CHAPTER VIII

Dirac and Klein-Gordon particles
in external fields

1 Introduction

In relativistic quantum mechanics free particles are described by wave equa-
tions: the Klein-Gordon equation for particles without spin and the Dirac
equation for particles with spin 1. If the particles move in external electro-
magnetic fields, generated by classical sources, the interaction of these fields
and the particles is described by adding appropriate terms to the wave equa-
tions. If one wants to confine oneself to single particle theories the electro-
magnetic fields should change relatively slowly in space and time so as to
avoid effects due to particle production.

The purpose of this chapter is to find equations of motion and of spin for
Klein-Gordon and Dirac particles of what one may call the Ehrenfest type,
i.e. expressions for the time derivatives of the expectation values of the posi-
tion and spin operators, The latter will be uniquely determined by imposing
their transformation character with respect to the Poincaré group. The
Hamiltonian, which governs the time behaviour of the expectation values,
will be brought into a form which allows to distinguish between positive-
and negative-energy solutions; it will be given up to terms with the first
derivatives of the potentials (the fields).

In sections 2 and 3 the equations of motion and of spin for a particle with
spin 4 are derived!. They will turn out to have forms analogous to those
found in chapter 1V for a classical composite particle with inner angular
momentum. For composite particles without inner angular momentum the
equations of that chapter simplify considerably. In sections 4 and 5 it will
appear that equations of that simple type may indeed be derived for a
quantum particle without spin, i.e. a particle described by the equation of
Klein and Gordon.

' L. G. Suttorp and S. R. de Groot, N. Cim. 65A(1970)245, on which paper the discussion
in these sections will be based.
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2 The free Dirac particle

a. Invariances of the Dirac equation

It is useful to study first the free particle case, since it contains a number of

aspects which it has in common with the problem of a particle in a field.

In Dirac’s theory for a single particle the states are described by four-
component wave functions (R, ¢) that depend on space and time in the
coordinate representation. The time evolution of these wave functions is
governed by the Dirac equation. This equation may be written as

. ﬁ al//(R’ t) , (1)

H,¥(R, 1) = 5

where the Hamilton operator for a free particle with mass m (5 0)is given by
H,, = coa-P,,+pmc. )

The symbols & and f§ stand for hermitian 4 x 4 matrices which obey the anti-
commutation rules

{wa} =2U, {af} =0 {Bp}=2 )

(where U is the unit tensor and 2 stands for twice the unit 4 x4 matrix).
Furthermore P, is the momentum operator, which reads
h 0
R

P:

op

(4)

o5

i

in the coordinate representation.

Physical quantities are represented by operators acting on wave functions.
The expectation value of an operator Q,, (which is a function of the coor-
dinate R and the momentum operator (#/i)d/0R) in a state characterized by
a wave function Y(R, t) is defined as

Qp = flpT(R, N2, (R,é 2
i 6R

) U(R, 1R 5)

The Dirac equation (1) with (2) is covariant under the transformations
of the Poincaré group, of which we shall study in particular spatial trans-
lations, spatial rotations, spatial inversions, time reversal and pure Lorentz
transformations.
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In a coordinate frame which is connected to the original frame by an
infinitesimal transiation
R = R+e,
(6)

t =1,
(Where ¢ is an infinitesimal vector), the wave function transforms as
V(R 1) = Y(R, 1), ™)

since then it follows that (1) with (2) is invariant, i.e. valid for quantities
with primes throughout. Moreover the inner product | yIy,dR of two wave
functions is invariant under this transformation.

The expectation value in the new coordinate frame

h o

f‘/’,T(Rla )2, (R’,; 5;{,) Y'(R', ¢')dR’ (8)

may be written (up to first order in ¢) as

[va.ne, (v 1

i OR’

) W(R', )R’

B

+e f YR, 1) &% , Q0 (R, i O%ﬂ (R, ©)dR’, (9)

where a partial integration has led to a commutator. We shall write this as

Qop+0Q,,, (10)

where the first term is equal to (5). The second is the expectation value of the
operator

5Q,, = -;l-s-[Pop, Q] (1)
This shows that P, is the generator of spatial translations.
A coordinate frame which is related to the original frame by an infinite-

simal rotation has coordinates

R = R+enR,
(12)

!

=1,
with & an infinitesimal vector. The wave function in the new frame is

VR, ¢) = (1-%iea)(R, 1), (13)
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where the matrix ¢ is defined as
6 = —LiaAa. (14)

Indeed one may check that the transformations (12) and (13) leave the
Dirac equation (1) with (2) and the inner product of two wave functions in-
variant.

The expectation value of an operator Q,, in the new coordinate frame
becomes, upon introduction of (12) and (13) into (8), of the form (10) with
the operator

5Q,, = ; e[RAP,,+1ho, Q). (15)
1

This shows that RA P, +3#6 is the generator of spatial rotations.
A vector operator is characterized by

5Q, = e, (16)
(cf. (12)). For such operators (15) becomes
[(RAP,, +3ha), QL] = ihe'™*Q ., (17)
with &% the Levi-Civita symbol.
For spatial inversion

R = —R,
(18)

t =t
the wave function transforms as!
YR, t") = BY(R, 1) (19)

Indeed (18) and (19) leave the Dirac equation (1) with (2) and the inner
product invariant.
The expectation value of an operator Q,, in the new frame reads:

~

[0, 00, (1 2 ) i,
i CR’
h 0

- [vi® e, (- -2 L) pur e (20)

A polar or axial vector operator is characterized by the property that the
expectation value in the new frame is equal to minus or plus the expectation

! Phase factors will be left out since they do not affect the expectation values considered
here.
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value in the old frame. Hence it follows from (20) that polar or axial vector
operators satisfy the relation

Qop("Rb _Pop) = $ﬁszop(Ra Pop)ﬁ’ (21)

For time inversion
R =R,
(22)
V= —t
the wave function transforms as

lp,(Rla t/) = TW'(R, l‘), (23)

where the asterisk indicates the complex conjugate. The matrix T'is such that
it transforms the Dirac matrices in the following way:

T 'aT = —a*,  T7pT = p* (24)

From these relations it follows that 7#7T is a multiple A of the 4 x4 unit
matrix. The anti-linear transformation (23) with (22) and (24) leaves the
Dirac equation (1) with (2) invariant. The inner product of two wave func-
tions changes into its complex conjugate, so that its absolute value remains
the same.

The expectation value of an operator £, in the new frame is

f VIR, 19, (R', ho0

o I Rl, t/ de
i aR’)l//( )

= f V(R TG, (R, —f; 5(;_{) T*Y(R, t)dR, (25)

as follows by inserting (23) in the first member and taking the transpose,
which is denoted by a tilde. Choosing for Q,, the unit operator and requiring
the normalization of the wave function to be invariant one finds that the
matrix T is unitary (777 = 1). From this property together with 75T = A
it follows that T = +7 and also 7% = +7~'. Thus instead of (25) one
may write
f i L ROON
Y (R, )2, (R>_. T“,) '(R', t)dR
i OR

[y ora. (x - 2|
- f V(R )TS,, (R, iaR) T~ (R, )dR. (26)

We now turn to the discussion of pure Lorentz transformations. Under an
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infinitesimal pure Lorentz transformation the space-time coordinates trans-

form according to
R’ = R-—¢ct,
27)
ct’ = ct—¢&R,

with ¢ an infinitesimal vector. The wave function then transforms as
VR, ') = (1—Lea)y(R, 1), (28)

since the Dirac equation (1) with (2) and the inner product is invariant for
the transformation (27-28).

We now want to compare the expectation value (5) of an operator Q,, at
the time ¢ with an expectation value (8) at the time *', which is numerically
equal to z:

, B0

/?ﬁ/)f(go (R,_ ~
f‘p( J2ep i OR'

) V(R ¥)dR". (29)

Here the variables R’ and 7" occur, which correspond to the variables R and
i in the old frame. The latter follow from the inverse of the Lorentz trans-
formation (27). One has, with i’ = ¢:

R = ﬁ’+8cl,
¢t = ct+eR,
up to first order in &. From (28) with circamflexes, i.e. from
YR, 1) = (1—tea)y(R, 1) (31)
and (30) it follows with the Dirac equation (1) that one has:
Y (R, 1) = W(R, t)—4eay(R', 1)

MR, i s, (A, h 0) ,
+ctgr A — —gR'H, R~ — R, ). (32
TR e o (K03 o) VRS- (32)

Inserting this expression and its hermitian conjugate into (29) we obtain as
the expectation value in the new coordinate frame an expression of the form
(10) with

02, =

o é e[Nop—ctPyy, ., (33)

where we introduced the abbreviation

N,, = ¢ 'RH,,—}iha (34)

op
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or, with the use of (2),
N,, = $¢"{R, H,,}, (35)

op
where the curly brackets indicate the anticommutator. In this way we found
that N, —ctP,, is the generator of pure Lorentz transformations.

b. Covariance requirements on position and spin

For the description of the behaviour of the particle we need operators for the
position and for the spin. A number of constraints upon these operators will
follow from requirements about their transformation properties with respect
to the Poincaré group, in particular with sespect to spatial translations,
spatial rotations, spatial inversions, time reversal and pure Lorentz trans-
formations.

As transformation properties with respect to infinitesimal translations (6)
we require that the expectation value of the position operator X,, change
by an amount ¢ and that that of the spin operator 5,p be invariant. Then from
(11) it follows that

]
[P, X,,] = - U, (36)

[P, 5,,] = 0. (37)

As to the rotation properties we require that both the position and spin
operator be vectors, so that one has from (17)

[(RAP,, +3he), X1 ] = ihe'*X, ., (38)
[(RAPy+1h6), si)] = ihe s, op- (39)
As regards the transformation properties with respect to spatial inversion

we postulate that the position operator be a polar vector and the spin
operator an axial vector. In view of (21) this means that we require

XOP(_ R> - Pop) = - ﬁXop(R> Pop)ﬁ: (40)

Sop(— R, —P,) = Bs,,(R, P,,)p. (41)
For the transformation property with respect to time reversal we require
that the expectation value of the position operator be invariant, while that

of the spin operator should change sign. In view of (26) this means that we
postulate

X,o(R, —=P,,) = TX (R, P,)T "}, (42)
Sop(R, =Pg) = —T5,,(R, P,,)T ™, (43)

where the tilde indicates the transposed of a 4 x 4 matrix.
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We now turn to a discussion of the transformation properties of the posi-
tion and spin operators under pure Lorentz transformations. The expecta-
tion value of the position operator X, will be required to change under the
infinitesimal pure Lorentz transformation (27) by an amount! which is equal
to the expectation value of the operator

5X,, = —ect+ 2-;* (X, [Hop» X0 1} (44)
[

Therefore it follows from (10) with (33) that the covariance condition® for
the position operator is:

[wa ép] = “ _”X(l’w [Hop> X{;p]}’ (45)

where (36) has been employed. The use of the latter formula had as a con-
sequence that the terms with the time ¢ cancelled, so that the requirement
(45) contains only the three-vector X,, for the position operator.

For the spin operator s,, we require that its expectation value change un-
der the pure Lorentz transformation (27) by a term® which is the expectation

! In the classical theory of a composite particle the set of centres of energy at successive
times determines a world line independent of the Lorentz frame. As a result the positions
observed in different Lorentz frames are connected in a particular way (cf. M. H. L. Pryce,
Proc. Roy. Soc. A 195(1949)62). In fact, let us consider the two points ¢, X(#) and 7, X(7)
on the world line of which the time coordinates ¢ in the reference frame and ¥’ in an in-
finitesimally different frame have the same numerical value. Thus from Q7), t = =
i—cle-X(f) and X' () = X'(I’) = X(F)—é&cl. From the first of these equations one has
up to first order in € that ¢ = cz-+& - X(r). With the help of this relation the second equa-
tion becomes upon Taylor expansion up to first order

X/(f)—X(1) = —sct+c ax(t)dx(’)

This expression is equal to the expectation value of (44) for a narrow wave packet in the
limit # - 0, since then the expectation value of a (symmetrized) product of operators is
equal to the product of expectation values.

