
CHAPTER VII 

Quantum statistica! description 
of material media 

1 Introduction 

Macroscopie laws are obtained from laws at the atomie level by means of an 
appropriate averaging procedure. Since the atomie laws were formulated in 
terms of Weyl transforms, such an averaging wil! involve the use of Wigner 
functions for statistica!, i.e. mixed states. In deriving the macroscopie laws 
in this way we take full advantage of the close analogy with classica] theory. 
It wil! then turn out that the macroscopie quantum-mechanical laws ob 
tained have the same form as the classica! laws. The macroscopie quantities 
are also toa great extent analogous: most ofthem may be obtained from the 
classica! quantities by replacing the distribution functions by Wigner func 
tions. 

2 The Wigner function in statistica! mechanics 

In quantum statistics a system is described by a density operator! P, which 
corresponds to a mixed state: 

P(t) = I wylt/1/t)><wit)I 
with weights wy, normalized to unity, 

I ,1\, = 1 
y 

(1) 

(2) 

and pure state vectors li/1/t)) that forma complete orthonormal set. Average 
values ofphysical quantities, represented by operators A, are given by 

A = I wy<t/lylAl!/ly) = Tr (PA). 
y 

(3) 

1 In this section, as in section 3 of chapter VI, we use capitals for operators and Iower 
case symbols for Weyl transforms. 

,m 
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Since in the preceding we used Weyl transforms rather than operators to 
represent physical quantities, we want to express also the average values (3) 
with the help of Weyl transforms. To that end we introduce the Wigner 
function as the Weyl transform (times h3) of the density operator (1). Then 
one finds 

P(P, q; t) = I w,PiP, q; t) 
y 

A = a, 
where the right-hand side is the integral: 

Zi = J dp dq a(p, q)p(p, q; t), 

A=IwyaY 
y 

with the pure state integral 

a1
' = J dpdqa(p, q)py(p, q; t). 

(4) 

with the partial Wigner functions py(p, q; t) for pure states defined as (VI.54) 
in chapter VI, section 3b: 

P,,(P, q; t) = h-3 J dve°fli)p·vl/Jy(q-½v; t)I/J;(q+½v; t), (5) 

where 1/!y{q; t) is the wave function of the pure state 11/lr>· 
With the help ofthis Wigner function (4) one may write the average (3) as 

(6) 

(7) 

as follows from (VI.51-52). Introducing (4) one may write (6) with (7) alter 
natively as 

(8) 

(9) 

From the normalization of the partial Wigner functions (VI.56) and for 
mula (2) it follows that also the total Wigner function (4) is normalized: 

J dpdq p(p, q; t) = l. 

Thetimeevolution of the Wigner function follows from the timeevolution 
of the partial Wigner functions, given in (VI.59). As a result one gets an 
equation 

8p(p, q; t) - 2 . {h (8(1,). 3(p) 3(h) • 3(p))Î . 
--;::----- · - - Sll1 - - -· - --::;-- - f h(p, q)p(p, q, t), 

ot h 2 àq óp op óq 
(12) 

which has the same form as (VI.59). From this equation one finds an expres 
sion for the time derivative of an average quantity (6): 

d-(t) 2J [ {h (3(a) 3(1,) a(a) é/h))} ] _a_ = - dpdq sin - - · -~ - -- · - a(p, q)h(p, q) p(p, q; t), 
dt h 2 óq op êp 8q 

(13) 
formally the same as (VI.60). 
For many-particle systems the averages of physical quantities can also be 

obtained with the help of the Weyl transforms of the operators correspond 
ing to these quantities, and Wigner functions. Both the Weyl transform and 
the Wigner function depend then on the phase space varia bles of all particles. 

3 Reduced Wigner functions 

The formalism outlined in the preceding section will be applied to systems 
of N atoms, labelled by k = I, 2, ... , N, that consist of a number of point 
parti cl es, labelled by k, i. Then the W eyltransform of the operator correspond 
ing to a physical quantity will depend on all momentum and coordinate 
variables1 Pki, Rki (k = 1, 2, ... , N; i = I, 2, ) of the particles. The total 
set of varia bles will for short be denoted 1, 2, , N. 
Often the operators pertinent to physical quantities are sums of operators 

which depend on the variables of one single atom only, i.e. which are of the 
form 

aop = I ak,op. 
k 

(14) 

(10) 

Just as the partial Wigner functions for pure states, the total Wigner func 
tion introduced here cannot be interpreted as a probability density in phase 
space. The integrals over the momenta ( or over the coordinates) however 
are positive definite and may be interpreted as probability densities: 

Here the quantities ak,op depend on the coordinate and momentum operators 
P ki,op and Rki,op of the constituent particles i = 1, 2, ... of atom k. The Weyl 
transform of such a quantity is equal to 

a0P +t a(l, ... , N) = L aik), 
k 

where k indicates all momentum and coordinate variables of atom k. 

(15) 

Jdp P(P, q; t) = I. w1II/Jlq)l2 ), o. 
y 

(11) 
1 We now return to the notation according to which operators are distinguished by a label 
op and quantities without such a label indicate ordinary numbers. 
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If the system consists of identical atoms the average (7) of the quantity 
(15) may be written as: 

a = N J a1(l)p(1, 2, ... , N; t)dl ... dN, 

or alternatively as: 

a = J a1(l)/1(l; t)dl, 
where the reduced Wigner function defined as 

/1(1; t) = N J p(1, 2, ... , N; t)d2 ... dN 

label the reduced one- and two-component distribution functions for the 
various species. 

(16) 
4 The Maxwell equations 

(17) 

(18) 

is a one-point function, normalized to N. In practice it is often convenient to 
introduce instead of the momentum and coordinate variables P 1 i and Rli 
(i = I, 2, ... ) different variables in the integral ( 17). The Jacobian of such a 
transformation may then for convenience be absorbed in the new one-point 
function. For forma! reasons one may then maintain the notationj", (1; t ). 
Furthermore one encounters two-point operators, which have Weyl trans 

forms 
a0P ~ a(l, ... , N) = I ak1(k, l). 

k,l(ki'l) 

Then (7) leads to the average value 

a = J adl,2)/2(1,2;t)dld2, 

(19) 

(20) 

where the reduced Wigner function 

Jz(l, 2; t) = N(N 1) J p(l, 2, ... , N; t)d3 ... dN (21) 

is a two-point function normalized to N(N -1 ). 
In contrast to the distribution functions of classica! theory the one-point 

and two-point Wigner functions do not admit an interpretation in terms of 
probabilities. However such an interpretation is possible if one integrates 
away either all momentum or all coordinate variables. 
In the following we want to have at our disposal also two-point 'correla 

tion functions', which are defined as 

c2(l, 2; t) =fz(I, 2; t)-/1(1; t)/1(2; t). (22) 

For mixtures of several chemica! components one needs an extra index to 

The starting point for the derivation of the Maxwell equations is the set of 
equations (VI.90) for the expectation values of the operators representing 
the atomie fields. 
In the set of equations (VI.90) all symbols denote in fact pure state inte 

grals of the type (9). By making a weighted sum of these equations we get 
according to (3), or (8) with (9), the equations for average quantities 

V·E = r;/-V·P, 

-80E+VAB = c-1J+80P+VAM, 

V·B = 0, 
80B+VAE = 0, 

where the macroscopie fields are defined as 

E(R, t) = Je(l, ... , N; R, t)p(l, ... , N; t)dl ... dN = I w,e', , 

B(R, t) =Jb(1, ... , N; R, t)p(l, ... , N; t)d1 ... dN = I w;,b'. 
ï 

g°(R, t) = J pe(l, ... , N; R)p(l, ... , N; t)dl ... dN = ~ WypeY, 

J(R, t) = J j(l, ... , N; R)p(l, ... , N; t)dl ... dN = ~ wyj'. 

J(R, t) = ~ J e0 v1 fi°(R, V1; t)dv1, 
where a labels the various species in the system. 

