the Maxwell equation VAE, = — 0o B, for the external

fields. Only the terms that are linear in the charges are to be retained here.
(For convenience terms with 8,(v{") A v,) have been added, although strictly
spoken they are negligible in the present approximation.) For the semi-relativ-
istic (Weyl-transformed) energy equation of a single composite particle in a
slowly varying external field we found thus

Opp(my vl%+vk'gk+fk+uk) = Y, (81)

with the internal kinetic energy
=% Z My r;az (82)

At the right-hand side of (81) an expression appears which is equal to (80).
From the latter form one finds by comparison with the non-relativistic
result (VI.105-106) which additional terms arise in the semi-relativistic
theory: in the first place terms due to moving magnetic dipole moments and
moreover terms with the spin parts of the electric and magnetic dipoles.
Furthermore the fields are taken at the centre X, instead of R,.

As compared to the semi-relativistic classical result (IV.A127) the present
result contains as extra terms with the spin:

v (Vk E ) (”I(cls)pm - 1vl(cls)pln A vk) + vk.(vk Be).vl((fs)pin N (83)

(In the semi-relativistic limit the term that couples the spin electric dipole
moment in motion with the magnetic field does not contribute, and neither
does the Poisson bracket derivative of the spin electric or magnetic dipole
moment.) The form of these terms is consistent with the results of chapter
VIIL: v. problem 6 of that chapter.

If particles forming a set move in each other’s fields the energy equa-
tion for these particles contains also an interatomic field contribution that
may be developed in a double multipole series if the atoms are sufficiently
far apart. We write, for brevity’s sake, only the terms which couple the elec-
tric multipoles with each other and the magnetic ones with each other. They
follow by using the expressions (45) and (46) for the Weyl transforms of the
fields:
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W;I;"‘//i%c — Z Z {ka [.L(") kp‘gm) Vm

I(#k) nm=0
1

Qo) Vi IV
K 1

_ Z Z [(Vz—l : (ﬂ)/\v) {Vm 1 (OzP V(’"))/\V}

(#k)y nm=1
+opV (Vi L v AV)(VE T v AY)
— (v —v)Vi(Vi~ e VIEns)pm AV (V) EERVEEN V)
VT @ A VORI U A

G - i
— (Vi VI AV T (0 ) A Y, }]m- (84)

In the general case of arbitrary separations between the atoms, the inter-
atomic contribution to the energy law may be written as a sum of a long range
part which is given by (80) with (84) and a short range part y;. The latter is
equal to the difference of the unexpanded and expanded interatomic field
contributions. Again we write only those terms that give upon expansion the
long range terms (84). One finds for these terms:

=2 2 { (@t Op 1) Vig— ¢ (O ¥i) (O 11 ) (00 + B 1)V

I(#£ky 1,

5 5 (0,4 0ip ¥1;) Vis(Bip 1) (01; A Vi)
my;c

1j

+

(vk+atP’kz) Vii(Op 1) (01 A Vi)

27’”[] C
h

2n 15: C

fZ
— —1~ ——— (vk -+ 5“: rkl) Vk;(akz A Vkl) (611 A V"‘)}
dmymy;c

(”k+6 0 ¥1i)" Vi Orp(Fri — #17) (03 A Vi)

A (=) (89)

(Again sums of terms in which spins occur are extended only over the elec-
trons.)

§6 LAWS OF MOTION OF COMPOSITE PARTICLES 491

The energy equation for an atom that is part of a set of atoms has been
found now as:

Oup(3my, 0+ 0y e+ ) = Y+ (86)

with long range and short range power terms at the right-hand side.

c. The angular momentum equation

The angular momentum equation for a stable group of spin particles may be
derived along similar lines. One finds then an expression for the sum of [st:
the Poisson bracket of the Weyl transform of the orbital angular momentum

sl(cl) = Z My i Ay (87)
1

(v. (61) and (76) for the expressions ry; and #;;) with the Weyl transform H
of the Hamiltonian, 2nd: a commutator of the spin angular momentum
SIEZ) = Z, thoy (88)
of the particles with H, 3rd: the Poisson bracket with H of a term
s = Z, (P A o) A Pyi2mi; (89)
due to the fact that the spins are in motion (v. (53)), and 4th: the Poisson
bracket of an intra-atomic field contribution

@ _ _

erie;
ss 5 P A (03 A V) — 5 (90)

Lili# ) 2my ;¢ 4|y — 1y
One finds for the special case of a single composite particle in a slowly
changing external field (E,, B,):

i
Orp(st) +5 + 5 + ; [H, s3]

= pOA(E.+c” vk/\B)+v(”/\(Be-c_lvk/\Ee)+c_1vk/\(V,Efs)pin/\Ee)
—V NGy (91)

(with v, = 0,,X, and g, given by (69)) up to dipole terms. As compared to
the non-relativistic quantum result (VL.111-112) one finds two extra terms
that couple magnetic dipole moments with the external electric field and a
term with the spin momentum g,. The fields are taken at the position of the
central point X, with respect to which also the semi-relativistic dipole mo-
ments are defined (v. (65)).
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Comparison with the classical semi-relativistic equation (IV.A136) shows
which spin terms are to be added in the present case. In the first place one
has at the left-hand side the spin contributions (88-90) to the inner angular
momentum of the composite particle. At the right-hand side four spin terms
are added, namely a term —uw, A g, with the spin momentum g, (69), and
three terms

.ul(c}a)pin A Ec + VI((.Is)pin A Be + ¢ 1(‘vk A Vl(c.ls)pin) A EC . (92)

The form of the last two terms is the same as that of (54).
The extension to the case of a set of composite particles in each other’s
fields is straightforward and will not be given here.