2 Cf.T.F.Jordan and N. Mukunda, Phys. Rev. 132(1963)1842; G. Lugarini and M. Pauri,
N. Cim. 47A(1967)299.

3 In the classical theory of a composite particle the inner angular momentum s is the space-
space part (s23,53,512) of an antisymmetric tensor s28 of which the space-time components
(519, 529, 53% are denoted as £. With the same notation as used above we find that in a
Lorentz frame which is connected to the observer’s frame by an infinitesimal Lorentz
transformation, the inner angular momentum s’ at the time ¥ which is numerically
equal to 7 is 8'(#) = s(?)+& A t(I). With a Taylor expansion this relation becomes

s'(1)—s(t) = ent(t)+c” eX(z)ds(t)
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value of the operator
080y = EAL,,+ 2»%; {eXop, [Hops Sopl} (46)
with the three-vector operator ¢,, such that
Ot,, = —&AS, + {a Xop» [Hops ]} 47)

With (10) and (33) it now follows that the covariance condition for the spin
operator is

[Nop » Sop] = JZC_ ! {X(i)p s [Hop > S{;p]} + ihaijktk,op (48)
together with the relation
[Nop > jp] =3c ! IX(L:p > [Hop > t({p]} - ihgijksk,op > (49)

where (37), which is valid both for s,, and t,,, has been used.
The conditions (36-43), (45) and (48-49) will be employed for the de-
termination of the form of the position and spin operators.

c. Transformation of the Hamiltonian to even form; the position and spin
operators

In the Pauli representation the Dirac matrices « and f of the Hamilton opera-
tor (2) are written as

& = p;0, ,8293: (SO)

where the matrices ¢ are the 4 x 4 matrices

¢ = (g 2) (51)
Y R O FRC

dt(t)

with ¢ the 2 x 2 Pauli matrices
Ty, Ta, Ty = (O 1)
15 %2 v3 — 1 O ”

Likewise one finds

t()—t(t) = —ens(t)+c e X(r) —

For narrow wave packets in the limit # — O one finds that these expressions are the expec-
tation values of (46) and (47).
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The matrices p are the 4 x 4 matrices:

0 1 0 —i 1 0
P1,P2, 03 = (1 O) s (1 0) s (0 _1) 2 (53)

where 1 stands for the 2 x 2 unit matrix. (The advantage of the use of p- and
o-matrices is that the three p-matrices commute with the three g-matrices,
while the product rules for the p-matrices and for the g-matrices amongst
each other are the same as those for the Pauli matrices .) The Dirac ma-
trices (50) are thus of the form:

e

The Dirac equation (1) with (2) may now be written as a set of two equations
for the upper two and lower two components y, and i/, of the four-com-
ponent wave function y:

P, +mcty, = — ﬁ 6:#1 ,
i ot
(55)
b6
Py —mcty, = — . O-dlf.
i ot

These equations are coupled because the matrices «, which occur in the
Hamilton operator, have ‘odd’ character in the representation (54), i.e. they
couple the upper and lower components of the wave function . The equa-
tions for upper and lower components may be uncoupled by performing a
unitary transformation due to Pryce! and Foldy-Wouthuysen?:

2 .
Uy, = F?gﬂ?_c_ifﬁfzﬁzp (56)
{2E, (E,, +mc*)}*
with the abbreviation
E,, = (PP +m’c*) (57)

(One may find the expression (56) by solving the eigenvalue problem of the
Hamiltonian (2) and using the complex conjugates of the eigenvectors as the
rows of the matrix U,,.)

Indeed with the transformation (56) the Hamilton operator becomes

A, = U, H,, Ul, = pE,,, (58)

t M. H. L. Pryce, Proc. Roy. Soc. A195(1949)62.
2 L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78(1950)29.
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which has ‘even’ form, since f has ‘even’ character. The circumflex will be
employed to indicate operators in the Pryce-Foldy-Wouthuysen (P-FW)
picture in order to distinguish them from the original operators in the Dirac
picture.

Since now the Hamilton operator has the simple form (58) its eigenvalues
are immediately seen to be +(c?p* +m?c*)* with p the eigenvalue of the
momentum operator P,,. The positive- and negative-energy eigenfunctions
have now the property that the lower two or upper two components vanish.

If one calculates the expectation value of a physical quantity for a positive-
or a negative-energy solution only the part of the corresponding operator
that is even in the P-FW picture plays a role. In particular if one wants to
define the position operator only its ‘even’ part is of importance. This even
part, which we shall simply denote by the symbol X,, from now on, is com-
pletely determined if we impose a number of conditions. In the first place,
from the transformation properties of translation (36), rotation (38), spatial
inversion (40) and time reversal (42) with T = o, in the Pauli representation’
it follows that in the P-FW picture X, has the form

Xop = UopXop UL, = R+{/,(Eop) + Bfo(Eop)}6 A Py, (59)

where £ (E,;,) and f5(E,,) are arbitrary real functions of E,,. Indeed P, and
o are the only vectors available and hence P, and o AP, the only polar
vectors. If one limits oneself to vectors that have the right transformation
character under time reversal one is left with ¢ A P,, only®.
The transformation character under pure Lorentz transformations is
determined by the commutation rule (45), which reads in the P-FW picture
[Nop> X3l = 3¢7 [ X0y, [Hop> XT3 (60)
The left-hand side contains the generator 1\70p in the P-FW picture. It has
been given in (35) in the Dirac picture. In the P-FW picture the Hamiltonian

o~

H,, is given by (58) while the Dirac coordinate gets the form

S ; .
R, = UL,RU!, = R+&,,, (61)
where
; hoU,, . ho oU!
gop =- —— U;p =T Uop * = ée,op_‘_éo,op : (62)
i oP,, i Top,
! The T-matrix may be chosen as o> in the Pauli representation (50), as follows from (24).
Indeed o, fulfils the relations T#7 = A and 77T = 1, with 2 = —1.

2 If one does not impose time reversal invariance from the beginning one should write
additional terms {/3(Eop) +BfulEop)} Pop int (59). If the requirement (60) is imposed on (59)
with these terms added one finds that f3 (Eop) and f4(E,p) vanish. Hence, strictly spoken,
time reversal invariance need not be invoked to obtain a unique position operator. The
latter is also true for the obtention of the spin operator.
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The explicit forms for the even and odd parts & ., and &, ,,, follow with (56)

£ - he*Py, Ao
eop T ST E L3y’
2E (E,,+mc
o(Eop ) )
E o= — hicha | hic®forPoy Pop )
oo 2E,,  2E(E,+ mc?)
The generator 1\70,) in the P-FW picture becomes now:
~ - hcP, Ao
Nop = JZC lﬁ{R: Eop}+ "“B”_—"p (64)

2(Eop+mc?)

If (59) and (64) are inserted into (60) one obtains the result that a certain
linear combination of the independent tensors

PL(e AP, PlL(oAPy), e*a, (65)

vanishes. The tensor £7*P, . P, o depends upon these, as a consequence of
the relation:

Pi(a AP —Pl(cAP,)— P2 ey gyt 8Py oy Pop's = 0. (66)

All coefficients of the independent tensors (65) have to be zero. This leads
to the solution:

h
BT e e 2 Eop == O 67
Si(Eer) 2m(E,p+mc?) - SalE) ©7)

If this is substituted into (59) we obtain as the position operator in the
P-FW picture:

X, =R+ — - P . (68)
® 2m(E o, +mc?)

The expression X,, in the Dirac picture may be found with (56), which
implies
Ul = BUq B (69)
and
icfanPy, ?ngg_{} (6 AP,,)

(70)
E Eo(Eopt+ mc?)

- To—
6, = UypolUy, =0
op

Using also (61-63) we get then from (68) the Dirac picture position operator

] P, P
X, = R+ i B (a—c2 Lgp,_';rz) . (71)

2
2mce op
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In this way the even part of the position operator has been obtained in a
unique way by imposing its transformation character. A position operator
of this form has been put forward by Pryce’.

The part of the spin operator that is even in the P-FW picture may like-
wise be determined by means of the covariance conditions of the preceding
subsection. Indeed from the requirements (37), (39), (41) and (43) for the
translation, rotation, spatial inversion and time reversal properties, it fol-
lows that the even part of the spin operator, which we shall denote by the
symbol s,, in the Dirac picture and by §,, in the P-FW picture, has the form?

§0p = {fl(Eop) +ﬂf2(Eop)}a+ {f3(Eop) + :Bf4(E0p)}Pop Pop'a (72)

with arbitrary real functions f(£,,) (i = 1, ..., 4). (Indeed ¢ and P, P, o
are the only axial vectors available. Moreover they have the right time re-
versal behaviour.) We now substitute this expression into the covariance
condition (48 ), which in the P-FW picture reads

. . s , ho..
[V 351 = 6™ (K, [Haps 8211 = o g (73)

Then one finds, by noting that the coefficients of the independent (sym-
metrical) tensors Py, Pl P, o and §”P,-¢ must vanish, the form of the
functions fi( E,,). In this way the expression (72) becomes

A+ Pu
E,,+mc*

$op = (A+BWE,, 06— ¢*Py, Poyo, (74)

with arbitrary real constants A and u. Furthermore one obtains from (73)
for 7,,:
fop = cPA+Pu)P,, Ao (75)

The expressions (74) and (75) fulfil the relation (49) (with circumflexes).
From the transformation properties we have found an expression for the
spin operator §,,, which still contains two arbitrary constants. (The reason
for the occurrence of such multiplicative constants is the fact that the co-
variance requirements (37), (39), (41), (43) and (48) are all linear and homo-
geneous in s,, and £,,.) To fix the scale we impose a final condition. We re-
quire that the sum of the orbital angular momentum X , A P, and the spin
angular momentum s,, be equal to the total angular momentum which is the

Y M. H. L. Pryce, op. cit.
2 If time reversal is not imposed nothing changes in the expression (72), in contrast with the
situation for the position operator.
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generator of rotations given by (15):
Xop APy, +5,, = RAP, +3ho. (76)

Transforming from the Dirac picture to the P-FW picture we find for this

condition
Ry APoyt5yy = RAPy 3 ()

We could omit some circumflexes, because one has f’op =P, and
RAP, +3h6,, = RAP,,+1ho, (78)

as follows from (61-63) and (70). Substituting (68) and (74) into (77) one
finds that the constants are A = #f/2mc?* and u = 0, so that finally the even
part of the spin operator (74) becomes

E .
§op = h P g - .ﬁgzpfepfwz ) (79)
2me 2m(E,,+mc”)
while (75) gets the form:
, h
top = — PP, Ao, (80)

2mc

The spin operator (79) is conserved since it commutes with the Hamiltonian
(58).

In the preceding we showed that the covariance properties alone sufficed
to fix the position operator Xop and to find the spin operator §,, apart from
multiplicative constants. It turned out to be possible to choose these con-
stants in such a way that also the total angular momentum condition (77)
could be satisfied. (Of course, since in the present case Xop is completely
fixed by the covariance requirements the condition (77) alone would have
been sufficient to determine 8,,. However, in view of the fact that such a
procedure is not possible in the case with fields — to be considered later — we
have not followed this line of reasoning to determine $,,.)

The operators (79) and (80) are connected by the relation

BcP,

fop = vE;:E N (81)
By introducing the velocity operator in the P~-FW picture
I en o Bc*P
b, =~ [ Hopr Xop] = o8 82
= oy, Rl =25 52)
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(where (58) and (68) have been used), one may write the relation (81) also as
fop = € Dop ASy,. (83)

Lt is the quantum-mechanical counterpart of the classical relation P.5% =0
(IV.67) with p* = mu” (IV.119) for the field-free case.
In the Dirac picture the operators s,, and top follow from (79) and (80):

ihfan P
Sop = Jho— PENFor
Pt 2mc ®4)
t h PP, A

op = [ g,

" 2me P ®3)
where we used (70) and:
~ ca P, + fmc?

Uopﬂ UZp = ”‘—""—*’EM[{)’“/I* T (86)

op
which follows from (2), (58) and (69). The spin operator (84) has been given
already by Prycel.

The operators (84) and (85) are the space-space and space~time parts of an
antisymmetric tensor

"y

h
B MY v v
Sop = Zho- + “2;71;(‘))“1)0;)-‘)] ng s (87)
where we introduced Dirac matrices y* (L=0,1,2, 3) defined as:

= —if, = —ipa (88)
and the abbreviation

ot = =4 '] (89)

The zero-component PY, of PZ, is defined to be equal to Hyfe (= aP,,+
+ fime). The spin tensor (87) has been found by Fradkin and Good? and
by Hilgevoord and Wouthuysen® starting from a different basis.

The components of the position operator (68) do not commute; in fact
one finds the commutation rule

(€6 X1 = i (. Fronlosn) (%0)
E, m-Eg,
M. H. L. Pryce, op. cit.
D. M. Fradkin and R. H. Good jr., N. Cim. 22(1961)643.
J. Hilgevoord and S. A. Wouthuysen, Nucl. Phys. 40(1963)1.

