
CHAPTER VI 

The Weyl f ormulation of the 
microscopie laws 

1 Introduction 

The various laws of electrodynamics have been derived in the preceding on 
the basis of a classica! model of matter. The question arises in how far these 
results retain their validity if a more realistic model based on quantum 
mechanics is adopted. This programme wil! be carried out in this chapter and 
the following, at first in the non-relativistic approximation. 
Quantum mechanics is usually formulated in terms of operators and state 

vectors in Hilbert space. In the course of the treatment it wil! be convenient 
to introduce instead an equivalent formalism which employs functions in 
phase space. Then the physical quantities are represented by Weyl trans 
forms, while the Wigner function takes over the role of the density operator. 

2 The field equations and the equation of motion of a set 
of charged point particles 

The starting point of the theory consists in propounding the Hamilton opera 
tor fora set of charged particles. Fora systern consisting of N particles with 
masses m;, charges e;, coordinate operators R;,op and momentum operators 
Pi,op, in an external electromagnetic field with potentials (({Je, Ae) one writes 
the Hamilton operator up to terms of order c-1 as: 

Hop= L P;~op + L e;ej 
i 2111; i,j(i,t,j)8n/R;,0p-Rj,op/ 

' [ (R )-1- -1 f P;,op. A (R )}] +L,ei ({Je i,op,t zC i--, e i,op,t 
' \ 111; 

(1) 

( cf. the classica! expression (I.16) ). In the last term the anticommutator of 
the momentum operator and the vector potential appears. As usual the dot 
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indicates the scalar product of two vectors. This (hermitian) Hamilton 
operator governs the time development of the state vector li/1) for the system 
via Schrödinger's equation. 
The field equations, which in quantum mechanics replace the classica! 

Lorentz equations (I.1) are the following differential equations for the her 
mitian operators e0P(R, t) and b0P(R, t) which represent the electric and 
magnetic fields: 

V·e0P = L eJ5(Ri,op -R), 
i 

-8oe0r+VAb0P = ½c-1 IeJRi,op,b(R;,0p-R)}, 
i 

V·b0r = 0, 

Oo b0P +VA e0P = 0, 

(2) 

where cà0 and the fluxion dot should be interpreted as (i/n) times the 
commutator with the Hamiltonian plus the explicit time derivative: 

. ~ i ae A0r A0P = COo A0P [Hop, A0p] + ··-::;--- . 
h ot 

Furthermore the symbol V;,op denotes partial differentiation with respect to 
Ri,op and the last anticommutator with the vector product stands for 
(1/m;)(Pi,or A Be -Be A Pi,or)· 
The field equations ( 2) and the equations of motion ( 4) form the basis for 

the derivation of the macroscopie field equations and energy-momentum 
laws in this chapter and the following. The equations (2) and (4) will not be 
used in the form given so far in view of the fact that the handling of operators, 
in particular of anticommutators, leads to rather unwieldy expressions. In 
stead we shall use Weyl transforms. 

3 The Weyl transformation and the Wigner function 

(3) 

(The time derivative of the expectation value of the operator A0r is equal to 
the expectation value of Á0r, as follows from Schrödinger's equation.) In 
particular the fluxion R;,op is, up to order c0, equal to P i,orf mi, as follows 
from (I ). The sources of the field equations (2) are hermitian operators, as 
is guaranteed by the fact that the anticommutator has been written in the 
second equation. From the field equations (2) one may find in principle the 
expressions for the electric and magnetic fields in terms of the coordinate and 
momentum operators of the particles. 
The equation of motion for the charged particles follows by taking the 

second time derivative of the coordinate operator of particle i in the sense 
defined by (3). With the Hamilton operator (1) one finds 

• - l ( ) miRi,or = Pi,or-c e;Ae R;,op, t, 

a. The Weyl transformation 

Quantum mechanics in its usual form is concerned with the properties of 
vectors and operators in Hilbert space: each state of a system corresponds to 
a vector, each observable quantity to an operator. 
However different formulations1 are possible in which functions in a phase 

space are associated to both the states and the observable quantities. An 
example of such a formulation consists in employing for these functions the 
Wigner function and the Weyl transform respectively. This alternative for 
mulation will be demonstrated for a one-particle system. The generalization 
to an N-particle system is trivia!. 
The eigenvectors IP) and lq) of the momentum and coordinate operators2 