(23) 

(24) 

Furthermore the macroscopie charge and current densities are given by: 

(25) 

Inserting (VI.85) and introducing the one-point reduced Wigner function 
(18) we may write these expressions as (cf. (II.19)): 

Qe(R, t) = L e0Ji°(R; t), 
a 

(26) 
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The macroscopie polarization densities are defined as: 

P(R, t) = Î p(l, ... , N; R)p(l, ... , N; t)dl ... dN = I Wypr, 
~ y 

M(R, t) =Jm(l, ... , N; R)p(l, ... , N; t)dl ... dN = I w7m
1', 

y 

(27) 

or with (VI.86) and the one-point reduced Wigner function (18) (cf. (II.21)) 
as: 

P(R, t) = ~ ,,t
1
(-l)"-1V"-1 :f fi.l"'.!t(R, 1; t)dl, 

M(R, t) = ~ ,,t (- 1y-ivn-l :J Cv~")+µ;")/\ Pi)ft(R, 1; t)dl, 

where /J1 = ».]«. 
In this way the Maxwell equations have been obtained in the framework 

of non-relativistic quantum mechanics. The macroscopie quantities are 
written as averages in terms of the Wigner function and Weyl transforms of 
operators on the atomie level. In particular the sources of the field equations 
contain the charge, current and polarization densities, given in (26) and 
(28) as expressions of the same form as the corresponding classica! ones, 
but with one-point Wigner functions instead of one-point classica! distribu 
tion functions. (The atomie operators ofwhich these macroscopie quantities 
are the averages have been given in formulae (VI.9 I) and (VI.93) of the pre 
ceding chapter.) 
As a consequence of the formal similarity of the classica! and quantum 

mechanical results of the non-relativistic treatments, one may also take over 
the applications to particular media which were given in chapter II, again 
replacing the classica! distribution functions by Wigner functions. 
The proof of the validity of the macroscopie Maxwell equations has been 

given here for the case of non-relativistic particles and fields, i.e. both de 
scribed by expressions up to order c-1• In chapter III it was shown that taking 
the non-relativistic limit of the fields meant that one confined oneself to 
situations in which two dimensionless parameters are small: the ratio /3 of 
the source velocity to the velocity of light and the ratio of the retardation 
time to a characteristic time of the motion of the accelerated source. Some 
times however one is interested in an approximation in which only the source 
velocity is small, but not the retardation time. To derive the Maxwell equa 
tions in that case one must perform a second quantization of the fields1• 

(28) 

1 W. E. Brittin, Phys, Rev. 106(1957)843; K. Schram, Physica 26(1960)1080; J. M. 
Crowther and D. ter Haar, Proc. Kon. Ned. Akad. Wet. 874(1971)341, 351. 

§ 5 MOMENTUM AND ENERGY EQUATIONS 

5 The momentum and energy equations 

a. Introduction 

The macroscopie balance equations and conservation laws of momentum 
and energy will be derived from the atomie equation of motion and the 
atomie energy equation by using an averaging procedure involving a Wigner 
function. The use of the Jatter function simplifies again the calculations con 
siderably in the sense that many derivations of classica! theory can be taken 
over. The results of the present quantum-mechanical treatment will differ 
slightly more from classica! theory than those of the preceding section where 
only the classica! distribution functions had to be replaced by Wigner func 
tions. 
Just as in classica! theory it will be convenient to derive the mass conserva 

tion law before turning to the momentum and energy equations. The treat 
ment will be confined to one-component systems. 

b. The mass conservation law 

The operator for the mass density on the atomie level has the form 

L mk ö(Rk,op - R), 
k 

375 

(29) 

where mk = m is the mass of the identical atoms and where Rk,op is the mass 
centre operator Li mkiRki,op/mk. lts Weyl transform is 

L mkb(Rk-R). 
k 

(30) 

By taking the Poisson bracket with the Weyl transform of the Hamiltonian 
one finds with the notation (VI.72) 

s; L mk6(Rk-R) = - L miotPRk)-Vc5(Rk-R). (31) 
k k 

By multiplication with a Wigner function and integration over phase space 
one finds 

~f I mk6(Rk-R)p(l, ... , N; t)dl ... dN at k 

= -v-J~mkvkö(Rk-R)p(l, ... ,N;t)dl ... dN, (32) 

where we used (VI.61), (VI.72), (13) and the abbreviation vk = é\pRk. 
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With the introduction of reduced Wigner functions of the type (18), one 
may write (32) as 

ÓQ 

ót 

with the macroscopie mass density 

-V·(gv) 

Q = mfi(R; t) 

and the macroscopie mass flow 

QV = J mv1 J1(R, v1; t)dv1. 

½ L 111 { Vk,op, b( Rk,op - R)}, 
k 

where vk.op is defined in (VI.92) and where an anticommutator appears. 

û(gv) _ Ó J . r -::- - -,:;- I mkvkc'5(Rk-R)p(l, ... , N, t)dl ... dl\. 
ot ot " 

(33) 

(34) 

(35) 

The macroscopie mass density is the average of the atomie operator (29), 
while the macroscopie mass flow is the average of the operator 

(36) 

c. The momentum balance 

The macroscopie momentum balance is obtained by multiplying the atomie 
equation of motion in its form (VI.98) by a delta function è>(R"-R), sum 
ming over Ic, multiplying by a Wigner function and integrating over phase 
space. Then one obtains 

J ~ mlê,rv,c)c5(R"-R)p(J, ... , N; t)dl ... dN 

= J ~ (fkL+JDè>(Rk-R)p(l, ... , N; t)dl ... dN. (37) 

The Ieft-hand side may be brought into relation with the time derivative of 
the mass flow, which is 

(38) 

With the help of (13) and (VJ.61) one finds with the notation (VJ.72) 

0\gv) = JI m"ó,r{v".5(R"-R)}p(1, ... , N; t)dl ... dN. (39) 
ot k 

If one carries out the differentiations at the right-hand side this equation 
becomes 

ê(:v) = f I miotPvk)è>(Rk-R)p(l, ... , N; t)dl ... dN 
ot k -v·JI mk v" v".5(R"-R)p(l, ... , N; t)dl ... dN, 

k 
(40) 

so that (37) may be written in the form 

o(gv) _ ·J . ~- - -V I mk vk vkè>(Rk-R)p(1, ... , N, t)dl ... dN 
êt k 

+ J ~ (fkL+J;)è>(Rk-R)p(l, ... , N; t)dl ... dN. (41) 

Splitting the Weyl transforrn vk of the atomie velocity into the bulk velocity 
v(R, t), defined by (35) with (34), and a fluctuation term v,: 

v" = v(R, t)+viR, t) (42) 

and introducing reduced Wigner functions of the type (18), one finds as the 
momentum balance 

o(ov) -"-- = -V·(ovv+PK)+FL+Fs ~ "' ' ot 

where we introduced a kinetic pressure tensor 

pK = J mb, V1 f1(R, V1; t)dvl 

(43) 

(44) 

and the abbreviations for the long range and short range force densities 

FL,S = J ~fkL,S.5(Rk-R)p(l, ... , N; t)dl ... dN. (45) 

These expressions contain the atomie quantities (VI.99) and (VI.100), which 
have the same form as (L54) and (1.52). For that reason we may take over 
the result of the classica] evaluation of FL and r, The only step which we 
should investigate is the one which involves the expression 

c-1 J ~ 01r{ii?l ABc(R", t)}è>(R"-R)p(l, ... , N; t)dl ... dN. (46) 

(cf. the last term of (II.66)). Application of the relation (13) with the Weyl 
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transform (VI.61) of the Hamiltonian leads to the identity 

c-1JI él,r{fi?l ABe(Rk, t)}ó(Rk-R)p(1, ... , N; t)dl ... dN 
k 

= c-1 If r fik1) /\Bc(Rk, t)ó(Rk-R)p(1, ... , N; t)dl ... dN at k 

+c-1V·J ~ vkfik1l AB0(Rk, t)ó(Rk-R)p(1, ... , N; t)dl ... dN. 

plication with the delta function ó(Rk-R), summation over k, multiplication 
with a Wigner function and integration over the whole of phase space: 

J "\' [ ~ {1 2 1 "\' (él )2 '\' eki ekj }] L, o,p 2mk v" + 2 L, mki tP rk; + L, ------ 
" ; i,j(i*.il 8nlrki-rd 

(47) 
ó(R" - R)p(l, ... , N; t)dl ... dN 

= J t (if1;+i/Jf)ó(R"-R)p(l, ... , N; t)dl ... dN. (50) 

The right-hand side has the same form as the expression (II.67) of classica] 
theory. This means that the long range force density, which occurs in (43), 
has the same form as (II.72): 

FL = r;/E+c-1J AB+(VE)·P+(VB)·M 

+c-1 ~-(P AB)+c-1V·(vP AB)-V·PF +Fc. (48) 
ot 

The macroscopie Maxwell fields, charge-current and polarization densities 
are the quantum-mechanical averages (24), (26) and (28). The pressure pF 
and the correlation contribution Fc to the long range force density are given 
by (II.73) and (II.74) where now f1 and c2 stand for the reduced Wigner 
functions (18) and (22). 

Likewise the short range term F5 in (43) is given by (II.75), where J2 

now stands for the two-point Wigner function (21 ). 
The quantities that occur in the momentum equation have been given 

here as integrals over the product of Weyl transforms of certain operators 
and Wigner functions. The advantage of this way of writing resides in the 
fact that their form is as simple as the classica! one. If one wishes one may 
write down the operators of the Weyl transforms that occur here. For in 
stance one may find the operator of which the kinetic pressure ( 44) is the 
average by making use of (VI.31) and (VI.92). Then this operator turns out 
to be of the form 

¼ L mk{vk,op-v(R, t), {vk,op-v(R, t), ó(Rk,op-R)}}, 
k 

involving a double anticommutator. 