W m
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(it has the same form in the Dirac picture, i.e. without circumflexes). For the
components of the spin operator one gets a commutation rule of the form

m 262

[S‘ip: §cj;p = l'hSijk (gk,op+ P_““‘—*——klop Pop.sop); (91)
(again it has the same form in the Dirac picture).

The requirement of covariant behaviour imposed on the part of the posi-
tion operator that is even in the P-FW picture has led to non-commuting
components. This state of affairs is different from the situation in non-
relativistic theory, where one is acquainted with position operators that
possess commuting components. (Indeed the right-hand side of (90) is of
order ¢~ ?: namely of the order of the square of the Compton wavelength.)
Correspondingly the commutation relations for the components of the spin
operator do not have the same form as those for the components of the
generator R A P, +1ho of spatial rotations’.

1f in Dirac theory one would impose as a condition the commutation of
the Cartesian components of the even part of the position operator one finds,
following a similar line of reasoning as above, a position operator which is
that of Newton and Wigner? (v. appendix):

Xop.NW = R (92)

This operator however does not possess covariant properties as does (68).
It has been tried to reconcile the requirement of covariance and commuta-
tion of the components of the position operator. This can only be achieved
through an interplay of even and odd parts of the position operator. One
obtains in this way the Dirac position and spin operators (v. appendix and *).
However the even parts alone of these operators violate the covariance con-
dition, and since only these parts occur in the expectation values for positive
(or negative) energy solutions the latter will not possess covariant properties.
(Still a different position operator may be proposed* if apart from the re-
quirement of evenness also the commutivity condition is abandoned.)

L M. H. L.Pryce, op. cit., showed that the commutation relations (90) and (91) have clas-
sical counterparts in Poisson bracket rclations for the components of the centre of energy
and the inner angular momentum of a composite particle in classical theory, as discussed
in chapter IV.

2 T. D. Newton and E. P. Wigner, Rev. Mod. Phys. 21(1949)400.

3 T. F. Jordan and N. Mukunda, op. cit.; G. Lugarini and M. Pauri, op. cit.

4 M. Bunge, N. Cim. 1(1955)977; H. Yamasaki, Progr. Theor. Phys. 31(1964)322, 324;
M. Kolsrud, Phys. Norv. 2(1967)141, 149.
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3 The Dirac particle in a field

a. Invariance properties

The Dirac Hamiltonian for a particle in an electromagnetic field E(R, 1),
B(R, t), with potentials ¢(R, 7), A(R, t), reads
H,, = cwnop+ﬁmcz+e(p+Ha,op, (93)
Hyop = g —2)up(ifaE — fo°B), (94)
where =, stands for P,,—(e/c)4 and pg is the Bohr magneton ehf2me. The
Pauli term H, ,, represents the coupling of the anomalous magnetic moment
with the field. .

The Dirac equation (1) with this Hamilton operator is covariant under
the transformations of the Poincaré group. One may find (just as in section
2) expressions for the change of the expectation value of an operator under
these transformations. In particular we are interested in the change of the
expectation value of an operator Q,, that depends on the coordinates R, the
momentum operator P, = (#/i)0/0R and the potentials (R, ¢) and A(R, ¢).

Under an infinitesimal translation (6) the expectation value of Q,, changes
by an amount which is the expectation value of the operator

5‘Qop = 8.[Pop3 Qop] +Qop(R7 Pop » A _E.VAa QDW&PV(/))_Qop(R: Pop 3 Aa (P)

(99)
This may be derived in the same way as (11) is derived in section 2, if one
uses the transformation property of ¢ and 4 under translations:
(p’(R,7 Z’) = (p(‘RD t)’ 6
A'(R',t") = A(R, 1). (%6)
Up to terms with the potentials, but without derivatives of the potentials,
(95) simplifies to

i
h

5Q,, = ;;s'[Po;,, 2,1 (97)

which is the same expression as (11) for the free particle.

Under an infinitesimal rozation (12) the expectation value changes by a
term which is the expectation value of the operator

“ i
0Q,, = P e[RA P, +the, Q]

+Qu(R, Py, A+ A—(e AR)VA, ¢ —(s AR)Vo)— Q(R, Py, 4, 9),
(98)
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where we used the transformation property of ¢ and 4 under rotations
@' (R, 1') = o(R, 1),

(99)
A'(R,t") = AR, 1) +en A(R, 1).

Up to terms without derivatives of the potentials the expression (98) is

(100)

5Q,, = - &[RAP,,+%ho, Q
h

Owing to the presence of the last term, this expression differs from (15) for

the field-free case. For a vector operator, which is characterized by (16), the

relation (100) becomes:

69

[(R A Popt-Fho), ] = ihe™ A, 260 = ihe™0ypp, (101)

which is the generalization of (17) to the case with fields. .
In the special case that Q,, is independent of ¢ and depends on 4 only via
oy = Poy—(e/c)A (ie. Q,, = Q,,(R, m,,)) we have for the last term of (100)

— endy B _ PG aarR Q). (102)
¢ om,, he

(The differential quotient stands for the limit A — 0 of 27 '{Q, (R, nf,p+}v)
~Q,,(R, m,,)}, where 4 = (1, 0,0) and cycl.) Therefore one may write the

expression (100) for this special class of operators Q,, as

5Q,, = ;78'[R/\7t0p+%f10', 2,1, (103)

op

which has a form analogous to (15), with P, replaced by =, .
For spatial inversion (18) one finds for the expectation value of Q,, in the
new frame the expectation value of the operator (cf. (20) for the field-free

case):
ﬂQop(~R> —P0p7 _A> (p)ﬂa (104)

where we used the transformation of the potentials:
¢'(R, 1) = o(R, 1),
A'(R,t")y= —AR, 7).

(105)

Therefore for a polar or axial vector operator one has the relation (cf. (21)):

Q.. (—R,—P,,, —4,¢) = T2, (R, P, 4, ¢)p. (106)
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Under time reversal (22) one obtains for the expectation value of ,,1in the
new frame the expectation value of the operator (cf. (26) for the ﬁeld free
case):

TQ,,(R, —=P,,, —4, )T, (107)
where we used the transformation property of the potentials

« @R, 1) = o(R, 1),

AR, 1) = —A(R, ). (108)

The behaviour of an expectation value under pure Lorentz transformations
follows from the transformation of the wave function, which is given by an
expression as (32) but now with a Hamilton operator H, op Which depends on
the potentials o(R’, t) and A(R’, r). This expression has to be substituted
into the transformed expectation value, which reads as (29) but with an
operator Qop which depends also upon the transformed potentials @ (R’ )
and A'(R’,#"). If one uses the transformation formulae for the potentials

AR, 1) = AR, ) —e(R', 1) +cter

(R t)+c lg.ﬁ'UA(R’t),

R ja)

X ! (109)

G(R, 1) = o(R', ) s-A(R’, 1)+ cte (L(ﬁj D) 4o ipi C0R D
e ot

one finds that the expectation value changes by a quantity which is the ex-
pectation value of the operator (cf. (33) for the field-free case):

082y, = %ls [Nopy—ctPy,, 2,,]

+Q,, (R, P, A—cp+cieVA+c *eR %

ot

p—ed+cteVo+c 'gR ai)) ~Q.,(R, Py, 4, 0),  (110)
ot

where N, is given by (34) or (35) with (93).
[ one confines oneself to terms without the derivatives of the potentials,
this expression reduces to

Qop (p aQop S'A. (111)

5Qop = 8 [Nop (,ZPOP, Qop] Y "

In particular if the operator £2,, is independent of ¢ and depends on 4 only
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through =, = P,,—(e/c)A, the last two terms become

fe ?fiog Q= — ;l’zf [¢Ro, Q,,], (112)
c

¢ 0m,,

so that (111) gets the form:

op

i i )
8Q,, = ga'[Nf,‘g)mctPop, Qopls (113)

where we used the abbreviation
N = N,,—(e/o)Rp = L™ {R, Hy,—eg}. (114)

In the last member the definition (34) or (35) has been used.

b. Covariance requirements on the position and spin operators for a particle
in a field

The position and spin operators for a free Dirac particle have been found in
section 2. If the particle moves in an electromagnetic field the problem of the
derivation of the position and spin operators should be reconsidered from
the beginning. The expression for these operators should reduce to those of
the field-free case if the fields are switched off. In the presence of fields the
position and spin operators will contain additional terms with the potentials
and their derivatives whith respect to time and space coordinates. In the
following we shall be interested only in those additional terms which contain
the potentials, not their derivatives. These additional terms will be determined
by imposing a number of conditions just as in the field-free case. In this
section we shall be concerned with the requirements of covariance with
respect to the Poincaré group.

As translation properties we impose again {36-37) on the position and
spin operator. As rotation properties we require that both the position and
spin operator be vector operators, so that we have, in view of (101),

J

. , o X
[(RAP,,+1he), XI —ihe"™ A, %f = ihe X, o, s (115)

J

[(RAP,,+ o), si.]—ihe"™ A, Z Zw = ihigis, . (116)

n

As to the properties under spatial inversion, we require that the position
operator be a polar vector and the spin operator an axial vector. We have
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thus from (106)
Xop("‘Ra ""Pop:» "A7(p) = —ﬁXop(R: PopaA’ (p).[))a (117)
Sop(_Ra —Pop7 “A) (/)) = ﬂsop(R7 Pop> A: @)ﬂ (118)
Under time reversal the expectation value of the position operator should

remain invariant, while the spin operator must change sign, so that one must
have in view of (107)

Xop(R) "Popa —Aa </)) = TXop(Ra P0p5A7 (/))Tula (119)
Sop(R, =Poy, —4,¢) = ~T5, (R, P, 4, )T~ 1. (120)

For the transformation property of the position operator under a pure

Lorentz transformation we postulate, just as in the field-free case (cf. (44)),
that

i
(SXop = —gct+ 2; {S.Xopa [Hop9 Xop]}, (121)

but where now the Hamilton operator H,, stands for the expression (93).
With (111) for ,, = X, and (36) we find from (121)

o hfexi, axi o .
[N, x7]— ?(EJ o+ S "Al) e X, [Hey, X0 (122)
i @

For the transformation property of the spin operator under a pure Lorentz
transformation we also postulate an cquation of the same form as in the
field-free case i.e. (46-47), but with H,, (93) inserted. With (37) and (111)
for 2., = 5., we find from (46-47):
P h (0s] asi ; ; h
i J Yo YOop 4l . 1,1 i 1 ijk
[Nop» Sop] ; (aAi ¢+ 8(/) A ) = %C {Xopv [Hop’ S{)p]}— ; 8jklk,<>p’
. (123)
with the three-vector operator t,, such that
o i 5.0
[N, 5]~ h (?&2 o+ for
A; o9

i —1q i ; h o
; A) =3¢ Xy, [Hop, t3,]) + ;sjkskiop. (124)

In the following we shall find the position and spin operators up to terms in
the potentials by using the covariance requirements given above. We first
have to transform the Hamilton operator for a Dirac particle in a field. It
will be convenient to use Weyl transforms in the course of the reasoning. For
that reason a short digression on Weyl transforms, in particular their gener-

alization to operators pertaining to particles with internal degrees of free-
dom, will now be given.
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c. Weyl transforms for particles with spin

In chapter VI the theory of Weyl transforms of operators for point particles
was considered. If the particles have structure, this method has to be gener-
alized somewhat. (See also the appendix of chapter VI for details.) Indeed
to every eigenvalue p and ¢ of the momentum and coordinate operators P
and @' now correspond several eigenstates, which will be labelled by an

extra index:
Pip, x> = plp, x>,  Qlg, > = qlq, 1. (125)

In Dirac theory x assumes the values 1, 2, 3 or 4. From this basis we construct
the operator

Qi =fdplp, x)<p, Al =qulq, K)<q, Al (126)

which transforms the subspace of Hilbert space labelled by 4 into thart
labelled by «.

The Weyl transform of an operator 4 may be defined in a way which is
analogous to that of the theory of point particles. One gets (cf. (VI.14) and
(V1.26)):

(P, 4) = fdu "M p+Ju, k|A|p—u, 2
= fdv ey 1y Kk|Alg+1v, 2y, (127)

The Weyl transform thus depends on a pair of labels «A. From the Weyl
transform one may recover the operator (cf. (VL.13)):

A=h> Zfdpdq @ (P> 4)4:1(Ps 9)- (128)
w,A

Here the operator 4,,(p, q) is given by
Ax/}(pa q) = A(p, q)QK}. (129)

with the two operators 4(p, ¢) (VI.15) and @, (126).