P and Q satisfy the eigenvalue equations 

Pip)= PIP), Qlq) = qlq), (6) 

where p and q are the eigenvalues. The complete set of eigenvectors is sup 
posed to fulfil the closure relations 

~· e-e- 
m; Ri,op = - vi,op I ! ./ 

j( *il 4nlR;,or -Rj,orl 

+ ei [ Ee(Ri,op, t) + ½c-l { ~::~~ A, Be(R;,op, t)}] , 
l 

where we used the connexions of the fields and the potentials: 

J dp lp)(pl = /, 

J dq lq)(ql = /, 
(7) 

(4) 

Ee = -V<pe-àoAe, Be= V AÁe· (5) 

1 H. Weyl, Z. Physik 46(1927)1; Gruppentheorie und Quantenmechanik (Hirzel, Lcipzig 
1931) p. 244; E. P. Wigner, Phys. Rev. 40(1932)749; cf. also H. J. Groencwold, Physica 
12(1946)405; J. E. Moyal, Proc. Cambridge Phil. Soc. 45(1949)99; K. Schram and B. R. A. 
Nijboer, Physica 25(1959)733; B. Leaf, J. Math. Phys. 9(1968)65, 769. 
2 In this section we use systematically capitals for operators, and lower case symbols for 
ordinary numbers, 
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(with / the unit operator in Hilbert space) and the orthogonality relations 

<PIP') = 3(p- p'), <qlq') = 3(q-q'). 

The commutation rules of the operators P and Q read 

[P, P] = 0, [Q, Q] = 0, h [P, Q] = - VI, 
i 

where U is the unit Cartesian tensor with components ( i, j = 1, 2, 3 ). 
In the coordinate representation the momentum eigenvector has the 
wave function 

<qJp) = _!_ eUlnJp·q h½ . 

By using the closure relations (7) one may write the following identity1 

for an arbitrary operator A: 

A = I dp'dp"dq'dq"lq")<q"Jp")<p"IAJp')<p'Jq')<q'I. 

Introducing the new integration variables 

p' = p-½u, 

p" = p+½u, 

q' = q-½v, 

q" = q+½v, 

with Jacobian equal to unity, one obtains for (11 ), using (10) 

A = h-3 J dpdq a(p, q)Ll(p, q) 
with the function 

a(p, q) = f due(ifn)q-u<P+½uJAlp-½u), 

depending on A and the hermitian operator 

Ll(p, q) = J dvélh)p·vlq +½v)<q-½vl, 

C CH. VI 

(8) 

(9) 

(10) 

( 11) 

(12) 

(13) 

(14) 

(15) 

which is independent of the operator A. 
The function a(p, q) is called the Weyl transform of the operator A with 

respect to the momentum and coordinate operators P and Q. (The corre- 

1 B. Leaf, J. Math. Phys, 9(1968)65, on which paper most of the material in this section 
is based. 
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spondence between an operator and its Weyl transform will be denoted by 
the symbol ~-) In this way one has associated a c-number to each operator. 
If the operator A is hermitian, the function a(p, q) is real, as follows from 
(14). 
In (14) and (15) the variables pand q have not been treated on the same 

footing. We may obtain symmetrical forms for (15) by noting first that 

lq+½v) e-(i/n)v·Plq-½v). 

(The validity of this identity may be verified by multiplication with <PI and 
the use of (6) and (10).) Jf (16) is substituted into (15), one encounters the 
projection operator lq-½v)<q -½vl which may be transformed with the 
help of the identity 

lq)<ql = h-3 I due(ifh)(q-Q)·". 
(This identity may be verified by letting it operate on Jq') and by using (6).) 
In that way (15) becomes 

Ll(p, q) = h-3 I dudvéln)(p-P)·•·e(ifn)(q--}v-Q)·". 

(16) 

(17) 

(18) 

With the help of the operator identity, valid for operators A and B that 
commute with their commutator: 

eAeB - eA+B+HA,B] 

Ll(p, q) = h-3 I dudve(ifh)[(q-Q)·ri+(p-P)·v)_ 

Ll(p, q) = J due(iffi)q·ulp-½u)<P+½ul. 