(49) 

d. The energy balance 

As in the derivation of the momentum law the macroscopie energy balance 
equation follows from the corresponding atomie equation (VI.105) by multi- 

In order to rewrite the left-hand side we consider the following time deriva 
tive 

0 J "\' { l 2 l '\' (a )2 '\' ek, ekj ) - L, ·zmk vk + 2 L, mi, 1P rki + L, --f at k , i,j(i,f,j) 8nlrk, rd 

ó(R"-R)p(I, ... , N; t)dl ... dN. (51) 

This time derivative may be evaluated with the help of (13). Then one ob 
tains, in view of the form (VI.61) of H, an integral over phase space with as 
integrand the product of the Wigner function p(l, ... , N; t) and the expres 
sion 

( [ 
a au1

) { ri2 ( a au1
))
2
} a a<H)] L -·-- 1- - I-·-- - ·- H(l, ... ,N;t) 

k,, ss; er; s 1,j DPlj aRlj er; aR"; 

+ él ) '\' f 1 2 + 1 '\' (él )2 "\' emp ems } ó(R R) -:,· L, 1·2n1mVm 2 L, 111mp tPrmp + L, m- , 
ot m \ P p,s(p,f,s) 8nlrmp - r,,,sl 

a 
- (-hzv2 + 12uK) = - V·{ v(-}12v2 + 12uK) + pK.v + J~} + pL + P5

• at 

(52) 

where the differentiation symbols with label (H) act only on the Weyl 
transform H of the Hamiltonian and the other ones on all terms save H. 
With this result one then finds an expression for (51 ). If this expression is 
used in (50) we get the energy balance equation 

(53) 

The energy density 12uK is found as: 

QUK=J{tmllf+½Im;(él,pru)2+ I e;ej }11(R,l;t)dl (54) 
; i,j(i,t,j) 8nlru-r1_;l 

with the rnasses and charges mki = m; and ek, = e, of the constituent par- 
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ticles of the identical atoms and the velocity fluctuation fJ1 defined by (42). 
Furthermore the kinetic pressure pK has been given in ( 44) and the macro 
scopie power densities pL and P5 stand for 

pL,S = J ~ l/1Jt5c5(Rk-R)p(l, ... , N; t)d1 ... dN (55) 

with atomie quantities given in (VI.106) and (VI.107). All quantities men 
tioned so far have the same form as those occurring in the classica! theory 
with the distribution function replaced by a Wigner function. The heat flow 1:, however, has a form which differs from the corresponding classica! ex 
pression (II.81): 

1r =Jv1 {tmvf+½ I m;(ótPr1Y+ __ I. __ e,ej )1f1(R, 1; t)dl 
, ,,1(,*Jl 8nl1 li-1 ljl 

J h2 e- + L -- -'- LluAe(Ru, t)f1(R, 1; t)dl. 
, 8 mm, c 

The energy balance equation (53) contains the long range and short range 
power densities (55), which may be evaluated along the same lines as in the 
classical treatment (section 5d of chapter II). The point which has to be 
checked in detail is the validity of the quanturn-mechanical analogue of 
(II.83). This may be done in the same way as in (46-47). As a result one 
:finds for the long range power density (55) ( cf. (If.88)) 

óP oB !/IL= J·E+-·E+V·(vP·E)-M·- -V·(PF·v+JF)+'l-'c, (58) 
àt at q 

where all quantities have the same form as in classica! theory with the 
distribution functions replaced by Wigner functions and also fluxion dots 
by the operation Ó1p. The same applies to the short range power density Ps. 

(56) 

The last term with the Laplacian of the vector potential Ae has arisen from 
the second term of the expression ( 52 ). The occurrence of this rather exotic 
term does not destroy gauge invariance, as may be seen by writing down the 
operator of which ( 56) is the average ( see problem I ): 

II l {Pkj,op-c-1ekjAe(RkJ,op, t)-mk;v(R, t), 
k i,j l6mk mk, 

{(Pki.op-c-1ek;Ae(Rki,op, t)-mk;v(R, t))-, 

{(Pki,op-c-1ek,Ae(Rki,op, t)-mk;v(R, t)), c>(Rk,op-R)}}} 

+IL -1-{Pki,op-c-1ek;Ae(Rk,,op, t)-mk,v(R, t), 
k i 2mk 

'\' ekp eks ö(R - R)} (57) L.t k,op , 
p,s(pif.os) 8nlrkp,op -1\s,opl 

where the curly brackets indicate anticommutators. The fact that the vector 
potential appears in the traditional combination with the momentum opera 
tor guarantees the gauge invariance '. 

1 As is well known the canonical commutation relations for coordinate and momentum 
operators are invariant under the von Neumann transformation P0P ->- P~P = P0n+Vx 
with g an arbitrary function of the coordinate operators. As a consequence the combination 
P0P-c'eA0P rnay be writtcn as P~P-Vx-c-1eA0P. Since under a gauge transformation 
the vector potential A0P becomes A~P = A0P+V1P (with arbitrary 1/J), it follows that 
P0P-c1eA0P can be written as P~P-c-1eA;p, if x is chosen as c-1e1fJ. 

e. The short range terms 

Since the integrand in F5, which is of the form (II. 75), vanishes with increas 
ing [s], one may expand the Wigner function in powers of sas the distribution 
function in the classical treatment. Then one :finds that 

ps = -V·Ps (59) 

with a pressure contribution P5 of the same form as (II.94). 
As to the short range power density Ps, an expansion of the two-point 

Wigner function leads toa relation of the form (II.95). It may be written in 
an alternative way by considering the derivative of a quantity of the form 
(II.97) namely 

(]US = J I ( I - ek,elj - I (-1)"'µ["): v;µ:;m): v~· _1_) 
k.l(kif.ol) i.j 8nJs+rki-rljl n,m=O 8ns 

ö(Rk-R-½s)ö(R1-R+½s)p(l, ... , N; t)dl ... dN, (60) 

which contains the N-point Wigner function. lts time derivative follows by 
application of (13) with the Weyl transform (VI.61) of the Hamiltonian. 
One obtains an equation of the same form as (II.99) with distribution func 
tions replaced by Wigner functions and fluxion dots by the symbol é\p. As a 
consequence the short range power density becomes (cf. (Il.101)): 

óous 
ps = -V·(vou5+Ps·v+Js)- -"- 

" q ~ ot 
(61) 

with QUs given by (60) and J! by an expression of the same form as (II.96, 
100). 
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f. The correlation contributions 

The correlation contributions pc and pc wil! be studied here for a fluid 
system of neutra] atoms. (The other cases, namely plasmas and systems 
with long range correlations, that have been studied in the classica! treat 
ment, may be generalized to quantum theory in an analogous fashion.) 
In classica] theory fluid systems of neutral atoms were characterized by the 

existence of a correlation length that is small compared to the distance over 
which the macroscopie quantities change appreciably. Therefore the correla 
tion function could be expanded in a Taylor series, which could be broken 
off after a few terms (the Irving-Kirkwood approximation). In quantum 
mechanics two reasons for the occurrence of correlations exist: in the first 
place correlation effects that are the quantum-mechanical analogues of the 
classica] correlation effects due to the interaction between the particles, and 
furthermore the correlation effects due to statistics, which take place even 
in a perfect gas. The Jatter effects are characterized by a 'correlation length' 
which is of the order of the thermal wave length J = h/(2nmkT)½ as is shown 
in the appendix I. A necessary condition for the expansion of the correlation 
Wigner function is hence that the thermal wave length } is small compared 
to the distance dover which the macroscopie quantities change appreciably, 
i.e. for sufficiently high temperature. (This does not mean that quantum 
effects due to statistics are now neglected altogether. That would require 
the smallness of the thermal wave length }. with respect to the rnean free 
path; the Jatter is always much smaller than the distance d in the physical 
situations to which statistica! mechanics applies.) The second condition for 
the possibility of expanding the correlation Wigner function is the smallness 

, of the correlation length due to the atomie interactions with respect to the 
macroscopie distance d. The Jatter condition sets a limit to the applicability 
of the Irving-Kirkwood procedure of the same kind as in the classica! case. 
1f indeed the system is such that the Wigner correlation function has short 

range in the sense described above, we may apply the Irving-Kirkwood 
approximation to the correlation force density pc and the correlation power 
density 1l'c. Then one may write 

Fc = -V·Pc, 

C C " OQé P = -V·(vou +Pc·u+Jc) ~ q ~ 
ot 

with Pc, J~ and 12é given by formulae of the same form as (II.104), (II.111) 
and (II.112), but with a Wigner function instead of a classica! distribution 
function and the Poisson bracket derivative o1p instead of the :fluxion dot. 