In the special case that the operator 4 does not connect the different parts
of Hilbert space labelled by x and acts moreover in each subspace in the
same way, one finds from (127) that its Weyl transform has the form

ax),(l’: q) = 5K/1 a(Pb q)’ (130)
where a(p, q) is independent of x and .

1 In this subsection we usc capitals for operators and lower case symbols for ¢-numbers.

§3 DIRAC PARTICLE IN A FIELD 431

If the operator 4 is independent of the coordinate and momentum opera-
tors (as for instance the Dirac matrices) its Weyl transform (127) is inde-
pendent of p and q:

axl(p’ q) =y, - (131)
For the Weyl transform of a product of operators one obtains (cf. (VL.42))

ih (6 8™ @ 5
ABzexp{m(_.%_ _)} o (5. DVbr(p. ).
2\oq op  op oq % (P Dbu(p, @). (132)

This expression permits to find the Weyl transforms of the commutator and
anticommutator of two operators as well (see chapter VI, formulae (A160~
161). ’

d. Transformation of the Hamilton operator

The Hamiltonian (93) will be put to even form by three successive trans-
formations. First a transformation will be performed? with the operator

_ Eitme®+cpan

Sop T e 133
e {2E (E,+mc*)}* (133)

where we used the abbreviation
E, = (cznz—}—mzc“)é, (134)

with @7 = P—(e/c)A. At the right-hand side of (133) the Weyl transform
has been written. If e = 0, the operator S; ,, reduces to U,, (56) of which the
Weyl transform will be denoted by U. If only terms linear in e and without

second and higher derivatives of the potentials are taken into account we
find

;  dfeh  oU ] oUt

Sl,opHopS;r,opzsl HSI+ el &iji T —~—aH U'B*+ ﬂlaiija—I{ ﬂBk
2c OP; CP; 2c OP; OP;

. h r\U UT . A . T

ie 0 Ha B ieh JU do Ut l_eE U dp ¢U

JR— Sijk _:_“

2c T oP;, 0P 2 0P; R’ 2 0OR; opP'

. (135)

since the Weyl transform of Sy ., depends on P and R only through =. Here
the same symbols are used for operators (L.h.s.) and their Weyl transforms
(r.h.s.). The operator S1,0p 18 DOt unitary since

ieh  oU oU!
SiopSTopez 14 e 02 Y g
Bep S hor T S " P, op

. (136)

! E. L Blount, Phys. Rev. 126(1962)1636, 128(1962)2454.
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However the product Uy ., = S;.0551,0p is unitary (up to terms linear in e
and without second and higher derivatives of the potentials), if S ,, is chosen
such that .

: o i

ieh cU oU B (137)

Spep 1= —ei

4c ¥ ap, oP,

J

The transformed Hamiltonian becomes

.« 3 . -~ UT
o 1 I_e.ﬁ . ,a_q 0H UTBk+ Eﬁg“ U_O_I_{_ 4 Bk
Utiop Hop Ul op = 51 HS1 4 2¢ " ap. op, 2c 7 0P, 0P,

J

j Ut jeh 8 et g oUT
+ Ifﬁa,-jkiq-HUU pr— feh 0U a(Pi U+ Sy
2c op, op, 2 0P, R 2 OR, 6P

i

i oU oU*t ' oU oUY
_deh Y e 1R g, U U (138)
4c oP; 0P; 4c oP; OP;

We now introduce the abbreviation & (62) and employ the identity
A ~ ~ ~rrt 2p  9;

vyt = % wauny- Ynu—vn Y — g Ege (139)
aoP oP P opP E f

where o (and e) denote odd (and even) parts. In the last member we used the
Weyl transform of (58) and (62). Then (138) becomes

ieE

. e i Nk
Uy op Hop Ul op < PE+e0— h el pEL}B*

_ e_bf BE (P AB)+ b iig +3(g—2)up U(ipwE— po-B)UT.  (140)
e

Since the time derivative of the transformed wave function is determined by
{U,HU] —(h/i)(0U/er)U]},, we also need U, ,,/0t of which the_Weyl
transform is —(e/c)(0U/éP)(0A/ot) (up to terms linear in e and without
second derivatives of the potentials). We obtain thus

- ieE i ;
Ul ,op Hop UI’ op (h/l)(a Ul,op/at)UI,op = ﬁEn + ep— 2“}71; 8ijk{§ » ﬂéé}Bk
— “CBEP AB)— e E+3(g— 2ty U E—~forB)U". (141)
Here the odd terms which depend on the fields may be transformed away by

means of a final unitary (up to terms linear in e and without second and
higher derivatives of the potentials) transformation
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ie i i ok
U2,op =< 1 - &.hh; gijk{ée 2 éé}Bk

e (9 —2)us . H
— — PEE+ 22 B{U(ifwE~Po-B)UTY,. (142
el i PUGpeE~foB)UT),. (142)
The explicit transformed Hamiltonian is obtained if we substitute the expres-
sions (63). The result is - up to terms linear in e and without second and
higher derivatives of the potentials —

~ & h (U, o, Uy 4
HOP = Uz,op Ul,opHop le,op U;,op_“ —L J*’%‘if—) UI’op Uz,op
2 BE. +ep—pu me po*B—pu me (PAo)E
<= - - e — ———e
" E 8 E(E+mc®)
Bc*P-6PB (P Ac)E)
1
—3g—2 { 6B— - — ~ , (143
2( ):uB ﬁ E(E+ ;ncz) j ( )

which is the relativistic generalization of the expression derived by Foldy-
Wouthuysen'. Apart from the anomalous terms it has been found by
Blount®. We shall call it the Hamiltonian in the Blount picture.

e. Covariant position and spin operators

In order to obtain the equation of motion up to second order derivatives of
the potentials an expression for the position operator including terms with
the potentials will be needed. Since the Hamiltonian (143) in the Blount
picture is even only the even part )?Op of the position operator in the Blount
picture is relevant. This part is fixed by a set of conditions. In the first place
the expression X, in the Blount picture should reduce to the form (68) for
the field-free case. If furthermore the transformation properties of X, under
translations (36), rotations (115), spatial inversion (117), time reversal
(119) with T = ¢, in the Pauli representation and pure Lorentz trans-
formations (122) are taken into account it follows after a straightforward
but rather long calculation, that in the Blount picture Xop has the form

N fi
£, o Rs AT
2m(E, +mc?)
2.3 3
c m-e mc’P A AP
+(a;+Bay) | <~PAGP A+ - Ane— ——- =~ —BP Ao}, (144
(@ “\E E E(E+mc?) g (149

* L.L. Foldy and S. A. Wouthuysen, op. cit.
2 E. L. Blount, op. cit.
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where g, and a, are real arbitrary constants. The velocity operator (up to
terms with the potentials) corresponding to this position operator follows
with (143):

A~

[Aop . Xop] = Be*nE, = (145)

6 = i
op 4

In an analogous way the even part §,, of the spin operator in the Blount
picture up to terms with the potentials (which should reduce to (79) in the
field-free case) is found by fixing its transformation properties under trans-
lations (37), rotations (116), spatial inversion (118), time reversal (120) with
T = o, and pure Lorentz transformations (123-124). We obtain

ﬁcPP'a(p)
E+mc?

hE, hinno
307 2
2me 2m(E,+mc*)

A

Sop &=

+(b,+pb,) (AP'O'—- mecfop

‘AP¢ EPP-
+(bs+Bby) (_”EW'_”_ o i

+c ‘ZﬂEzmp) . (146)
+mc E+mc?

The operator ,,, which is connected with s,, according to (123-124), is in
the Blount picture:

A hfn Ao
Ifop =

+(b,+pb,) (mc/}o-,\A+ M)

E+mc*
+(bs+Bb,)(o APP-A+c 'EQP Ao). (147)

A further constraint on the spin operator follows from the orthogonality

condition
e . AS =fop, (148)

which is the quantum-mechanical counterpart (up to terms with the poten-
tials) of the classical condition p,s* = 0 (IV.67) with (IV.152). It is satisfied
if b, and b, vanish.

The position operator and the spin operator are not independent of each
other. As a generalization of the field-free case we shall require that the sum
of the orbital angular momentum X , A 7,, and the spin s,, be equal to the
operator R Am,,+Lhe in the Dirac picture. As shown in (103) this quantity
is the generator of rotations for a special class of operators. The requirement
reads written in the Blount picture

-~

Xop ATlop+80p = RAT,, +1H16. (149)

If (144) and (146) are inserted we get the result that the remaining constants
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ay, ay, by and b, vanish as well, so that finally we obtain in the Blount pic-
ture

5 hoAm
X, =R+ 20T 150
P 2m(E, +mc?) (150)

N hE, hnme
Bp g (151)

2me* 2m(E,+mc?)

and in the Dirac picture

2 ®m )
Xop 2R+ 2—};;/)’( = ) (152)
ihfanm
Sop <= tho — Mfmc - (153)

as position and spin operators.
With the help of these final results for the position and spin operators up
to terms with the potentials we shall derive equations of motion and spin.

f. Equations of motion and of spin

The equation of motion for the Dirac particle is obtained by taking twice the
total time derivative (with the use of the Hamiltonian (143)) of the position
operator in the Blount picture. In the first place we have to evaluate the ve-
locity operator. The Weyl transform of the commutator [Hop, X, ,] can be
expressed in terms of the Weyl transforms of H and X with the use of
(132). Up to terms linear in e and without field derlvauves one obtains for the
velocity operator (cf. (145)):

i % éfop
de w7 ot
- frc? _ ehcfoP'B N ehcfPo B(E* + Emc? + m*c*)

E,  2mE(E+mc?) 2mE*(E+mc?)

ehc*P(P A 6)E z
L ( 30.)~+%(g—2) {ﬂPG’B fc*PP-cP'B
2mE mE mE?
+ cEno 4 P(P no)E _ cPePAE
E E? mE(E+mc?)]

(154)

Likewise the acceleration operator may be calculated up to terms linear in e
and with first derivatives of the field
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X, db,  i.n by, ( CZPP)
P = 0 = JTH b |+ 2 [ U—
T E?
2
ec me fme?
. eE-I-—~P/\B-|— {—~ VB)o+ E P/\a}
{ﬁ o\ (VB L (VE(P o)
ﬁczP v P(P/\ a) E  poPB Po'B(E*+Emc* +m*c*)
Ty ) 3 TP~ 2 40 2y
ot E m?c  E+me m“c*(E+mc”)
-oPB *(VB)-PP- VE)(c AP
L ATPPE o (vnyo— SBEEE _oYEnR)
m*c*(E+mc”) E(E+mc?) E
s 2 V) { fc'PB P6P AE H
+4 2 + '"Enc+ - . (155
Ho =2k (at E me*  me(E+mc?) (135)

(The time and space derivations act only on the fields.) The first terms at
the right-hand side contain the fields E(R, ) and B(R, t) as functions of the
space coordinate in the Blount picture. Since the position of the particle is
given by X (150), we now wish to introduce the fields as functions of X. Then
we obtain for the first two terms on the right-hand side of (155) up to terms
linear in e and with first derivatives of the fields

pe(s APYVE _ c*(o AP)V(PAB)|

eBE(X, 1)+ fEf PAB(X, £)— g { ST

156
E+mc? E(E +mc?) (136)

(The non-commutative character of the components of X does not cause
trouble here because of the limitation to first derivatives of the fields.)
Furthermore we introduce the spin operator § (151) instead of o; since in
(155) @ is only needed up to order e° we write

2 2 A
the = M g4 PP a— (157)
E E(E+mc®)
Substltutmg (156) and (157) into (155), using the Maxwell equation VAE
= —0d,B and introducing the abbreviations g = cP/E, y = (1—-p*)~ * and
¢~ '8/0t we obtain as the equation of motion:

D
)
|||

w8y (U= g | peB(R. 4168 AB(R. 1)
b0 (VB (VBB A 470 BV BB AE)

(g 2)e 2(0 -|-[}V){sA(E+ﬂ/\B)—S/\ﬁﬂEii (158)

2mce
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Here we have limited ourselves to the ‘upper left’ part of the matrix ex-
pression (i.e. f§ replaced by 1) which is the relevant part if expectation values
for positive-energy solutions are evaluated. (Again the time and space deri-
vations act only on the fields.)