(19) 

(v. problem 1) and the commutation rule (9), one gets for (18) asymmetrie 
form: 

(20) 

From this expression one may find, interchanging the roles of p and q, and 
retracing the argument given above, a form for Ll(p, q) which is the counter 
part of ( 15): 

(21) 

The Weyl transform may also be written in different forms. Since the trace 
of an operator may be written in terms of the complete set Jp) as 

Tr A = J dp<plAlp), (22) 
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one bas the identity 

(p'IAlp") = Tr (A/p")(p'I). 

a(p, q) = Tr {ALl(p, q)}. 

With (15) for L1(p, q) and the alternative form of the trace 

Tr A = J dq(qlAlq), 

C CH. VJ 

(23) 

From the expression (14) for a(p, q) together with the expression (21) for 
Ll(p, q) one then obtains the concise formula 

(24) 

(25) 

one finds the counterpart of ( 14 ): 

a(p, q) = J dve(i/n)p·u(q-½vlAlq+½v). 

The formulae (14) and (26) show that the set of operators A in Hilbert 
space may be mapped upon a set of c-numbers: their Weyl transforms 
a(p, q ). The reverse is also true: each function a(p, q) may generate an opera 
tor A by means offormula (13) with (15) or (20) or (21). In particular if one 
uses (20) for the zt-operator, formula (13) becomes 

(26) 

A = h-6 J dpdqdudva(p, q)é/li)((q-Q)·n+(v-P)·11l. (27) 

One recognizes the Fourier transform éi(u, v) of a(p, q ): 

à(u, v) = h-6 J dpdq a(p, q)éfn)(q·1t+p·vi, 

of which the inverse is 

a(p, q) = J dudvéi(u, v)e-(i/n)(q· .. +v·v)_ 

The expression (27) may hence be written as 

A = J dudvéi(u, v)e-(i/n)(Q·1t+P·v)_ 
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be used frequently in the following is 

(28) 

(29) 

½{P,J(Q)} ~ pf(q), 

where the curly brackets indicate the anticommutator: {A, B} = AB+BA 
and wheref is an arbitrary function. lt may be proved from (14) by insertion 
of a complete set lq') with the help of (7), and by application of (10). 

One may ask whether taking the Weyl transform is an operation that is 
invariant under a change of canonical coordinates and momenta, i.e. whether 
one finds again the result (29) for the Weyl transform of an operator (30), if 
one performs first a transformation of coordinate and momentum operators 
in A, then takes the Weyl transform with respect to these new coordinates 
and momenta, and finally transforms back the Weyl transform to the old 
coordinates and momenta. For a linear transformation this invariance is 
guaranteed by the linear character of the exponentials in (29) and (30) (v. 
problem 2). 

The operator Ll(p, q) plays a special role in the Weyl correspondence, as is 
apparent from (13). By choosing in particular for A the operator Ll(p', q') 
one finds that the Weyl transform of Ll(p', q') is essentially a delta function: 

Ll(p', q') ~ h38(p-p')8(q-q'). 

(31) 

(32) 

The trace of the operator Ll(p, q) and of products of zî-operators will be 
used frequently in the following. In particular one finds from (25) with (8) 
and ( 15) that 

Tr Ll(p, q) = l. 

Furthermore from (24) with A Ll(p', q') and (32) one has 

Tr {Ll(p, q )Ll(p', q')} = h38(p-p')b(q-q'). 

(33) 

(34) 

(30) 

The expressions (29) and (30) show the correspondence between an operator 
and its Weyl transform in an elegant way. 

Weyl transforms of operators are especially simple, if the operator is a 
function of Por Q only. In fact the Weyl transform is then the same function 
of p and q respectively. An example of a Weyl correspondence which will 

The trace of the product of three zl-operators will also be useful. From (25) 
one finds with insertion of the completeness relation (7) for /q), the expres 
sion (15) for Ll(p, q) and with the use of (8): 