(62) 

(63) 

(In taking the time derivative of the quantity 12é, one has to apply the iden 
tity (13); owing to the special form of the integrand of 12é and the Weyl 
transform of the Hamiltonian, the sine operator reduces to the Poisson 
bracket operator.) 
If the Wigner correlation function has long range character one may use 

an artifice of the same type as in chapter II, section 5h of the classica! theory 
to derive again expressions of the form ( 62-63 ), but with a mean Wigner 
correlation function instead of the Wigner correlation function itself. 

g. Substances with short range correlations 

Collecting the results of the preceding subsections we have found the 
momentum law for substances of neutra! atoms of which the Wigner cor 
relation functions have short range: 

é:u = V·(12vv+P)+(VE)-P+(VB)·M +c-1 j_ (P t..B)+c-1V·(vP t..B) (64) 
et àt 

( cf. (II.105-106) ). He nee the time derivative of the momentum density QV 

is equal to the sum of a divergence of a material term, that contains the 
pressure tensor P, and a force density due to the electromagnetic field. 
The energy law for such substances is 

C -(½12u2 + gu) = -V·[u(½gv2+gu)+P·u+Jq} 
àt 

àP àB + -::--·E+V·(vP·E)-M·-. (65) 
ot èt 

( cf. (II.113-114 ). The change of the total energy density with time is thus due 
toa material energy flow and a power density, which arises from the electro 
magnetic fields. The difference with the classica! results consists in the re 
placement of the classica! distribution functions by Wigner functions and 
fluxion dots by the operator 01p in the expressions for the macroscopie 
quantities. Moreover an extra term with the Laplacian of the external vector 
potential appears in the contribution J~ to the heat flow. 
Just as in classica] theory the balance equations (64) and (65) may be 

written in the form of conservation laws. One then obtains equations of the 
form (II.109) and (Il.l 18). 
The quantum-mechanical non-relativistic treatment of neutra! plasma's 

and of substances with long range Wigner correlations presents no new 
aspects as compared to the classica! non-relativistic theory. 



384 NON-RELATIVISTIC QUANTUM STATISTICS C CH. VII §7 THERMODYNAMICS 385 

Galilei invariance of the theory, i.e. invariance with respect to the coor 
dinate transformation 

R' = R+Vt, t' = t, (66) 

follows from the transformation of the wave function 1 

i//(R', t') = exp f ~ ( I V·Rki+½ I mki V2t)} tf;(R, t). (67) 
\/i k,i ki 

In fact the Hamilton operator that governs the time behaviour of the wave 
function transforms as 

H~r(Pki,op, Rki.op) = HoiPki,op, Rki,op-Vt)+c-l L eki V·Ae(Rki,op-Vt, t). 
k,i 

(68) 

The Weyl transform of this Hamiltonian occurs in the Poisson bracket atP • 
The transformation of the Wigner function that follows from its definition 
( 4-5) and ( 67) is 

p'(Pk;, Rk;; t) = p(Pki-mki V, Rk;-Vt; t). (69) 

With (68) and (69) one rnay check the Galilei invariance of the equations. 

6 The angular momentum equations 

If one starts from the atomie angular momentum equation (Vl.111) with 
(VI.112) and (VI.I 13) one finds the macroscopie angular momentum equa 
tion by multiplying with the delta function o(Rk-R), summing over k, mul 
tiplying with a Wigner function and integrating over phase space. Since the 
Weyl trans form of the atomie inner angular momentum density Lksk o( R, - R) 
is linear in the momenta, the sine occurring in the time derivative (13) re 
duces to the Poisson bracket. Therefore the angular momentum law has the 
same form as in classica! theory, if one supposes again the Irving-Kirkwood 
approximation applicable. The result is then for a substance of neutral atoms 
with short range Wigner correlation functions: 

as -1 ) - = -V·(vS+Js)+Ds+P AE+M AB+c vA(P AB). (70 
ót 

This law has the same form as (II.185), but in the statistica! expressions 
Wigner functions occur instead of classica! distribution functions. It con- 

1 J. M. Lévy-Leblond, J. Math. Phys. 4(1963)776; see also problem 2. 

tains the inner angular momentum density S, the ( conduction part of the) 
inner angular momentum flow J5, (which has the form (II.186)), the rnaterial 
part of the source term Ds ( of the form (II.187)) and tor que densities exerted 
by the electromagnetic fields (E, B) on the polarization densities (P, M). 
The macroscopie quantities have been written throughout as integrals over 

Weyl transforms of atomie operators and Wigner functions. Therefore they 
are averages of operators that may be found from these Weyl transforms. In 
particular one finds that the macroscopie inner angular momentum density 
is the average of the atomie operator 

½ L {sk,op' o(Rk,op -R)}. 
k 

The inner angular momentum operator sk,op has the Weyl transforrn (VI.110) 
and is hence: 

sk,op = ½ I: mk;{rki,op /\, 1\i,op}, 

(71) 

(72) 

where rki,op stands for Rki,op -Rk,or and where 1\i.or is given by (VI.95). 
In the same way as in classica! theory one may prove that the source term 

D, is equal to minus the antisymmetric part of the pressure tensor 

D'; = -PA (73) 
( cf. (II.195)). This fact has as a consequence that also the conservation law of 
total angular momentum in the form (Jf.197) is valid here. 

7 The laws of thermodynamics 

a. The first law 

The first law of thermodynamics is a direct consequence of the energy 
balance equation. Since the latter has the same form as in the classica! treat 
ment, one finds in the case of a system of neutra! atoms with short range 
Wigner correlations an equation as (II.213), i.e. 

dq = ?!! +vP: Vv- d(vP') ·E' +vM'· dB'. (74) 
dt dt dt dt 

lt shows that the heat supplied per unit mass and time is equal to the change 
of specific internal energy u plus a viscous term with the pressure tensor P 
and the velocity gradients, plus two terms with the electromagnetic fields 
E', B' and the polarization den si ties P', M' (II.I 88) in the rest frame. The 
time derivatives at the right-hand side are material time derivatives (8/ àt + 
v·V), and v is the specific volume. 
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For neutra! plasmas and for systems with long range correlations one finds 
laws of the form (II.216) and (II.217). 

b. The second law 

In order to derive the second law for a fluid system of neutra! atoms we con 
sider a large polarized system at rest, divided into nearly uniform cells and 
describe these cells by canonical ensembles with the environments playing the 
role of heat baths. The cells are chosen to be ellipsoidal, so that the external 
fields due to the surroundings of the cells are uniform and given by (II.220) 
with (II.219 ). 
The quantum-mechanical canonical ensemble is given by a density opera 

tor 
P0P = exp {(F*-H'/:'r,)/kT}, 

so that, since Tr P0P = 1, one has 

exp(-F*/kT) = Trexp(-H'/:'r,/kT). 

w ' -w ( ) Hop = Hop+ L, U k,op Rk,op • 
k 

(75) 

(76) 

Here F* is the free energy, Tthe temperature and H:{, is the Hamilton opera 
tor of the system with the inclusion of wall potential operators 

(77) 

The wall potential operator ut0P, which depends on the centre of mass 
operator Rk,op of atom k, is defined in such a way that it gives infinity if it 
operates on an eigenfunction of Rk.op with eigenvalue R, lying outside the 
volume V, while it gives zero if it operates on an eigenfunction of Rk,op with 
eigenvalue Rk lying inside the volume V. The Hamilton operator H0P may 
be written as a function of the coordinate and momentum operators of all 
constituent particles of the system, or alternatively as a function of the centre 
of mass and relative coordinate operators and corresponding momentum 
operators. The latter form of the Hamilton operator has been derived in 
appendix IL lts Weyl transform is (A54) with ek = 0: 

( 
p2 J- 1 2 J- 1 • ) H (p t) -c+ , _k + , Pki _ , f!,<i Pkj 

op op , q op , +'- L, L, L, 
k 2111" i=I 2mki i,j=I 2mk 

+ I I ekiekj + L I ekielj 
" i,j=t(i*j) 8njR"' Rd k,l(k*l) ;,j=1 8nlRki-R1) 

'{-(!) (E 1 -1 pk B) J -re~ -(!)) (B R) -(!) D} (78) -L, µk • c+zC -/\ c +zC OtPµk • cÁ k+Vk 'Ve ( 