At the right-hand side various terms which represent forces appear. (The
factor U— Bp arose, because we considered the time derivative of the velocity
operator. In classical theory one also encounters a similar factor in that
case.) In the first place one recognizes the Lorentz force on the particle with
charge e. Its velocity independent part is equal to eE. The quantity B is, up to
order ¢° and for positive-energy solutions, the Weyl transform of the velocity
operator times ¢~ ', as (154) shows. Next, two terms with space derivatives
of the fields E and B appear. The velocity independent part is the ‘Kelvin
force’ (VB)-iir, where fit stands for the total magnetic moment (ge/2mc)$ in
the Blount picture. Finally two terms with the total time derivation &, + -V
of the fields appear. The velocity independent part is —do(fit, A E) with i,
the anomalous magnetic moment {(g—2)e/2mc}$ in the Blount picture. This
magnetodynamic effect is seen to contain the vector product of the electric
field E and the anomalous part of the magnetic moment?.

The magnetodynamic effect was discussed extensively in recent years. Some
authors® found, in contrast with the result obtained, that also the normal
magnetic moment (or half it) contributes to this effect. Thisis a consequence
of the fact that their treatment was based on non-covariant position opera-
tors, such as Newton—-Wigner’s or the even part of Dirac’s operator (v.
problems 4 and 5)*.

The spin equation follows by taking the total time derivative of the spin
operator (151) in the Blount picture. Using the Hamiltonian (143) we obtain
for its Weyl transform

ds N 2
o [H > 0p]+g°—’3_’# {ﬁ AB— pe PAEI;“%—(C—II /\G') /\E}
dt & ot E(E+mc®) E

P ABP¢  cPoE + EP.¢  cPPoPE |
m(E +mc?) E me  mE(E+mc®))’
(159)

+3(g—2up {ﬁaAB+

1 L. G. Suttorp and S. R. de Groot, op. cit.

2 A. Conort, Compt. Rend. 266 B(1968)1184; H. Bacry, Compt. Rend. 267 B(1968)89;
W. Shockley, Phys. Rev. Lett. 20(1968)343; W. Shockley and K. K. Thornber, Phys. Lett.
27 A(1968)534; J. H. Van Vleck and N. L. Huang, Phys. Lett. 28 A(1969)768.

3 P. Hrasko, N. Cim. 3B(1971)213, avoids this problem by studying particles with an
anomalous magnetic moment only, using the Newton-Wigner position operator.
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where only terms linear in e and without derivatives of the fields have been
included. Upon introduction of § with the help of (157) the equation becomes

()

(9 2)ej P B___P (3/\E)--~——-P/\(P/\E)PS
2me l mE E* mE?*

dﬁop ge mc {ﬁA
dt * 2me E

3! . (160)
J

Using the same abbreviations as in (158) and replacing again the matrix f
by 1 (i.e. limiting ourselves to the part occurring in the expectation value for
the positive-energy solutions) we get finally

Sop P A 7 SAB+(BAS)AE)}
dt 2me

+ (_‘12:32? 7 Y7 BS(E+BAB)—SBE—y’BB3BE}. (161)
me

At the right-hand side various terms appear which express the torques
exerted by the fields on the particle with magnetic moment. The first two
terms contain the total magnetic moment #i, the remaining ones the anom-
alous part T, of it only. The velocity independent term is simply ¥t A B.

Equations (158) and (161) are the quantum-mechanical equations of
motion and of spin for a Dirac particle with both a normal and an anomalous
magnetic moment moving in an external electromagnetic field. They are es-
sentially operator equations: at the right-hand side Weyl transforms appear
from which the corresponding operators might be retraced.

From the operator equations one obtains directly equations for expecta-
tion values. They contain expectation values of products of operators. In
general such expectation values are not equal to the product of expectation
values of the individual operators. In the classical limit the expectation value
of a product of operators does become equal —~ for narrow wave packets —
to the product of expectation values. Then one obtains equations for expec-
tation values, which have precisely the same form as the corresponding equa-
tions derived in classical theory (v. (IV.162-163)).

* Farlier discussions on the derivation of equations of classical form from quantum
theory include a paper by D. M. Fradkin and R. H. Good jr. (Rev. Mod. Phys. 33(1961)
343) on the motion of wave packets in homogeneous fields. Furthermore WKB methods
have been used, for homogeneous fields, by S. I. Rubinow and J. B. Keller (Phys. Rev.
131(1963)2789) and by K. Rafanelli and R. Schiller (Phys. Rev. 135B(1964)279). W. G.
Dixon (N. Cim. 38(1965) 1616) employed position and spin operators without specifying
the contributions due to electromagnetic potentials; he limited himself to a particle with a
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4 The free Klein—-Gordon particle

a. The Klein~Gordon equation and its transformation properties

In this section and the following we shall derive the equation of motion for a
relativistic particle without spin, i.e. a particle which is described by the
Klein-Gordon equation. It will turn out that a treatment that is to a large
extent analogous to the one given above may be followed. Again we shall
study first the free particle before discussing the particle under the influence
of an electromagnetic field.

The Klein—-Gordon equation of a free particle without spin and with mass
m (# 0) reads in the coordinate representation

(D— m?c )‘p(R f) =0, (162)

with (] = 4—c720%/0¢* the d’Alembertian and y(R, ) the wave function.
The inner product of two wave functions ¥, and ¥,

( o o;lftz i lpz) dR  (163)

Wil = ~—f¢1’“3’ LdR =

m C

is defined in such a way, that it is conserved if ¥, and yr, fulfil the Klein-
Gordon equation. (In the following we shall consider only normalized wave

functions y, i.e. with {¥/|> = 1.) The expectation value of an operator 2,
is defined as

op 5
77’[02

. ih 0 o

Q. = (np*Qop af lp Qcp tp) dR. (164)
The transformation properties of the wave function which leave the Klein—

Gordon equation and the absolute value of the inner product (163) invariant

are the following. Under spatial translations (6), R' = R-+ts, 1’ = ¢, the

wave function is invariant:

V'R, 1) = Y(R, 7). (165)

normal magnetic moment in a homogeneous field. H. C. Corben (Phys. Rev. 121(1961)
1833), M. Kolsrud (N. Cim. 39(1965)504), E. Plahte (Suppl. N. Cim. 4(1966)246, 291;
5(1967)944), H. Yamasaki (Progr. Theor. Phys. 39(1968)372) and K. Rafanelli (N. Cim.
§7A(1970)48) introduce proper time into Dirac theory without solving the difficulties of
interpretation pertinent to this notion.
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Under rotations (12), R" = R+¢AR, t' = t, the wave function is also in-
variant

Y(R',t) = y(R, 1). (166)
Under spatial inversion (18), R = —R, t' = t, we have once again’

YR, 1) = Y(R, 7). (167)
Under time reversal (22), R' = R, t' = —1, the wave function undergoes an
anti-linear transformation

YR, 1) = (R, 1). (168)

Finally, under pure Lorentz transformations (27), R = R—sct, ct’ =
cf—&'R, we have

YR, 1) = Y(R. 7). (169)

b. Feshbach and Villars's formulation

The Klein~Gordon equation is a differential equation of second order in the
time. It may be written in the form of a first order equation for a two-com-
ponent wave function by introducing? the functions:

Lo <¢/- h axg)’

—75 imc* ét
N (170)
1 ho oY
UE'/*(!//_*_. 2 7?/*)
V2 ime” 0Ot
With the two-component wave function
= (“) (171)
v
one may write the Klein—-Gordon equation (162) for a free particle as
h ov¥
Ho,¥ = —- L&, (172)
i Ot
with the Hamilton operator
PZ
H,, = (t13+it,) 59-" +mc’ty, (173)
m

! Phase factors are ignored, just as before, since they have no influence on the expectation
values considered.

2 H. Feshbach and F. Villars, Rev. Mod. Phys. 30(1958)24; cf. M. Taketani and S. Sakata,
Proc. Phys. Math. Soc. Japan 22(1940)757.
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where 7; are the Pauli matrices (52), and P,, is the momentum operator
(h/i)8/éR.
The inner product (163) may now be written as

LY, = f ¥t ¥, dR, (174)

where the obelisk denotes the hermitian conjugate. This follows by insertion
of the components (170) of the wave functions ¥, and ¥,. The expectation
value of an operator will be defined as

., = f ¥, Q,, PdR. (175)

This definition reduces to (164) for operators which are a multiple of the
22 unit matrix. An operator has real expectation values (175) if one has
‘sz = T30, 3. (176)

In particular one may notice that H,, (173) satisfies this relation.

The transformation properties (165-169) may be expressed in terms of
the new wave function ¥. For translations (165), rotations (166) and spatial
inversion (167) we get each time

P'(R, 1) = P(R, 1) (177)

Under translations the expectation value of an operator changes therefore
by an amount which is the expectation value of

5Q,, = ég-[pop, a,.], (178)
while under rotations we have
0Q,, = % e[RAP,,,Q,.] (179)
A vector operator is characterized by its property
[(RAP), QL] = ik Q, . (180)

Under spatial inversion the expectation value changes according to

r r 14 /f f F r I
JY”(R,t)rgszop(R,f »C?—)!P(R,t)dR
i OR'

- f WIR, 1), 0, <~R, _h %) (R, )dR. (181)
1 0
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In particular a polar or axial vector operator satisfies the relation
Q.(—R, —P,) = TR2,(R, P,,). (182)

The transformation property of the wave function under time reversal
follows from (168):
Y'(R, 1) = P*(R, 1), (183)
so that the expectation value of an operator Q,, transforms according to

h a ’ ! ’ !
f PR, 1')es O, (R’,~ ___,) Y(R', )dR
i oR
9

= f YI(R, )Q,, (R, _I - ) 73 P(R, t)dR, (184)
i OR
where the tilde indicates the transposed matrix.

Finally under pure Lorentz transformations the two-component wave func-
tion transforms as

&P,
VR, 1) = [1-3(ey 4 ie,) T

l me J

as follows from (169) with (170) and (171). The change of the expectation
value of an operator €,, under pure Lorentz transformations may be found
now by proceeding along similar lines as followed in (29-33). One finds that
the change of the expectation value is given by the expectation value of the
operator

¥(R, 1), (185)

59, = —;-s-[Nop—czPop, Q] (186)
1

where the operator N, stands for

N,, = ¢ 'R, H,,}. (187)
2 8 P

op

The curly brackets indicate an anticommutator and H,, is given by (173).

c. Covariance requirements on the position operator

The position operator X, for the Klein-Gordon particle will be obtained by
imposing a number of conditions. We require in the first place that it be a
polar vector operator with the usual property under translations:

f
[P,,, X,,] = _Z U, (188)
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[(RAPY, Xi] = ik X, ., (189)
Xop(-R’ ~Pop) = _Xop(Ra Pop)! (190)

where (178), (180) and (182) have been used. As to its time reversal property
we require that the expectation value of the position operator be invariant,
Le., according to (184),

XOP(R’ _Pop) = ‘C3 X:op(lzi‘ Pop)r3 . (]91)

For the pure Lorentz transformation character we postulate in view of (44)
(which is valid for any spin) and (186)

[News X351 = 3¢ (XL, , [Hop X210, (192)
where we applied the translation property (188).

d. Transformation to even form of the Hamilton operator; the position
operator

The Feshbach-Villars Hamiltonian (173) contains the odd matrix 7. As a
consequence the wave equation (172) consists of two coupled differential
equations. They may be uncoupled by performing a transformation' which
is the analogue of the Pryce-Foldy-Wouthuysen transformation for the
Dirac particle. If one transforms the wave function according to

¥'=Uy,¥, (193)

the operators Q_; should transform in such a way that the expectation values
are invariant, i.e. as a consequence of (173),

f 11,0, 9,dR = f i1, Q,,¥,dR, (194)
so that, with (193), we have
Qop = 13(UL) 1150, UL (195)

In particular choosing Q,, as the unit operator and requiring that Q,, be the
unit operator as well (so that the inner product (174) is invariant) one has

L= 1t(UL) 'ty UL, (196)
or equivalently
Uop = 5(UH) 23, (197)

' H. Feshbach and F. Villars, op. cit.
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so that (195) may be written as
Qop = Ugp 2y U1 (198)

The Hamiltonian, which governs the time behaviour of ¥, follows from
(172) and (193):
Ay = UyH, U5 — " ey (199)
r ot

(One should note that this transformation of the Hamiltonian is of course
not of the type (198); only if U, is independent of the time — as it will turn
out to be in the present field-free case — this expression reduces to its first
term.)