Tr { Ll(p, q)Ll(p', q')Ll(p", q")} 

-Id d d '( _'!.1_:c_<!_Z),c , _ q2+q3)8( ,,_ q3+q,) - ql qz q3uq 2 uq 2 q 2 

exp [Ä {p-(q1 qz)+ p'·(qz-q3)+ p"·(q3-qi)}] · (35) 
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After introduction of new variables t(q1 +q2), ½(q2+q3) and ½(q3+q1) 

the integration over the delta functions may be performed with the result 

Tr {Ll(p, q)Ll(p', q')Ll(p", q")} 

= 26 exp [~ {p-(q"-q')+p'·(q-q")+p"·(q'-q)}]. (36) 

The trace of an arbitrary operator may be expressed in terms of its Weyl 
transform by making use of (13) and (33): 

Tr A = h-3 J dpdqa(p, q). (37) 

The trace of a product of two operators follows from (13) and (34): 

Tr AB= h-3 J dpdq a(p, q)b(p, q) = Tr BA. (38) 

In quantum mechanics commutators and anticommutators play an im 
portant role. To find their Weyl transform we need to study the Weyl trans 
form of a product of operators. The latter is not in genera! simply the 
product of the Weyl transforms of the operators. To find the Weyl transform 
of the product of operators AB one may start from (24) and use (13) and 
(36): 

AB +t (I) 6 J dp'dq'dp"dq"a(p', q')b(p", q") 
exp [~ {(q'-q)·(p"-p)-(p'-p)·(q"-q)}]. (39) 

Introducing new variables p = p" - p and q = q" - q and expanding 
b(p + p, q + q) into a Taylor series around b(p, q ), one gets 

AB +t G) 6 J dp'dq'dpdq a(p', q') 
exp [~ {(q' -q)·p-(p' - p)·q}] {exp (p· a: +q· :J} b(p, q). (40) 

In the last exponential we may replace p by the differential operator 
-(h/2i)8 .... /8q and likewise q by (h/2i)8 .... /op, both acting to the left. Then 
the integration over p and q yields delta functions, so that the integrations 

over p' and q' may also be performed. In this way one gets1 

f h (a.... a- ~.... ~ .... )} 
AB +t a(p, q) exp l-: ~ · - - ~ · <!.__ b(p, q), 

21 op àq oq a p 

325 

(41) 

where for aesthetic reasons arrows pointing to the right have been added. 
An alternative notation of ( 41) is obtained by attaching indices ( a) and (b) 
to the differential operators, indicating their objects: 

{ 
Î1 (è(a) 0(b> 0ca) 0(b))) 

AB +t exp -: ;;-- · ~-- - -;:_-- · -~ - \ a(p, q)b(p, q). 
21 op oq oq op J . 

(42) 

The right-hand side of (41) or (42) shows that the Weyl transform of a 
product of operators AB is not in genera! equal to the product a(p, q )b(p, q) 
of their Weyl transforms. 
Let us write as corollaries the W eyl transforms of the anticommutator 

and the commutator of A and B: 

{
h (a(a) o(b) o(a) a(b))) 

{A,B}+t2cos - -· ---·- - \a(p,q)b(p,q), 
2 aq op èp àq J 

f h (o(a) a<b) a<a) a<b))} 
[A, B] +t 2i sin l- · ~- - - · -- a(p, q)b(p, q). 

2 àq op op oq 

(43) 

(44) 

These formulae show that the Weyl transforms of anticommutators and 
commutators are series in h2. The lowest order term of (43) is 

w hile that of ( 44) is 
2a(p, q )b(p, q ), 

ih (~a. ~b _ ~a. ~~) . 
oq op op 8q 

(45) 

(46) 

Hence the series for the Weyl transform of ½{A, B} starts offwith the product 
of the Weyl transforms of A and B, whereas the series for the Weyl transform 
of -(i/h)[A, B] starts offwith the Poisson bracket of the Weyl transforms 
of A and B. 
An example, which will be frequently used in the following, is furnished 

by the time derivative Á, defined in (3) as (i/h)[H, A]+oeA/ot. It follows 
from ( 44) that: 

. 2 . f h (a(a) o(/•) a<a) a(/•))} àa(p, q; t) 
A +t- sm - - · - - -~ · - a(p, q; t)h(p, q)+ ---:::- - . 

h l2 oq op op oq Ot 
(47) 

1 H. J. Groenewold, Physica 12(1946)405. 
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Thus the Weyl transform of Ä is a series in h2, which starts offwith the Pois 
son bracket of a(p, q; t) and h(p, q ), and the explicit time derivative of 
a(p,q;t). 

b. The Wiqnerfunction 

Up to here we studied the one-to-one mapping of operators A and functions 
in phase space a(p, q ), given by the W eyl transformation. If one wants to 
find expectation values of an operator, one is interested in expressions which 
allow to find the expectation values directly from the Weyl transform of the 
operator. 
A system may be described by its state vector lif;(t)) in Hilbert space or 

alternatively by the density operator 

P(t) = lif;(t))<if;(t)I- 

The expectation value A of an operator A is equal to (if;IAlif;) or 

A(t) = Tr {P(t)A}. 