" mk 

with the Weyl transforms of the electric and magnetic dipole moments: 
J 

ii?)(q) = L edRk;(q)-qkJ}, 
i= 1 

J f .r- l } -( 1 J _ 1 , - 1 , , Pki Pkj 
vk (p, q) - zC _I ekilRk;(q)-qkff /\ \(1 ö;J) - - _I --· · 

,=1 \ mk; 1=1mk 

(79) 

The Hamilton operator (78) depends on the external electric and magnetic 
fields (E0, B0), and the wall potential operators on the boundary of the 
system. Hence the free energy depends on these quantities and on the tem 
perature T. The partial derivative of the free energy with respect to the ex 
ternal electric field is: 

or: { a } ~ = -kTeF*/kT Tr - exp (-H'/:'r,/kT) . 
es, oEC 

We now apply an identity1 for the derivative of an exponential operator: 

a 00 1 
-- eÁop(a) = I ----A(")(a)eÁop(a) 
ào: n = 0 (n + 1) ! op 

with the operator A~;!( a) following from 

A(O) = oAoir:) 
op - ,..,, , 

o« 
A(n) [A A(n-1)] 

op op, op 

er: = Tr [?H0Pexp{(F*-H:)/kT}], 
êEC aEC 

0H0P -c+ oH -~-- +'- ---- 
o E e ee, 

- J ii?1/1(l)dl = - VP, 

(80) 

(81) 

(82) 

( cf. problem 3). Using this lemma in (80) one finds, since the traces of the 
commutators occurring vanish, 

(83) 

where the fact that the wall potential operator is independent of the fields 
has been taken into account. This expression may be written in terms of 
Wigner functions and the Weyl transform of óH0p/óE0• The latter is equal to 
oH/2E0: 

- I: iii1>. 
k 

(84) 

Tirns one finds for (83) 

oF* 
en, (85) 

1 R. J. Riddcll jr. and G. E. Uhlenbeck, J. Chern. Phys. 18(1950)1066. 



388 NON-RELATIVISTIC QUANTUM STATISTICS C CH. VII §7 THERMODYNAMICS 389 

where we employed the reduced Wigner functionj{L) and took the uni 
formity of the electric polarization density P (forrnula (28) for the dipole 
case) into account. Likewise we find for the derivative with respect to the 
magnetic field 

er: [aH ] --=Tr -~-0Pexp[(F*-H:'r,)/kT}. ee, c;Bc 

With the help of the Weyl correspondence 

aH0P aH_ "{-<1J 1-1-0) Pk 1-1(a -Ol) Rl -- :;,± - - - - L, vk + zC µk /\ - - 2 C tP µk /\ kJ 
à Be oBC k m, 

(with a1r given by (VI.72)) that follows from (78), one obtains then 

er: - -J{v(l)+J_c-lµ-/1) A P1 __ 1_c-1(a µ-(!))AR }1 (l)dl ~B - 1 2 1 " - 2 IP 1 1 1 • 
C e 1111 

êF* = -J (v11J+c-1fii1i A !'J. )!1(1)dl = - VM, 
0B0 1111 

aF* - = -s. ar 

(86) 

(87) 

(88) 

Since the canonical ensemble is stationary one derives by application of (13) 
that, up to order c0, 

J(atr.Üi
1l) A Rif1(l)dl = -J.üi1) A _!'_l f1(1)dl, (89) 

m 1 

where Pi/m1 a1rR1 = v1 (up to order c0). Therefore (88) may be written 
as 

(90) 

because of the definition (28) of the (uniform) magnetic polarization density 
M for the dipole case. 

By definition the partial derivative of the free energy with respect to the 
temperature is equal to minus the entropy: 

(91) 

Just as in the classica! case infinitesimal changes of the boundary will be 
described by a uniform deformation tensor 6e in such a way that 

The total change of the free energy follows from (85), (90) and (91) as 

6F* = -S6T-VP·6Ee-VM·6Be+A: ()€ (93) 

with an as yet unspecified tensor A. 
The free energy is the difference of the canonical average of the Hamilton 

operator and the product of the temperature and the entropy. To find an 
expression for the average of the Hamilton operator, we shall employ its 
Weyl transform in the form (A57) with atomie charges ek = 0: 

f eki ekj 

HoiPop, qop) :;,± K + ~ i,j= ~,*n 8nlRk,-R1cjl 
J + L L ekielj 

k,l(k*Zl i,j=1 8n1Rk,-Rljl 
- _L fi?)·Ee, (94) 

k 
with the quantity K defined as 

K = I-tmklatPRkY- 
k,i 

(95) 

The canonical average of the Hamilton operator follows by multiplication of 
the right-hand side of (94) with the Wigner function that belongs to the 
canonical ensemble and integration over phase space. Then one arrives at 
an expression which has the same form as that of the classica! treatment. 
Along the same lines of reasoning as followed there one finds1 for systems 
with a short range Wigner correlation function as the average Hamilton 
operator 

V(eu+½PP: L-P·E0), 

where L is the depolarizing tensor and u the specific internal energy. 
The tensor A, which occurs in (93), is equal to 

(96) 

_ -J (aH oH) r A - I - Pk-Rk - p(l, ... , N)dl ... dl\, 
k or, aRk 

as shown in the appendix III. With the form (78) of the Weyl transform of 
the Hamilton operator one finds for A: 

(97) 

6R = 6e·R, 

with the centre of the system as the origin of coordinates. 

(92) 

A = -JI [mkvk (vk-½c-1 .ü?l AB0) 

k mk 

-Rk {\\ L f ekielj -½c-1(01pfii1l)ABe}] 
ze *kl i.j = 1 8n/Rk, - Rljl 

p(l, ... , N)dl ... dN, (98) 
1 The vanishing of the wave function outside the system leads to the vanishing of the 
Wigner function there, owing to the convexity of the ellipsoid (see the definition (5)). 
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with vk == é\rR,,. From the stationary character of the canonical ensemble 
together with formula (13) it follows that 

J ~ {vdtk1) J\B0+Rk(é\rfiP))AB0}p(1, ... , N)dl ... dN = 0, (99) 

so that the expression (98) now becomes: 

J { ( -(!) ) J ) 
A \' - i µk R ..., \' \' eki eu 1 =- L.,mkvkvk-c ---J\Be-k~kL., L., 

k mk ze *k) i,i = 1 8n1Rki - Rl.il ! 
p(l, ... , N)dl ... dN. (100) 

This expression is again of the same form as that of classica! theory ( with the 
classical distribution function replaced by the Wigner function and the 
fluxion dot by the operator 81r)- Therefore we obtain, as in classica! theory, 
for a system with short range Wigner correlations: 

A = - V(P+½K: PP), (101) 

with P the pressure tensor, K the tensor (II.236), P the electric polarization 
and V the volume. Collecting the results (93 ), (96) and (101 ), and eliminating 
the external fields (E0, Be) in favour of the Maxwell fields (E, B) (II.220), 
we get for the entropy change per unit of mass: 

Tbs= c5u+vP: c5€-E·b(vP)+vM·c5B, 

Tds = du+pdv-E·d(vP)+vM·dB. 

(102) 

where sis the specific entropy and v the specific volume. 
For fluids (isotropic in the absence of polarizations and fields) in which 

the polarization densities depend on the specific volume, the temperature and 
the Maxwell fields, one finds by the same reasoning as in the classica! theory 
that the non-relativistic second law ( or Gibbs relation) is 

(103) 

The q uantities occurring here are all defined fora system at rest. This formula 
shows that for such fluids at equilibrium the pressure tensor P is a multiple 
p of the unit tensor. 

From the combination of the first and second law (for local equilibrium) 
one may derive the entropy balance equation, just as in classica! theory. 

The second laws for amorphous or polycrystalline substances, for neutra! 
plasmas and for systems with long range Wigner correlation functions have 
the same form as the corresponding classica! laws, as may be shown by a 
reasoning analogous to that given above fora fluid with short range Wigner 
corrclations. 

APPENDIX I 

The Wigner f unction in statistica! mechanics 

a. Definition 

In statistica] rnechanics one does not consider pure states of N-particle 
systems, but an ensemble of pure states, i.e. a mixed state, described by a 
density operator ' 

P(t) I w.M1r(t))(t/1r(t)I, 
' 

(Al) 

where the lif; /t)) forma complete orthonormal set and the wY are statistica! 
weights normalized to unity 

Iw,. = 1. 

' 
(A2) 

Then the Wigner function, which is the Weyl transform of the density 
operator (times h3) becomes a weighted sum of Wigner functions of pure 
states 

p(p, q; t) = L \VrP/P, q; t), 
where the partial Wigner function Pr is, according to (VI.A65) 

p;(p, q; t) h-3 J dve(i/h)p·vt/1;(q }v; t)if;;(q+½v; t). 