The Hamiltonian H,, (173) may be diagonalized with the help of an
operator U,, which is such that its inverse U,," contains in its columns the
eigenvectors of H,,. Then one finds that a possible choice for U, is:

E,\* 2\
Uy = M147,) (7) Fy(i-1,) (’;.1) , (200)
¥

me op
where the energy operator is
E,, = (P2, +m*c*). (201)

The form (200) satisfies (197). Indeed the transformed Hamiltonian (199),
that follows from (173) by applying the time-independent transformation
operator (200), is now

A, = 13E,, (202)

op

and has thus diagonal form. Hence the positive- and negative-energy solu-
tions in this new picture (indicated by circumflexes) are no longer mixed.
For that reason only that part of the operators for physical quantities that is
even in the new picture comes into play if one considers its expectation value
for positive- (or negative-) energy solutions.

The even part of the position operator, which will be denoted as X op il the
new picture, follows from the requirements (188-192). From the require-
ments (188) and (189) alone — translation and rotation covariance — one has
the general form

Xop = R +f1 (Eop)Pop +f2 (Eop)’cf’ POP 4 (203)

with arbitrary functions f; and f,. The requirement (190) about spatial in-
version does not restrict (203) any further. The requirement of time reversal
(191) makes both f; and f, vanish. Thus the even part of the position opera-
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tor in the new picture is found to be
X, =R (204)
One should still check whether this result satisfies the Lorentz covariance
condition (192) (with circumflexes). To that end we write first the trans-
formed coordinate

R,, = U,RU,' = R+&,,, (205)

with the latter quantity given by
B Ugst (206)

or explicitly, with (200) inserted,

he’p
Eop = —2F 7, 20
P 21E§p 1 ( 7)

Then the operator ]Vop (187) becomes with (202), (205) and (207):

-~

Nop = 3¢7'13{R, E,,}. (208)

Substituting this expression, (202) and (204) into (192) with circumflexes,
one finds an identity, so that indeed the Lorentz covariance condition is
satisfied.

We note that the position operator (204) reads in the original, Feshbach—
Villars picture

hc*P,
Xop = R— ——Fq . (209)
2iEg,

A few remarks may be made about the position operator obtained. In the
first place we note that its components commute (in contrast with the
components of the position operator for the Dirac particle). Furthermore
the orbital angular momentum RAP,,, which according to (179) is the
generator of rotations, may be wriiten as the vector product X, AP, of the
position operator X, and the momentum operator P,,, as follows from
(209).

The position operator found here is the same as the operator obtained by
Newton and Wigner!, as may be checked by translating it into the momentum
representation, which they employ.

' T. D. Newton and E. P. Wigner, op. cit.
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5 The Klein-Gordon particle in a field

a. Invariance properties

The wave function for the Klein—Gordon particle with charge e in an external
electromagnetic field, described by the four-potential 4* = (¢, A) satisfies
the equation
f(a _ ey )(aﬂw EA“) T—C—} Y(R, 1) = 0. (210)
\ hc he
The transformation properties (165-169) of the wave function remain valid
in this case if one transforms the four-potential in the right way, i.e. as a
four-vector under Lorentz transformation and as (¢'(R’,t'), A'(R',t')) =
(o(R, 1), —A(R, t)) both under spatial inversion and time reversal.
The Klein~-Gordon equation (210) for a particle in an external field may
be transformed by employing an artifice, similar to that for the free particle.
In fact if one defines

= (),
V2 ime® \ot h

=i e 5o

V2 { ime” \0t

(211)

and uses (171), one obtains for (210) an equation of the form (172), but with

the Hamiltonian!
2

(13—!—112) 2P 4 mctts+ e, (212)
2m

where we introduced the abbreviation

e
Ty = Pop— EA. (213)

Let us study the invariance properties of expectation values for operators
that depend not only on the coordinate and momentum operators but also
on the potentials.

Under translations (6) one finds that the expectation value of an operator
changes by an amount which is the expectation value of the operator
e[Pyy, Qop]+ Q2 (R, Py, A—&VA, g—&V0)—Q (R, P,,, 4, 0),

(214)

o i
OQOP = “f‘l

1 H. Feshbach and F. Villars, op. cit.
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as follows from (96) and (177). If one limits oneself to terms with the po-
tentials but without their derivatives this expression reduces to

i
5‘9 ;1 & [Pop’ ‘Qop] (2’15)

Under rotations (12), the change of expectation values is governed by the
operator
1]
0Q,, = ; e[RAP,,, Q]+ Q2,(R, P,,, A+esnA ~(g AR)VA,
/]
?—(eAR)Vo)—Q, (R, P,,, 4, ¢), (216)

as follows from (99) and (177). Up to potentials only it becomes

3, = “&[RAP,,, Qop]+(a/\A)-§?"£. (217)
h o4

If the operator £, is a vector operator, it satisfies the relation

zmn aQJ . ijk
[(R A POP) Q p] Am aA = 1h8 Jka,op . (218)

A particular case of (217) arises if the operator Q,, is independent of ¢ and
depends on 4 only in the combination ,, (213). Then (217) reads

< i
0Q,, = h e[RAT,,, 2,,]. (219)

Under spatial inversion (18) the expectation value in the new frame is the
expectation value of

Qop(=R, =P, —4, ¢), (220)

as follows from (105) and (177). In particular a polar or an axial vector
operator is characterized by

Qo(—R, —Poy, —4,0) = T2, (R, P,,. 4, ¢). (221)

Under time reversal (22) the expectation value in the new frame is the
expectation value of

T3éop(R> —Pop’ _A9 QD)-C3 s (222)

where we have used (108) and (183).
Under pure Lorentz transformations (27) the two-component wave func-
tion transforms in a way that is slightly different from the transformation
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(185) for the free particle case, namely
PR, 1) = {1 —3(es+it) i’ie} (R, 1), (223)
mc

as follows from (169) and the definitions (211) (note that the latter contain
the scalar potential which transforms also, and thus yield a term with the
vector potential). For the expectation value of an operator in the new frame
one finds, by a reasoning which is analogous to that of (29-33), an expression
which differs from that in the old frame by a quantity which is the expectation
value of the operator

0., =

L e[N,, —ctP,,, 0, 1+, (R, P, ,A—8<p+ct8'VA+c“’s'R?—4,
op h P P p. P P

ot

p—eA+cteVo+c 'eR %2) ~ Q. (R, Py, 4, @), (224)
t

where (109) has been used. Here N, is given by (187), but with the Hamil-
tonian (212). Up to terms with the potentials this expression reduces to

[ 082 70
590? = 1 8'[Nop_ CIPop > Qop] —é& UA F @ — %_P_E 3 (225)
I3 04 o

If @, depends only on R and =,,, this expression becomes

op >
5Qy = és'[Nf)‘{,’)—ctPop, 2.1 (226)
with the definition
Nf)‘g) = 1c YR, H,,—eq}, (227)

where we used (187).

b. Covariance requirements on the position operator

Just as in the field-free case (section 4¢) we shall list the covariance require-
ments for the position operator, in which we now include terms with the
potentials.

The translation property remains of the form (188), while the rotation and
spatial inversion properties follow by stipulating that the position operator
be a polar vector:

. . . Q j s
[(RAP,), X —ifie™A,, %ﬂ’ = ihe"*X, ., (228)
Xop(_R> “Pop> ~A, (P) = —‘Xop(Ra Pop>A> (:0) (229)
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(cf. (218) and (221)). Time reversal invariance of the position operator im-
plies (cf. (222))

X,o(R, —P,,, —A4, ) = r3§op(R, P, A ¢);. (230)
As to the Lorentz covariance we require the relation
ox;

[N, X _ R faxi, o 4\ _ 1.y i
o Kol a0 g M) = T ens Ui, X3 (23D

which follows from (44) and (225).

¢. The transformed Hamilton operator

The Hamilton operator (212) which contains the odd matrix , may be
brought into even form by means of two successive transformations. In the
first place we employ a transformation operator U, ,op of which the Weyl
transform is analogous to the Weyl transform of (200):

E_\* 2\ %
Uy H(141) (J—z) +3(1-1,) (’”‘ )

— Ug. 232
me E, ! (232)

il

Here we used the abbreviation E, (134) with # = p—(e/c)4 the Weyl
transform of =, (213). Then, since the Weyl transform of H,, (212} is

2
. T
H,, == (t5+it,) . +mc*ty+e@ = H, (233)
m
one finds up to terms with the derivatives of the potentials

+ B .
Utop Hop T3 Uj oy 1322 Uy Hry Ul 1,

ieh  0U O0H . jieh ¥
& —— — T3 U'1; B+ ren & Uﬁu a—U~ r3Bk
2¢ 7" oP; oP; 2¢ oP, P,

ieh ¢U out ,
& ~— Hty —— 1, B
*ep, Cop.

i J
ieh 0U 3¢ . ieh dp  oUT
_ R OU 09yt Py G0 OU 234
2 0P R T ) TR PP (239

with U the Weyl transform of (200). Apart from the matrices 7, this expres-

sion 1s formally identical with (135). The operator U, op fulfils the relation
(196) since, up to terms with the derivatives of the potentials:

. + ieh oU oU!

UtopTs UlopTs =2 U 73 U 13+ o &k P T3 P,

t J

B =1, (235
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where we used the explicit expression (232) to show that the first term in the
middle member is equal to 1, ‘while the vanishing of the last term in the
middle member follows from (206) with (207). This result shows that
13 U{ .5 75 is equal to U7 J,. Substituting (232), (233), (202), (206) and (207)
into the right-hand side of (234) we get

Ui opHop Us sy 13 E +ep+e 2_% £, (236)

Since the time derivative of the transformed wave function is determined by
(199), we also need 0U, /0t of which the Weyl transform is —(e/c)(aU/dp):
(0A4/dr) (up to terms linear in e and without second derivatives of the poten-
tials), as follows from (232). Therefore we find

. h _
U; o HU L~ = s op Ufan 213 E +ep—eE¢. (237)

~

i ot
A second transformation with the operator

e
UZ,op =1 EE T3 E.é‘: (238)

which fulfils (196) (up to terms linear in e), brings the Hamiltonian to the
even form

i_l 6(U'Z,op U 1 ,op)

7 -1 pr—t
HOP = UZ,op UI,opHon Ul,op UZ,OP— . ot
i

Utor Uzap
=1 E, +ep, (239)

up to terms linear in e and without second derivatives of the potentials. This
result shows that the transformed Hamiltonian contains only terms with the
potentials and not with the fields (although in the derivation terms with the
derivatives of the potentials have been taken into account). This situation is
different from that of the Dirac particle, as (143) shows.

d. The position operator and the equation of motion

From the translation, rotation, spatial inversion, time reversal and Lorentz
covariance properties (188) and (228-231), it follows that the part
of the position operator that is even in the new picture is, up to terms with
the potentials,

-~

X, =R (240)
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or, if one transforms back to the original picture,

he*n

X, <R~ 1 241

YT (241)
(cf. (209) for the field-free case).

The time derivative of the expectation value of the position operator (240)
is the expectation value of the velocity operator
Lo dX., i . o
vop = -—-522 = *f-} [Hop’ Xop]' (242)
This may be seen by writing for an arbitrary operator Qop

¢ f Pie, 0 WdR = f Pie, {é [A.,. O0] 9_2339} PdR,  (243)
t

as follows from (172) with circumflexes and the fact that the Hamiltonian

(239) commutes with 7. From (239) and (240) one finds for (242):

N C27Z

vop = T3 ? . (244)

n

For the second time derivative of )A(op one finds with (239):

d2x p _ by, i~ ob c? >pp cP
== [H, 0, ]+ 2 el (U= D) [ eE+e S AB).
PR LU ot <—E( E? ) (rse TE AB)

(245)

If only the positive energy solutions are considered, one may replace t; by
I. Then (245) becomes

A

m %’E =9 (U~ BB)(eE+ep AB), (246)

where we introduced the abbreviations § = ¢P/Eand y = (1-p*)"* Upto
order e° and for positive energy solutions g is the Weyl transform of ¢~
times the velocity operator.

The right-hand side of (246) contains the Lorentz force, but no terms with
derivatives of the fields, although such terms with first derivatives have been
taken into account in the derivation. (For the Dirac particle they did occur,
as (158) shows.) The factor U— B isa consequence of the fact that we stud-
ied the time derivative of the velocity operator: in classical theory one
encounters a factor of the same type.

The same general remarks on the connexion with classical theory as made
at the end of section 3 for the Dirac particle apply also here.