P(t) :.± h3p(p, q; t). 

Then the expectation value (49) becomes 

A = a, 

a = J dpdqa(p, q)p(p, q; t). 

(48) 

(49) 

Such a trace may be written in terms of Weyl transforms as is shown by 
(38). Let us denote the Weyl transform of the density operator P by 
h3p(p, q; t): 

(50) 

(51) 

where the Jatter quantity is an integral over the product of the Weyl trans 
form a and the Wigner function: 

(52) 

From the expression (26) it follows that the Weyl transform h3 p(p, q; t) 
may be written as 

h3p(p, q; t) = J dve(i/fi)p·v(q-½vlif;)(if;lq+-}v) 

or, using the wave function notation if;(q; t) = (qlif;(t)): 

p(p, q; t) = h-3 J dveli/h)p·vif;(q-½v; t)if;*(q+½v; t). 

(53) 

At the right-hand side appears the function which Wigner introàuced 
originally1

• This formula together with (50) shows that the Wigner function 
is the Weyl transform of the density matrix (divided by h3). 
The Wigner function p(p, q; t) is real as follows from the hermiticity of the 

density operator. Furthermore, since the trace of the density operator is 
unity: 

Tr P = I, (55) 

( as follows from the normalization of the state vector Il(;)) the Wigner func 
tion possesses the normalization property 

J dpdq p(p, q; t) == 1 

as a direct consequence of (37). 
The relation (51) with (52) shows that one may calculate expectation 

values of an operator by evaluating an integral involving its Weyl transform 
and the Wigner function. In view of (51) with (52) and (56) one might be 
inclined to interpret the Wigner function as a probability density in phase 
space. However, such an interpretation is not possible since the Wigner 
function is not necessarily positive de.finite. 
The time evolution of the state vector which describes the system is 

given by the Schrödinger equation 

h a Hli/l(t)) = - - ~ lif1(1)), 
i at 

or in terms of the density operator ( 48): 

oP = - ~ [H, P] 
at h 

(56) 

(57) 

(58) 

(the left-hand side is the explicit time derivative denoted as ae/ot in (3)). 
With the help of ( 44) this eq uation may be converted into an equation in 
terms of the Weyl transforrns h 3 p(p, q; t) and h(p, q ), namely 

op(p, q; t) 2 . {h (ach) a(p) au,) f/P))} 
--,., --- = - Sin - -_:,-·- ' ~,., - ,., • ::;--· h(p, q)p(p, q; t). 

at h 2 oq op op oq 
(59) 

(54) 

This equation, which gives the evolution in time of the Wigner function, 
may be employed to find the time derivative of an expectation value. In fact 

1 E. P. Wigner, Phys, Rev. 40(1932)749; cf. B. Leaf, op. cit. 
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one finds from (52) with (59) and a partial integration 

d-(t) 2 J [ ffi (a(a) a(/•) a<a) a<h))} ] _a_ =-: dpdq sin/ - • -,, - -_ · -::;- a(p, q)h(p, q) p(p, q; t). 
dt h \2 óq op op oq 

(60) 

The left-hand side is equal to the time derivative of the expectation value A 
as follows from ( 51 ). The right-hand side is equal to the expectation value of 
the operator À (3) as follows from (47) and (51) with (52). 