Alternatively one rnay use here (VI.A66-68). 
The average value 

A(t) = Tr {P(t)A} 

(A3) 

(A4) 

(AS) 

of a quantity, which is given by an operator A, may be written with the help 
of the Wigner function (A3) as: 

A(t) = a(t) = J dp dq p(p, q; t)a(p, q), (A6) 

just as in (VI.A62-63), with a(p, q) the Weyl transform of the operator A. 
(For an N-particle system the integration is 6N-fold.) From (A2) and the 
1 In this appendix we use capitals for operators and lower case syrnbols for c-numbers, 
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normalization (VI.A69) of the partial Wigner functions p/p, q; t) it follows 
that the total Wigner function is normalized 

J dpdq p(p, q; t) = 1. 

J dp p(p, q; t) = ~ w,11,b'y(q; t)l2 ? 0, 
J dq p(p, q; t) = ~ w7jcpy(p; t)l

2
;;, 0, 

(A7) 

b. Properties 

The Wigner function can not be interpreted as a probability density, since it 
is not necessarily positive definite, although it is real and normalized and 
permits to calculate average values according to (A6). The integrals over the 
coordinates or momenta however may be interpreted as probability densities, 
since they are positive definite: 

(A8) 

(A9) 

as follows from (A3) and (A4) and the analogous formula with the wave 
function in the momentum representation. 
The partial Wigner functions p/p, q; t) for pure states fulfil an inequality 

of the form (VI.A72). Since the total Wigner function is the weighted sum of 
pure state Wigner functions, it fulfils the same inequality 

lp(p, q; t)I ~ (2/h)3• (AIO) 

For mixed states the density operator is not idempotent, since now 

P2(t) = I w;liy/t)><iyr(t)I, 
y 

Tr {P(t)2} ~ 1. 

J dpdq{p(p, q; t)}2 ~ h-3• 
Again the equality sign holds for the pure state ( cf. (VLA 7 5)). 

(All) 

as follows from (Al) and the orthonormality of jiy/t)). Clearly this is only 
equal to P(t) (Al) if H'y is Oor 1 and hence according to (A2) if only one 
single w7 is 1 and the rest zero ( a pure state). It follows from (Al 1) and 
(Al-2) with the orthogonality of the state vectors jiy/t)) and the inequality 
LY w; ~ L, w, that 

(A12) 

Here the equality sign refers to the pure state. From (A12), (VI.A53) and 
the fact that the Wigner function is the Weyl transform of the density opera 
tor one finds that 
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(A13) 

The development in time of the Wigner function for a mixed state is 
governed by the same laws as those fora pure state (v. (VI.A89). 

c. Reduced Wigner f unctions 

For the description of systems containing N identical particles it is useful to 
introduce reduced Wigner functions. These functions are obtained from the 
Wigner function p(l, 2, ... , N; t), which depends on all momentum and coor 
dinate variables of the particles, by integrating over the momentum and 
coordinate variables of a number of particles. They are convenient if one 
considers the averages of physical quantities which are sum functions. For 
instance if a physical quantity has the operator form 

N 

A =IAi, 
i= 1 

where A; depends on the coordinate and momentum operators of particle 
i, its Weyl transform is 

N 
A +t a(l, ... , N) = L a;(i) 

i=l 

and its average is according to (A6) 

A(t) = N J a1(l)p(l, 2, ... , N; t)dl ... dN. 

This may be written as 

A(t) = J a1(l)f1(l; t)dl 
with the one-point reduced Wigner function defined as 

f1(1; t) = N J p(l, 2, ... , N; t)d2 ... dN, 

normalized to N. 
Likewise if a physical quantity is a two-point function, i.e. if 

N 

A = L Aij, 
i,j=l(i*j) 

so that its Weyl transform is of the form: 
N 

a(l, ... , N) = L aii(i,j), 
i,j=l(i*j) 

(A14) 

(A15) 

(A16) 

(A17) 

(A18) 

(A19) 

(A20) 
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its average value may be written as 

A(t) = J a12(1, 2)/z(l, 2; t)dl d2 

C CEL VII APP. I STATISTICAL WIGNER FUNCTION 395 

(A21) 

with the two-point reduced Wigner function 

Jz(l, 2; t) = N(N-1) J p(l, 2, ... , N; t)d3 ... dN, 

normalized to N(N -1 ). 
The two-point correlation function is defined as 

Cz(l, 2; t) =/2(1, 2; t)-/1(1; t)/1(2; t), 

normalized to - N. 

(A22) 

(A23) 

guaranteed. The wave function t/1 is an eigenfunction of the total Hamiltonian 
with eigenvalue E = Ir= l nkEk. 
Let us now consider the Wigner function (A4) of the state (A24). We shall 

study only the reduced Wigner functions of the type (Al 8) and (A22). The 
one-point reduced Wigner function gets the form: 

f1(P1' qi) = 7i-3NN 111 ! 11z ! .... nm! L L (± ll(± lf 
N ! p P' 

~ (. N ) j du, ... dvNdp2 ... dpNdq2 ... dqN exp ~ _I P;'Vi 
h,=l 

P{ u 1 (q 1 -½v1)u 1 ( q 2 -½v2) ... u,,,(qN-½vN)} 
P'{ *( + .1 ) *( + 1 ) *( + l )"\ U1 ql zV1 U1 qz zVz ··· um qN zVN J· (A25) 

In order to evaluate this expression it is convenient to introduce ancillary 
functions defined as 

d. The reduced Wiqner function for a perfect gas1 

The Wigner function for a mixed state is a weighted sum (A3) of Wigner 
functions (A4) for pure states. Often the density operator and hence also the 
Wigner function is a superposition of energy states, i.e. the index y in 
(Al-4) labels the energy states. The wave functions corresponding to the 
eigenstates of the energy for an N-particle system have simple forms in the 
case of a perfect gas: 

'''( . ) -vn1!n2!113! ... n,,,! 'I' q1, ... , qN, t - ---·-- 
N! 

I(±llP{u1(qJu1(qz) ... u1(q"Juz(q11,+1) ... um(qN)}e-(iJ!i)E,, 
p 

fki(p, q) = h-3 J dvéf!i)p·vulq-½v)u;'(q+-_½v). (A26) 

As a consequence of the orthonormality of the uk, this function has the prop 
erty 

J dp dqfkz(P, q) = ókl · 

With (A26) and (A27) one finds from (A25) 

(A27) 

m 

!1(1) = I ndkk(1), 
k=! 

(A28) 
(A24) 

where the upper and lower sign refer to boson and fermion systems respec 
tively. The orthonormal functions uk(q;) are one-particle eigenfunctions of 
the one-particle Hamiltonian for particle i with energy value E". In the prod 
uct the eigenfunction uk occurs nk times (with nk the occupation number of 
energy level k; IZ'= 1 nk = N). In the fermion case n" can only assume the 
values O or l. The sum is extended over those perrnutations of the arguments 
q; of the functions uk which yield different terms. The number of these per 
mutations is therefore N!/n1 !n2! ... nm!. The factor ( - l? is plus or minus 1 
for an even or odd permutation respectively. As a consequence of the ortho 
normality of the one-particle eigenfunctions the normalization of 1/1 is 
1 Cf. J. E. Moyal, Proc. Cambr. Phil. Soc. 45(1949)99. 

where 1 stands for p1 and q 1. 
In an analogous way one may derive the two-point reduced Wigner func 

tion (A22) that corresponds to the wave function (A24): 
m m 

f2(l, 2) = I nk 111 fkk(1 )fu(2) + I n"(nk 1 )fkk(1 )fki2) 
k,l=I(kiel) k=I 

m 

± I n1cndk1(l)fzi2). (A29) 
k,l= 1 (kiel) 

If the system is described by a mixture of energy states of the type (A24 ), 
one finds from (A3) that the one-point and two-point reduced Wigner func 
tions are: 

!1(1) = I ndkk(1), 
k 

(A30) 
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/2(1, 2) = L nk nzfkil)fu(2)+ L nink-l)fkil)fki2) 
k,l(ka'l) k 

± I nk nJk1(1 )fil2), (A31) 
k,l(ka'l) 

where the bars denote weighted averages over the pure states y with weights 
wï. 
If one uses as the mixed state the grand-canonical ensemble! of energy 

states with temperature T one finds for the average occupation numbers 

1 
nk = ÇeEk/kT + 1 ' (A32) 

where the constant ç follows from Lk nk = N. Furthermore one finds then 
for the other averages of occupation numbers which occur in (A31 )2 

nkn1 = nkn1, (k t= !), 

nlnk-1) = (l±l)(nk)2. 