APPENDIX

On covariance properties of physical quantities
for the Dirac and Klein-Gordon particles

a. The Dirac equation in covariant notation

The Dirac equation (1) with (2) for a free particle may be written in covariant
form, by introducing the matrices y° = —if and y = —iBa, which fulfil the
anticommutation relations

"0} = 29", (A1)

where the metric tensor g** has components g°% = —1, g“‘z 1 (i‘ = 1,2,3)
and the others zero. Since « and f are hermitian, y° is anti-hermitian and y
hermitian. By multiplication of the Dirac equation (1) with (2) by S/hc one
obtains the form
(o + i) v =0, (A2)
y f
with 8, = 9/0R¥*. The covariance properties of this equation follow by con-
sidering an infinitesimal Poincaré transformation

R™ = (3t 48R +1" (A3)

with #* an infinitesimal four-vector and ¢ an infinitesimal antisymmetric
four-tensor. The Dirac equation (A2) is covariant with respect to the Poin-
caré group if one transforms the wave function as

YR, 1) = (1+%ie"o, W(R, 1) (A4)

with ¢*¥ = —1i[y*, y*]. Indeed the covariance of the Dirac equation follovas,
if one substitutes this expression and the transformed four-derivative. (Wth'h
follows from (A3)) into the equation (A2) written with primes and if use is
made of the commutation rule

[yﬂ> ?]iiglpa/‘.p] = Culyl . (AS)

In particular if ¢V = —g¥*¢, (with ¢/* the antisymmetric unit tensor and &
an infinitesimal three-vector), ¢’ = 0 and #* = 0 one finds for (A3) the
expression (12) and for (A4) the expression (13). The latter fact follows
because ¢o;; = —¢ie 0, = —280 with 6 = —Liyay = —diana.
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In the special case ¢, = £ = —¢' (with an infinitesimal three-vector £)
¢’ = 0and #* = 0 one recovers (27) from (A3), and (28) from (A4).

One may also prove the invariance of the Dirac equation under spatial
inversion

i

t'=t R = R (A6)
Indeed with the transformation of the wave function
YR, ") = iy°(R, 1) (A7)

(instead of iy° = B one might as well use y° times a different phase factor)
one finds that the Dirac equation is valid with primes throughout.
Finally the Dirac equation is invariant under time reversal

= —t, R =R. (A8)
With the anti-linear transformation
VR, ) = Ty*(R, 1) (A9)

(the asterisk indicates the complex conjugate), where 7 is a matrix such that
T™9T = =%, T75T =y, (A10)

one finds that the Dirac equation is valid for primed quantities. (In the
Pauli representation one has y° = —~ipsandy = p,0, so that« = p, ¢ and
B = ps; one finds from (A10) that a possible choice for T'is 0,.)

The Dirac equation for a particle with an anomalous magnetic moment
(1) with (93) becomes in covariant notation

, 5 ,
{y” (6ﬂ— é—i—) Aﬂ) + ?g - %‘};éz)f a’“Fm} ¥ o= 0. (A11)

The covariance of this equation follows by using the same arguments as
above.

b. Local covariance and Klein’s theorem

From the transformation character of the four-component wave function y

under pure Lorentz transformations we shall prove the following lemma:
Let Q5" (with v, ..., v, assuming the values 0, 1, 2, 3) be a set of
operators depending on Dirac matrices and the momentum operator
P, = (#1/1)0/0R. Then the quantity

PR Qg (PopW(R) (A12)
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(with = y'y°) is ~ for all solutions § of the Dirac equation for a free
particle — a local tensor density under pure Lorentz transformations if
and only if the operator relation:

[N(i)p, Qzé...\',,] — C_lRi[Hop, QZ:’.“\'"] + lh Z (giva;;)...vj-IOVj.;-{mvn
i=1
_gov_,'QX;’...Vju1i\’j+1mv,,), (A]?’)
(with N,, given in (34) as ¢~ '{R, H,,}) holds true.
Proof: Under the pure Lorentz transformation (27) the quantity (A12) is,
according to (28), transformed to
V(R W Qey (Pl (R')
= Y(R)(1 +tea)y"(1 —Le )20 (P, W(R)
— (R 25 " (Pop), 3ea]¥(R),  (A14)
(up to first order in ¢). Now, since
Hew, ] = &y, (A15)
with &, = &% = —¢' and ¢ = 0, one may write this as:
V(R Qo (P (R')
= P(R)(S% + L)y oy (P (R) + Y (R)y*{ Q5 "(Pgy)
= Q0 " (Pop) S (R) = (R [Q ™(Poy), Jera(R). (Al6)

The second term at the right-hand side may be written in a different form by
using the relation that follows from (27) and the Dirac equation (1}):

_: 0Q,
‘Qo (Pép)—gop(Pop) = —C 18‘ Flop op > (A17)
? épP,,
or, with the commutation rule {P,,, R] = —iAU,

Qos(PL) = 2on(Poy) = ;i [&RH,,, 2,,]— ;; #R[H,,, 2,]. (Al8)
1C

Then the second and third term at the right-hand side of (A16) become
together

]—i V(R ([&'Nop, 2oy "] =™ '&R[Hop, Qi IW(R), (A19)
1

where (34) has been used. From (A16) with this result and the fact that y is
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arbitrary (in its dependence on space coordinates) it follows by considering
the coefficients of the components of & that the lemma as stated above is
proved.

In the main text it was shown that the expectation value of an operator
Q,, that depends on the momentum operator and on Dirac matrices changes
under pure Lorentz transformations (27) by an amount which is the expecta-
tion value of the operator (33):

02, =

op

[&Nop> Qop)- (A20)

S o~

On the other hand the expectation value of Q},’;,"“’" transforms as a tensor if
one has

1
Vie¥n ivjeyvivi—10vig ..y, OV, V1 Vi 1iviz (...
5QOP e —si.zl(g J_Qop J J g Jgop j—1ivy u)' (AZI)
ji=

Hence the expectation value of 2,, transforms as a tensor if and only if the
right-hand sides of (A20) and (A21) are equal or if

[N:‘)p’ Q(\)'r;)u.v,,] = ik i (giVng’Fl)-..vj—10\’j+1...\'n___g0\'jQ;Fl)...\‘j..]iVja(»j...V")' (A22)
j=1

Comparison of this condition with the lemma condition (A13) shows
that the statement that (A12) has tensor character is then and only then
equivalent with the statement that the expectation value of Q,, transforms
as a four-tensor, if the operator Q,, commutes with the Hamiltonian H,,,
Le. if Q,, is a conserved quantity. This is the theorem of Felix Klein. (This
theorem may alternatively be proved by considering the local conservation
law that follows from the commutation of 2, with the Hamiltonian; see
problems 1 and 2.) The treatment given above shows explicitly how local
covariance and covariance of expectation values are connected in the general
case in which the quantity @, is not conserved.

In the following we shall need an extension of the lemma given in (Al2-
A13) to the case of an operator ﬁ;p which depends also on coordinates and
on time in such a way that
(7. 351 = o

op>

(A23)
ho = #
____*"Q; — Ov.
[ ic ot "J ;9
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This means that §v2(“,p is of the form
@(P,,, R) = R*+Q0(Pyy), (A24)

where @, ,(P,,) is an operator of the type discussed earlier.

Since the quantity Yy*R"Y transforms as a local tensor density, the state-
ment that zﬁy"ﬁf,pl,b is a local tensor density under pure Lorentz transforma-
tions is equivalent to the statement that ¥y*Q; ¥ transforms as a tensor.
Hence according to the lemma (A12-13) one finds that Q;, fulfils (A13).
Now one may check by using (34) that R” satisfies the identity

[Nep—ctP,, R"] = ¢ 'R'[Ho,— i 0/0t, R]+ih(¢g"R°—g”'R’). (A25)

From this relation and (A24) it follows that (A13) is for the present case
equivalent with

[N, —ctPl, Q0] = ¢ 'R[H,,—ih 8/dt, Q] +ik(g" Q2 — g QL), (A26)

where we used the relations [P‘fp, .1 =0 and [0/dt, Q,,] = 0. In other
words we have derived the generalized lemma:
Let ésp be a set of operators depending on Dirac matrices, the momentum
operator, the coordinates and time in such a way that (A23) is fulfilled.

Then the quantity
YR Q5 (P,, , R)W(R) (A27)

is — for all solutions ¥ of the Dirac equation for a free particle — a local
tensor density under pure Lorentz transformation if and only if the opera-
tor relation

[Ni,—ctPi,, B0] = ¢™'R[Hy,—ih fct, @]+ ik(g™ 3, — g QL) (A28)

is valid.

c. Covariance requirements on the position and spin operator of the free Dirac
particle

In the main text we derived the position and spin operator from a number of
requirements which it should fulfil. Among them were the conditions (45)
and (48-49) which we called the covariance conditions. They were inspired
by the analogy with classical reasonings. The imposing of these conditions
led to position and spin operators, which (when generalized to the case of a
particle in a field) obeyed equations of motion thathave the same form as the
classical equations of motion for a composite particle.
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One may ask oneself how these covariance conditions are related to local
covariance and covariance of expectation values, discussed in the preceding
subsection in connexion with Klein’s theorem. In particular one may wonder
whether it is possible to find a position operator X,, which is the space part
of a set of four operators )v(ovp (v =0,1, 2, 3) such that f/?y“Xoi)z// is a local
tensor density. One knows that the space part X, should satisfy the property
of translation covariance (36). Let us assume moreover that X,, does not
explicitly depend on the time ¢ and that the time component Xoolp does not

depend explicitly on the coordinates R and on the time 7 in a way specified by
0
—_ X2 ] = 1.
[cat ’ / (A29)

Then it follows from the lemma (A27-28) that local covariance of Y Xy
leads to four conditions (v = 0, I, 2, 3)

[Ne,—ctPl,, X0)] = ¢ 'R'[H,,~ ik 8jér, Xopl+i(g™ X g~ g% XE ). (A30)

Since we are interested in even operators, i.e. operators which contain only
even Dirac matrices in the P-FW picture, and since N,, (64), A,, (48) are
even but R,, (61) contains an odd part given in (63), it follows that (A30)
cannot be satisfied. Hence four operators Xop (v =0, 1, 2,3) which would

lead to a local four-tensor density tﬁy”XJp W capnnot be found.

Instead one might look for a set of four operators of which the zero com-
ponentis simply cf on the argument that in the usual formulation of quantum
mechanics the time plays a role which is essentially different from that of the
space coordinates. One may try then to impose (A30) for v = 1, 2, 3 only,
but putting X° equal to cz. If again one assumes that X,, does not depend ex-
plicitly on time, one finds

[Nep—ctPy,, X1 = ¢ 'RU[H,,, X ]+ ihetg, (A31)

For the same reasons as given above an even operator Xoip satisfying this
condition does not exist either.

The condition (A31) is equivalent to the following two conditions, which
are half the sum and half the difference of (A31) and its hermitian conjugate

0 =[R) [H,, X1 (A32)
[Nep—ctPi,, X1 = 3¢ YR, [Hyy, X317} + ihetg, (A33)

As seen above no even operator XOJ;) exists satisfying both of these relations.
The 9011d1t10n (A32) alone is sufficient already to exclude the existence of a
solution, as follows from the general form (59) for the position operator
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with (58) and (61). Therefore one may try to impose only (A33), while
forgetting about (A32). Using the translation property (36) one may write
(A33) as

[N:)pa X(J)p] == %:cul{Rl* [Horm X(J)p]} (A34)

However by insertion of the general form (59) with (58), (61) and (64) one
gets contradictory equations for the form factors f,(E,,) and f,(E,,) so that
no even position operator that satisfies (A34) exists.

A different line of approach would consist in requiring the covariance of
the expectation value of the position operator instead of local covariance.
Then, as follows from (33), we must have

[Nep—ctPl,, Xi.] = ihctg”. (A35)

Once more with (59) and (64) inserted one finds a negative result. So this
road is blocked as well.

Returning to the condition (A34) one notices that the coordinate R’ looks
like a foreign element since elsewhere in the condition the position ij
occurs. So one is led to replace R' in (A34) by X;,. In that case one gets

[N, X0] =37 H{XL,, [Hop» X011} (A36)

op >
This is precisely the condition of the main text, which has a solution ex-
plicitly given there. The considerations given here were only intended to
show that various other conceivable requirements do not lead to results.