4 The Weyl transforms of the field equations 

The field equations and the equation of motion, which have been written in 
operator form in section 2, will now be transformed to equations for phase 
space functions by using the Weyl transforrnation '. 
The Weyl transform of the Hamiltonian (1) follows by keeping in mind 

that functions of the coordinate or of the momentum operators transform 
into the same functions of the coordinates and momenta variables in phase 
space, and by using (31 ): 

"' P2 e.e, 
H0P ~ H(l, ... , N; t) = f._, -'- + L ··- !__] - 

i 2m; i,j\i*il 8n!Ri-R) 

"' { .,», \ + L, e; cpc(R;, t)-c - ·Ae(R;, t)f, 
i mi 

-ó0e-c-1sin(e;H)+VAb = c 1Lei pib(Ri-R), 
i mi 

V·b = 0, 

80 b+c-1 sin (b; H)+ VJ\ e = 0, 

(61) 

where the arguments 1, ... , N stand for P1, R1 ... PN, RN, the variables of 
the N particles. 
The Weyl transforms of the field equations (2) become, according to 

(31) and (47) 
V·e = I,e;b(Ri-R), 

i 

(62) 

1 Weresume the notation op of section 2 for operators, and use syrnbols without this index 
for Weyl transforms. 

where as an abbreviation we wrote 

• • _ N 2 . {h (O(a) • O(b) O(a) , O(b)) \ . 
sm (a, b) = .L - sm - - -" - -"' -" f a(l, ... , N)b(l, ... , N) (63) 

,~1 h 2 óRi er, oPi es, 
and where e and b are functions of 1, ... , N, R and t, while H is given by ( 61 ). 
To solve these equations, we note first that the last two equations have as 

solutions 
e = -Vcp-80a-c-1 sin (a; H), 

b=VJ\a 

with functions q> and a depending on 1, ... , N, R and t. Insertion into the 
first two field equations leads, up to order c-1, to: 

Llcp+ó0 V·a+c-1V·sin (a; H) = - L eib(R;-R), 
i 

Lla-V{V·a+ó0cp+c-1 sin(cp;H)} = -c-1 Ie; pi b(R;-R). 
i 111 i 

(64) 

(65) 

The formulae (64) show that a gauge transformation of the potentials 

tp' = q>-80 ijJ-c-1 sin (ijJ; H), 

a'=a+VijJ, 

with ijJ(I, ... , N; R, t) an arbitrary function, leads to the same fields, since the 
Weyl transform H is independent of R. Therefore it is allowed to require as a 
condition on the potentials 

80 cp+c-1 sin (cp; H)+ V·a = 0, 

(66) 

(67) 
because starting from potentials which do not satisfy this relation one may 
find 1/f such that the new potentials ( 66) do satisfy it. 
With the use of (67) the equations (65) become separated in q> and a: 

Llq> = - L eib(Ri-R), 
i 

Lla = -c-1 Le; P; b(Ri-R), 
i 111; 

(68) 

where terms of order c-2 have been neglected. Solving these equations and 
inserting the results into ( 64 ), we get for the Weyl transforms of the fields: 

e = I,e;, 
i 

b = Ibi, 

e; ) V--- ' e;(Ri; R = - 4n!R;-RI 

e-P; 
b;(P;,R;;R) = c-Iv/\ 4n_1_n;IR;-R·1 

(69) 
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(Solutions of the sourceless equations may of course be added to these par 
ticular solutions.) 
From the form of these solutions and that of the Weyl transform 

H(l, ... , N; t) of the Hamiltonian it follows that the sine (63) appearing in 
the second equation of (62) reduces to 

I~-óH 
; óR- ~p' 

i O i 
(70) 

since the W eyl transform of the electric field is independent of the momenta 
and the Hamiltonian is quadratic in the momenta. The expression (70) is 
equal to the Poisson bracket of e and H, because Poisson brackets are de 
fined as 

r b't = ~ (óa . ób _ àa . ób ) la, JP - L., - -· -· - . 
i=t ee, ee, àP; e«. 

Let us introduce the abbreviation à1r = cà0r defined as 
àira = céJ0pa { a, H}r+à1 a, 

(71) 

(72) 

where at the right-hand side the sum of the Poisson bracket of the Weyl 
transforms a and H, and the explicit time derivative à,« = è0a/àt of a ap 
pears. Then we may write the Weyl transforrns of the field equations in the 
form 

V·e = I ei 6(Ri - R), 

-80re+ V /\ b = c-1 I e/àirRJ6(Ri-R), 
i 

V·b = 0, 
(73) 

80 b + V /\ e = 0, 
where in the fourth equation only the explicit time derivative appears. 