(A33) 

(A34) 

With the use of (A33) and (A34) the expression (A3l)may be written as 

Ji(l, 2) = I nknJkll)fi1(2)± I nkndki(l)fii2), 
k,l k.l 

Ji(l, 2) = f1(l)f1(2)± I nkndkl(1)fik(2). 
k,l 

ci(l, 2) = ± I nk nif"i(l)fii2). 
k,I 

(A35) 

where in the double sums the case k = lis included. In this way both the one 
point Wigner function (A30) and the two-point function (A35) have been 
expressed in terms of mean occupation numbers (A32) and the ancillary 
functions (A26). 

By substituting (A30) into (A35) we obtain 

(A36) 

For the correlation function c2(1, 2), defined in (A23), we have thus found 

(A37) 

In order to obtain explicit expressions we must find values for the ancillary 

1 We prefer to use here the grand-canonical ensemble rather than the canonical ensemble 
in view of the fact that then the averages, occurring in (A30) and (A31), rnay be found in 
a simple way. Since in this ensemble the total number of particles is not fixed, one finds 
for the normalization of the reduced Wigner functions j", (] ),/2(1, 2) and c2(1, 2) the values - --- - 
N, N(N-I) and N(N-1)-(N)2 instead of N, N(N-l)and-Nrespectively. Thisfollows 
directly from (A30) and (A31) with (A27). 
2 Excluding the ground level k = 0 for the Bose-Einstein case. 

functions.fk1(1) (A26). We choose for the functions uiq) the plane waves 

un(q) = v-te(2ni/a)n·q , 

f1(P, q) = 1z-3 J dp' n(p')b(p-p') = h-3n(p). 

(A38) 

where the components nx, nY and n, of the vector n may assume the values 
0, ± 1, ± 2, .... These plane waves are eigenfunctions of the free particle 
Hamiltonian with eigenvalues 

E - h2n2 
n- - 2111;2. (A39) 

The plane waves (A38) are chosen such that periodic boundary conditions 
involving a cube with edge a and volume V = "a3 are satisfied. Then accord 
ing to ( A26) we get 

-r _ y-1 (2ni/a)(n-n')·q- { _ h(n+n')} J=·- e ö p ~-~. 
2a 

(A40) 

This is to be inserted into (A30) with (A32). If the summation over the 
vector n is replaced by an integral by introducing the integration variable 
p' = hn]a, one obtains 

(A41) 

Furthermore one finds for /2(1, 2) given by (A36) with (A32): 

fi(P1,q1,P2,q2) = h-6n(p1)n(p2) 

± h-6 J dp' dp" n(p')n(p")é1riJcv'-v"J·<q, -q2J 

( p' + p' ') ( p' + p' ') <5 P1 - -
2
-- <5 P2- --

2
- 

= h-6n(p1)n(pz)±h-6b(p1 -p2) J dp'n(p1 +½p')n(p1 --!p')e(i/riJv'·(qi-q2l, 

(A42) 
so that the correlation function (A37) becomes 

Cz(P1,q1,Pz,qz) 

= ± h-6b(p1 - Pz) J dp' ïï(p1 +½p')ïï(p1 -½p')e<ïfhJp'·(q, -q2l. (A43) 

The mean occupation numbers occurring in this expression are almost 
constants if the integration variable changes by an amount which is smaller 
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than (2nmkT)"t. Furthermore the exponential oscillates rapidly in this inter 
val if lq1 -q21 is large compared to the thermal wave length h(2nmkT)-±. 
Hence one may conclude that the range of the Wigner correlation function 
(A43) as a function of lq 1 -q21 is of the order of the thermal wave length. 

APPENDIX II 

The Hamilton operator fora system of composite 
particles in an external field 

The non-relativistic Hamilton operator for a set of charged particles ki 
grouped into stable entities kis given by the expression (VI.1) ( compare also 
the cl as si cal Hamiltonian (II.A26)): 

H (p R ) _ ~ n.: op ki,op, ki,op, t - ~ -- 
k,i 2mki 

+ L L eki eki + L L _ eki elj 
k i,j(i,t,j) 8n/Rki,op-Rkj,opl k,l(k*l) i.j 8n/Rki,op-Rlj,op/ 

+ L eki [cpe(Rki,op, t)-½c-l {pki,op ·, Ae(Rki,op, t)}] , 
k,, mk; 

(A44) 

with mki the mass of particle ki, eki its charge, Rki,or its coordinate operator, 
Pki,op its momentum operator. Furthermore <pe and A0 are scalar and vector 
potentials of the external electromagnetic field. The last term contains a 
scalar product denoted by a dot, and an anticommutator, denoted by curly 
brackets and a comma. In analogy with the classica] treatment one may intro 
duce new coordinate and momentum operators for the particles belonging 
to group k, such that the new coordinate operators are the centre of mass 
operator and the relative coordinate operators of the constituent particles 
ki with respect to this centre of mass operator: 

J 
qki,op = Rki,op-Rk,op = Rki,op- L (mk}mk)Rkj,op, (i = 1, ... ,f-1), 

j=l 

J 
qkf,op = Rk,op = L (mk)mk)Rkj,op, 

j=l 

Pkï,or = Pkï,or-(mk)mkf)Pkf,or, (i = 1, ... ,f-1), 

J 
PkJ,op = Pk,op = L pki,op • 

i=l 

(A45) 

399 
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If one inverts these relations one gets 

J-1 
Rki,op = Rk,op+(l-óif)qki,op-óif L (mkj/mkf)qkj,op, 

j=l 

J-1 
Pki,op = (mk;(mk)Pk,op + (1-öif )Pki,op -(mdmk) L Pkj,op • 

j=l 

C CH. VII APP. II 

where the symbol air stands for the Poisson bracket (cf. (VI.72)) 

ê\pa = {a, H}p 

401 

(A49) 

(A46) fora independent of t. The function H is the Weyl transform of the Hamilton 
operator (A44) or alternatively the right-hand side of (A47). According to 
(A45) we may write (A48) as 

The transformed Hamilton operator is obtained by insertion of (A46) into 
(A44). Then one obtains for the Weyl transform of the new Hamilton 
operator (cf. the classica! expression (TJ.A29)): 

( 
p2 J-1 2_ J-1 .• ·) H (p q t) _,.. , _k + , Pkr _ , Pkr_l'~ 

op op , op , +"'- L,; L,; ~ 
k 2mk i=1 2mki i,i=l 2mk 

J J + L L ekieki + L L ekieli 
k i,j=1c,*il 8n1Rk;(q)-Rklq)I k.l(k*ll i,j=1 8nlRk;(q)-R1iq)I 

+Lek {cpe(Rk, t)-c-1 pk ·Ae(Rk, t)} 
k m1c 

+ L .± eki [{R";(q)-Rk}•'\\ {cpe(Rk, t)-c-1 Pk ·Ae(Rk, t)} 
k ,=1 mk 

-c-1 {Pk;(P) _ pk} ·Ae(Rk, t) 
mki mk 

-c-1{Rk;(q)-Rk}·V"Ae(Rk, t)· {Pk;(P) - pk}]' 
711ki mk 

(A47) 

up to terms with derivatives of the potentials. At the right-hand side the 
symbols Rk,(q) and P u(p) stand for the right-hand sides of (A46) but without 
the index op. Since the Weyl correspondence is invariant under a Iinear trans 
formation of coordinates and momenta (v. problem 2 of chapter VI), the 
correspondence sign may be understood either as a Weyl correspondence 
with respect to the old coordinates and momenta Rk,, Pk, or with respect to 
the new coordinates (A45). A second, non-linear transformation of coordi 
nates and momenta as employed in the classica! treatment of appendix II 
of chapter II, will not be performed here, because the W eyl correspondence 
is not invariant under that non-linear transformation. 

Let us consider the Weyl transform K defined as 

f 

K = L I ½mk;(óirRk;)2, 
k i= 1 

{

J-1 
K = I½mk((\rRk)2+ L I ½mk;(8,rqk;)2 

k k i= 1 

J-1 1 } 111k, 111ki + L -- (8,pq;)-(8,PqkJ . (ASO) 
i,i=l 2 mkf 

The Poisson brackets may be evaluated in terms of either the old coordinates 
and momenta (Rk;, Pk;) or the new variables (qki, pk;). If one chooses the 
latter set of variables and for the Weyl transform of the Hamilton operator 
the right-hand side of (A47) one finds for (A50), with ek = L; eki: 

[ 
P'f; c-1ek 

K = L -- - - Pk·Ae(Rk, t) 
k 2mk mk 

-c-1_Ieki[Rk;(q)-Rd·'\\ pk ·Ae(Rk, t)] 
,=1 mk 

[

1-1 2 1-1 • 1 {P() p} + L -~ Pki --~ Pkihj_ _c-1_Leki ~- - _!'. ·Ae(Rk,t) 
k ,-1 2mk, ,,1-1 2mk ,=1 mk, mk 

_ -1 f f ( )- }· ( )· {Pk,(P) Pk}] C _L., ekilRki q Rk 'v\Ac Rk, t -· ··-- - - . 
,=1 mk; mk 

If this is used in the right-hand side of (A47), one finds 

f ek-ek- HorCPop, qop, t) +!= K+ L L 1 1 

k i,i=1(i*il 8njRk;(q) Rk/q)j 
J + L L ek,elj 

k,l(k*l) i,i=1 8n1Rk;(q) R1/q)I 
f 

+ L ekCPc(Rk, t)+ L L e,c;{Rk;(q)-Rd·"\\cpc(Rk, t). 
k k i= 1 

(A51) 

(A52) 

(A48) 

Ifthe external electromagnetic fields E; and Be are uniform and time-inde 
pendent, one may choose as potentials cpc(R, t) and Ac(R, t): 

CPc(R) = -R·Ee, 

Ae(R) = ½Be/\ R, 
(A53) 
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which are time-independent1• If these expressions are substituted into the 
right-hand side of (A47) one finds 

( 
p2 J-1 2_ J-1 .• .' 