We now turn to the discussion of the covariance requirements on the spin
operator. Since the translation property (37) implies that the spin operator
is independent of the coordinates (in the Dirac picture and hence in the
P-FW picture), the evenness of the operator in the P-FW picture implies
that it is conserved, as follows from (58). This means that the lemma (A12-
13) for the spin operator 53" (which will be assumed to be a quantity with
two indicesin which it is antisymmetric) says that the quantity Yy*s;}" is a
local covariant tensor if and only if
[NG, s sib] = ih(g™ s — g™ sent — g O tsiz + g v2stn). (A37)
From (A22) it then follows that this condition is equivalent with the require-
ment that the expectation value of the spin operator transforms as a tensor.
(This is the application of Klein’s theorem to the case of the spin operator.)
Written in terms of the operators s, = 1¢"¥s,, ,, and ¢, = si° the condition
(A37) reads
[Ni,, sl = ihe"t, o, (A38)

[Nip, ] = —ihes, op. (A39)

op?
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These are the same as (48) and (49), since s,,, and 7, are both conserved so
that the conditions (48) and (49) are equivalent with both local covariance
and covariance of the expectation value of the spin operator. The coinciding
of the various possible requirements on the spin operator made the problem
to find it essentially simpler than that of the position operator.

d. Three mutually excluding requirements on the position operator for the
Jree Dirac particle

In the main text we found that the position operator had pon-commuting
components. Hence the requirement of commutation of these components
is not consistent with the requirements of Lorentz covariance, at least not
for an even position operator. One may ask what happens if one would re-
quire from the beginning the commutation and forget about covariance. To
find the position operator which has this property we insert the general ex-
pression (59) for the position operator in the P-FW picture into the com-
mutation rule

[Xi,, Xi]=0. (A40)

This yields a number of differential equations for the functions fiand f,.
There are three independent solutions. They give rise to the following forms
for the position operator in the P-FW picture:

Xop = Ra (A41)
S he?
Xpp=R— ——"—— aAP,,

’ EZ —~m?*c* ’ (A42)
& he?
Xep=R— —— "~ (1+B)o A P,. (A43)

2AEL —m? c[)

The second and third solutions have the unwanted property to be singular for
zero momentum. If one discards them for that reason, one is left with (A41),
which is the position operator of Newton and Wigner'. Hence we conclude
that if commutation of Cartesian components — as well as a regularity con-

1 T. D. Newton and E. P. Wigner, Rev. Mod. Phys. 21(1949)400; K. Bardakci and R.
Acharya, N. Cim. 21(1961)802; P. M. Mathews and A. Sankaranarayanan, Progr. Theor.
Phys. 26(1961)499; 27(1962)1063; W. Weidlich and A. K. Mitra, N. Cim. 30(1963)385;
U. Schréder, Ann. Physik 14(1964)91;T. O, Philips, Phys. Rev. 136B(1964)893; A. Galindo,
N. Cim. 37(1965)413; R. A. Berg, J. Math. Phys. 6(1965)34; A. Sankaranarayanan and
R. H. Good Jr., Phys. Rev. 140B(1965)509; P. M. Mathews, Phys. Rev. 143(1966)985;
M. Lunn, J. Phys. A2(1969)17.
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dition — is imposed on the position operator (apart from its translation,
rotation, spatial inversion and time reversal properties), one finds the opera-
tor of Newton and Wigner. However covariance is then lost.

If one wants to impose both covariance and commutation of the com-
ponents one is obliged to leave the domain of operators which are even in
the P-FW picture. Then one gets afflicted with the interplay of positive and
negative energy solutions. If in spite of this one remains interested in the pos-
sible forms of operators which fulfil the requirements of covariance and com-
mutation, one may start from the general expression which satisfies the re-
quirements of translation, rotation, spatial inversion and time reversal. Inthe
P-FW picture one has then

Xop = R + {fl (Eop) + ﬂfZ(Eop)}G A Pop +f3(E0p)i02 G +f4(Eop)p2 Pop Pop‘a'
(A44)

By imposing the Lorentz covariance condition (60) one finds equations for
the fi(E,,) (i = 1, 2, 3, 4). Upon substitution of the solutions into the above
expression one obtains two types of possible position operators

s ho A P
— R4+ 10N | f£(E, Y9, P,, P,0, A4S
’ 2m(Eqy+mc?) +(Eor)p2PooPop (443)
2 2 .
X,, = R— _Nhefan P, + he ,02{ _ _ifﬂfﬂzﬁz_\ . (A46)
2E, (Eop+mc?) ~ 2E,, Eo(Eqy+mc?)|

If oneimposes moreover the condition of commutativity of the components
of }?Op, one finds that the solution (A45) does not fulfil this requirement (for
any f,), while (A46) fulfils it as it stands for both possible signs. The latter,
with the upper sign, is the Dirac position operator in the P-FW picture,
as follows from (62) with (63) (keeping in mind that one has ifa = —p, 0o
in the Pauli representation). It is simply R in the Dirac picture. The expression
(A46) with the minus sign is as good a solution as the Dirac position opera-
tor. It reads, in the Dirac picture

hc’a AP,  ihmc’fa
2 3
Eop Eop

X,, = R— (A47)

Incidentally it may be remarked that if we impose the evenness instead of
the commutativity, one finds as only possibility (A45) with f, = 0, i.e., asit
should be, the position operator employed in the main text.

e. On the uniqueness of the position operator of the free Klein—-Gordon particle

In the main text we found the even part of the position operator from the
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requirements of translation, rotation, spatial inversion and time reversal
alone. It turned out to satisfy the Lorentz covariance requirement and to
possess commuting components. Hence these two latter properties are com-
patible for even operators in the case of the Klein-Gordon particle.

For purely academic reasons one may still ask which position operators
are possible if odd operators are allowed to play a role. Then, from the re-
quirements of translation, rotation, space inversion and time reversal alone,
one has for the position operator the form

52OP = R+f1(Eop)Tl Pop . (A48)

This position operator satisfies the Lorentz covariance condition and has
also commuting components, for arbitrary function f,. Its even part is R,
which also separately fulfils the requirements of Lorentz covariance and has
commuting components,

The possibility of fulfilling simultaneously the requirements of covariance
and commutativity for the even part of the position operator makes the treat-

ment of a particle without spin essentially simpler than that of a particle with
spin.



PROBLEMS

1. Show from the Dirac equation (1) that j* = yy*Q, ¢ (with Q,, inde-
pendent of the time) is conserved (8,/* = 0) if and only if the operator Q,,
commutes with the Hamiltonian H,,.

2. Prove F. Klein’s theorem in its standard form: if a tensor ™" satisfies
a local conservation law 8,1+** = 0 then the quantity | #***°dR is con-
served and is a tensor of the type u*-* if the integrand tends to zero at in-
finity in such a way that surface integrals vanish there.

Hint: since the indices aff ... u appear everywhere in the same way, the
theorem is proved if one shows for a vector j* with 0,7 = 0 that fjodR is
conserved and is a scalar invariant, provided that j° vanishes sufficiently
quickly at infinity. The proof follows by considering two space-like surfaces
o and 6, quantities | j°dR = | j*do, and [j”dR = [j*dé, = [ j*dé, and
by application of Gauss’s theorem.

3. Find the unitary transformation (56) by considering the plane wave
solutions of the Dirac equation (1) with Hamiltonian (2).

4. Derive the equation of motion that would result if one takes for the
position operator of the Dirac particle in an electromagnetic field the opera-
tor R in the Blount picture. Choose for convenience g = 2 and derive first
the Weyl transform of the velocity operator
ehc’fPe'B _ ehc’o AE
2F? 2E(E+ mc?)
ehc*(2E+mc*)P(P n6)E
2E*(E+mc?) '

op

N SN Brc?
) z%[HOP,Rsz +

7

Derive then the equation of motion

m oo _ £ [H,,, mb,,]+m Pop y_Z(U—ﬁﬁ)'<yeE+yeﬁ AB
dt f ot
fi
+ [(VB)-a+ . (VE)(B ro)
y+1

2me
2 o\ lop_ OAE  y°BB(c AE)
7 %+ BV) {ﬁaB y(y+1)+ (r+1)*? }:l)’

4R7
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where we limited ourselves to the upper left part of the matrix expression,
L.e. B replaced by 1 (necessary for expectation values of the positive energy
solutions) and where we used the same abbreviations as given above formula
(158). The fields depend on the position R and the time 7.

Corresponding to this choice of the position operator one takes now for
the spin operator (v. (149)): tho. Show that the equation for this spin opera-
tor becomes (again with g = 2)

de i .- e | _
o = . [H,,,0] *;7—; {y ‘6 AB— }T—{]j-l on(BAE)},
where again f§ has been replaced by 1.

The right-hand sides of the equations of motion and spin given above are
not covariant. To prove this fact one should show in the first place that the
right-hand side of the equation of motion without the factor "2 (U—BB) is
not the space part of a four-vector. Show this for the terms with field deriva-
tives by writing first the rest frame expression:

(V'B')yo'—16' AOLE'

and transforming this with the help of the Lorentz transformation formulae
for (05, V') and (E/, B’), assuming the transformation character of ¢’ to
have the general form

6 = Fo+Gppa

with F and G functions of || or y. It turns out then that the difference be-
tween this transformed expression and the field derivative terms in the equa-
tion of motion is not parallel to the velocity B, so that the non-covariance is
then proved.

The non-covariance of the spin equation may be proved along similar
lines.

(The covariance of the equations of motion and spin as derived in the
main text may be proved with the same technique. Strictly spoken this is not
necessary since we started from covariant position and spin operators; more-
over the resulting equations have the same form as the manifestly covariant
classical equations.)

5. The same questions as those of the preceding problem arise if a still
different position operator is adopted, namely one that is connected with the
Dirac position operator. Prove first that the operator which is simply R
in the Dirac picture gets the form (for g = 2)
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hlnne N eh*c*(2E* ~m*c*)P A B
2E(E,+mc?) 8E*(E+mc®)
2.2 . R
_ Pehic (E—— PPE) 4R,
4E° E?

R=R+

in the Blount picture. Here R, is the odd part of the transformed Dirac
position. Its explicit form is irrelevant if one is interested in the expectation
value of positive (or negative) energy solutions: then only the even part of
the Dirac position operator comes into play.

Show that the velocity operator corresponding to the even part of the
Dirac position is:

_, Ppnc® | ehmc®BPoB ehc’foP'B
K, 2E(E+mc*)  2E*E+mc?)

o>

ehmc* _ ehc*P AEP-¢

2E° 2E¥(E+mc?)
Prove then the equation of motion for this choice of the position operator
ds,, 2 eh Y
m—2=L 29 (U~ pP) |yeE+yepAB+ —— | (VByo+ —— (VE)(f ro)
dt 2me y+1
3

“ 72
+(Go+ BV) {“/‘ ofB+ —— poB+ —— ppopB
y+1 y+1 r+1

=y tonE= o prERe (o) ).

Again f was replaced by 1. The fields in this equation depend on R and ¢
Introduce now the fields at the position R and time z. Introduce moreover the
even part 346 ,, of the spin operator that corresponds to the Dirac position
operator, i.e. the operator which is 1fie in the Dirac picture. Prove first that
the Blount picture expression of this spin operator is, up to terms without
potentials and fields (needed only for the equation of motion):

with the even part

. c*PA(6 AP) e 7B (o AB)
E(E+mc?) ?+1

€

(which might be written as 6, = y~'Q 7 !¢) and o, the odd part which need
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not be specified. Show that the equation of motion then gets the form

ds, _
m —L 2297 2(U—Bp)- (WE“H’@I; AB+ o [(VB)s.
dz 2me

+9* 0o+ BV){p&. B—y 26, ANE~ BB (6. E)}]) .

To derive the spin equation show first that the even part of the spin opera-
t9r which is simply +#6 in the Dirac picture, reads (up to terms with poten-
tials) in the Blount picture (again g = 2):

2
6= © nA(o AT) .
E.(E.+mc?)
Derive then the equation of motion for this spin operator:

dé op e

e. —1fa IS
e T +a /\B+ 6.ANE /\ﬂl.
dt ch te (e ) g

. Just as in the preceding problem one may prove the non-covariance of the
right-hand sides of the equations of motion and spin.

6. Prove from (158) that one has for the inner product of 8, and mdd, /dz
the equation: )

A

Lo [ e -4 v
Im {vop-, Tt} =y [cyeﬂ'E(X, £)+ 29’7% {B-(VB)3+B-(VE)(B A%)

928200+ BV (BB A E)} (9’2—‘315 Pt BVBAYE+pAB)|

Compare this result with that of problem 10 of chapter IV.