H (p q t) ---,---'.>- '\' _k + '\' _Pk, _ '\' Pk,J!k1 op op , op , ~ L., L,; L., 
k 2mk i= 1 2mki içj= 1 2mk ) 

J + I I ekiekj 
" t.i= 1(i* jJ 8nJRk;(q)- Rk/q)I 

J { ( p \ '\' '\' eki elj - '\' R . E J_ -1 k B + L, L, L, ek k e+zC - /\ e 
k,l(k*ll i,j=1 8nlRk;(q)-R1/q)I k m, ) 

+ï/1l. (E +1-c-1 pk AB) +-lc-18 µ-<1J·(B AR )+i1l,B} (A54) r k e 2 e 2 tP k c k k e 
mk 

with the abbreviations ( cf. (II.A33)) 
J 

fi?l(q) = I ek;{Rk;(q)-qkf}, 
i=l 

f { J-1 } -UJ 1. -1 r Pk; Pkj vk (p, q) = zC .L ekÏlRk;(q)-qkf} /\ (l-bif)- - L - · 
,= 1 mki 1= 1 mk 

J-1 
(1 , ) Pki '\' Pkj ~ 'R ( ) } -u;J -- - L, - = o,H ki q -qkf · 

mki j=1 m; 

Finally one obtains for (A52): 

J e"-e". HoiPop, qop, t) +?:- K + L L ' 1 

k i,j=1(i*j) 8nlRk;(q)-R"/q)I 

(A55) 

These quantities are the Weyl transforms of the electric and magnetic dipole 
moment operators. They are indeed equal to the case n = I of (VI.94), since 
qkf = Rk and since, up to order c0, one has 

(A56) 

J 
+ I I ekielj -I;ekRk·Ee-Lfif1l·Ee. 

k,l(k*lJ i,j=t 8njR";(q)-Rlj(q)I " k 

Whereas the form (A55) shows explicitly the dependence on the external 
magnetic field, this dependence is now hidden in the quantity K. 

(A57) 

1 Other time-independent potentials, which might be used as well in the Hamiltonian, 
are of the form 

<p; = -R·Ee+X 

A; = ½Be/\ R + VI/J(R), 
where X and 1P(R.) may depend also on the external fields. Although the Hamiltonian be 
comes more complicated then, the final results, derived in the main text, remain the same. 

APPENDIX III 

Deformations and free energy in quantum theory 

In quantum statistica! mechanics the free energy F* of a system of atoms 
described by a canonical ensemble with temperature T is given by the ex 
pression 

e-P/kT = Tr {exp (-H~,!kT)}. (A58) 

Here the total Hamilton operator H::, is the sum of the Hamilton operator 
H0P and the wall potential operator u::,: 

u~~ = I u;::or(Rk,op), 
k 

(A59) 

where Rk,op is the centre of mass operator of atom k and the sum is extended 
over all atoms of the system. The wall potential operator ut

0
P has the same 

eigenfunctions as Rk,op and eigenvalues c: or O if the eigenvalues of Rk,op 
denote positions outside or inside the boundary of the system respectively. 
If the position of the boundary is deformed according to the formula: 

"" 
«" = {U+/5e(Rw)}·Rw, (A60) 

with U the unit tensor and /5e(Rw) the deformation tensor, the wal! potential 
becomes: 

W' '\' W - )} U0r = L. Uk,op[{U-oe(Rk,op ·Rk,opJ. 
k 

Deformation of the boundary leads to a change of the free energy: 

!5,F* -kTeF*/kT/5 Tr {exp (-H:1r,/kT)}, 

according to (A58). We now use the identity (81) with (82) for the derivative 
of an exponential operator, so as to derive 

/5 F* = Tr {e(F*-Hop)/kT/5Uw" 
e op j e 

(A61) 

(A62) 

(A63) 

where we used the fact that the traces of the commutators occurring here 
vanish and where !5U:{, stands for u::,· - U0~. With the insertion of (A61) we 
obtain for (A63) 

!5, F* = -Tr {e(F*-Hop)/kT L Rk,op·!5i(Rk,op)·Vk ufoiRk,op)}. (A64) 
k 

,1/H 
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Writing this average in terms of the Wigner function of the canonical en 
semble we get 

6,F* = - J ~ Rk·6i(Rk)·Vk U';' (Rk)p(l, ... , N)dl ... dN. 

Now according to (13) and the stationarity of the canonical ensemble 

(A65) PROBLEMS 

af 0 = - I Pk·è5e(Rk)·Rkp(1, ... , N)dl ... dN 
àt k 

= J ~ {Hw, Pk·è5e(Rk)·Rk}pp(l, ... , N)dl ... dN, (A66) 

where H" is the Weyl transform of the total Hamiltonian H::, and where 
Poisson brackets appear in the last member. Splitting H" into the W eyl 
transform Hof the Hamilton operator and uw of the wall potential operator, 
and evaluating the Poisson brackets we get for (A66) 

J ~ Rk·è5i(Rk)·Vk Uf(Rk)p(I, ... , N)dl ... dN 
<Il!, 

J { en en } . = I Pk·è5e(Rk)· ~ - -~ ·6e(Rk)·Rk p(l, ... , N)dl ... dN, " tr, oRk 

where the deformation gradient tensor è5e, defined in (II.A51) has been used. 
Substituting this result into (A65) we get finally 

(A67) 

<\F* ,:, -JI {Pk·è5e(Rk)· óH - _óH ·6e(Rk)·Rk} p(l, ... , N)dl ... dN. 
k óPk èRk 

(A68) 

For uniform deformations è5e = è5e, so that one has for the change of the 
free energy 

1. Prove that (56) is the average of the operator given in (57). Show first, 
with the help of the expression (VI.61) for the Weyl transform of the Hamil 
tonian, that one has 

mkiótPRki = Pki-c-1ekiAe(Rki, t), 

so that one finds for vk = ó1pRk: 

», = J_ L {Pk;-c-1ekiAe(Rki, t)}. 
mk i 

2. Consider a particle in an external electromagnetic field. lts wave function 
satisfies the Schrödinger equation H0Plj;(R, t) = -(h/i)ólj;(R, t)/êt with the 
Hamilton operator up to order c - 1 

H0rCP0p, R0P) = p~l' - _e_ {P0p", Ae(R0
p, t)}+ecp

0
(R

0
p, t). 

2m 2mc 

Show that the transformation 

è5.F* = A: be 

with the tensor A given by 

J (óH óH) _ A = - I - Pk-Rk -- p(l, ... , N)dl ... dN, 
" óP" êR" 

which proves formula (97) of the main text. 

(A69) 

(A70) 

lj;'(R', t') = exp {( (mV·R+½mV2t)} 1/J(R, t) 

of the wave function with respect to a Galilei transformation ( 66) leaves the 
Schrödinger equation invariant, at least up to order c-1• Use to that end the 
transformation rules (II.23) (which imply P~P = P0P) and the transformation 
properties of the potentials ( cf. (II.27)) 

A;(R', t') = Ae(R, t)+c-1Vcp0(R, t), 

cp;(R', t') = cpe(R, t)+c-1V·Ae(R, t). 

The transformed Hamiltonian is thus 

H~iP~P' R~P) = H0rCP0p, R0r)+c-1eV·A0(R0r, t). 

Since P~P = P0P and R~r = R0P + Vt one finds (68). 
Prove furthermore (69) from the transformation of the wave function. 
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3. Prove the identity (81) with (82). Prove first by induction with respect 
ton: 

n-11 ::,A n-l 1 
'\' _ Ak ~ An-k-l = '\' ------A(k)An-k-1 
L, op ~ op L, ) ) op op • k=on! orx, k=o(k+l!(n-k-1! 