(From the solutions (69) of these equations (73) one may find, if one 
wishes, the operators for the fields. With (31) one obtains: 

eop = I ei,op, 
i 

ei 
= -V - -RI e;,op 4nlR;,op 

(74) 

bop = L bi,op, b. - J. -ifv e; ·-~- p. l ,,op - zC \ _ /\, ,,opj , 
\ 4nm;IRi,op RI 

where an anticommutator appears in the last expression.) 
Equations for the expectation values may be found by multiplying (73) by 

a Wigner function and integrating over phase space ( cf. ( 52) ). Since (73) is 

equivalent to (62) one then finds with (60) 

V·e = J ~>;ó(R;-R)p(l, ... , N; t)dl ... dN, 

-éJoe+VAb = c-1Jiei P; ö(R;-R)p(l, ... , N;t)dl ... dN, 
i m; 

V·b = 0, 
à0b+V /\e = 0, 

with the notations (52): 

e(R, t) = J e(l, , N; R)p(l, , N; t)dl dN, 

b(R, t) = J b(l, , N; R)p(l, , N; t)dl dN, 

(75) 

(76) 

where 1, ... , N stands for all phase variables of the N-point system. (If ex 
ternal fields are present, the fields e and b depend also on t.) 
It stands to reason that these results could also have been obtained directly 

from the operator equations (2) by taking the expectation values, as follows 
from (51-52) together with (31). The advantage of using the Weyl trans 
form and the Wigner function will become apparent in the following when 
the atomie and macroscopie theories will be dealt with. 

5 The Weyl trans form of the equation of motion 

The equation of motion in operator form has been given in (4). Its Weyl 
transform is obtained with the help of (31) and (47): 

m; sin {sin (Ri; H); H}+m; J {sin (Ri; H)} 
ot 

= -V; I - e; . +e; [Ee(R;, t)+c-1 P; ABe(R;, t)Îf, 
j(*il 4nlR;-R) \ m; 

where the abbreviation (63) has been used. At the right-hand side one recog 
nizes the total fields (cf. (69)) up to order c-1 and c0 respectively: 

ei(R;, t) = I e/Rj; R;)+Ee(R;, t), 
j(*i) 

(77) 

bi(R;, t) = Be(R;, t). 
(78) 
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The equation (77) may thus also be written as 

mi sin { sin (R;; H); H} + m)3_ { sin (Ri; H)} at 
= e; [e,(R;, t)+c-1 P; Abi(R;, t)jl. (79) 

\ mi 

From the form of the Weyl transform H (61) of the Hamiltonian and the 
definition (63) of the sine symbol it follows that the latter reduces here to 
Poisson brackets (7 I ). This is most easily seen by writing the sine symbol 
(63) as 

. N 2 { . (fi Ó(a) Ó(b)) (11 Ó(a) Ó(b)) sm ( a; b) = _L - sm - -,.., - · -,.., - cos - -,..,- · -,.., - 
,~1 Îî 2 oR; er, 2 oP; oR; 

(fi a(a) ;jlhl) . (Îî a(a) ó(b))} 
-cos - - · - sm - - · -- a(l, ... , N)b(l, ... , N). 

2 eu, óP; 2 óP; es, 

6 The equations for the .fields of composite particles 

(80) 

Therefore we find the Weyl transform (79) of the equation of motion as 

mAtR; = e;{ei(R;, t)+c-1(8,rRJA bi(R;, t)}. (81) 

where the abbreviation (72) has been introduced. (An alternative way to 
derive this equation would have been to calculate directly the repeated 
Poisson bracket of R; and H.) 
An equation for the expectation value follows from (81) .by multiplying 

with a Wigner function and integrating over phase space. Because of the 
equivalence of (81) and (79) one obtains in this way with (60) 

m; d
2

~! = e;J{ei(1, ... , N; R;, t)+c-1 P, Abi(l, ... , N; R;, t))j 
dt2 n1; 

p(l, ... , N; t)dl ... dN (82) 
with the notation (52): 

î( = J R;p(l, ... , N; t)d1 ... dN. (83) 

Again it may be remarked that the result (82) can be obtained in a more 
straightforward way by taking the expectation value of equation ( 4 ), as fol 
lows from (51-52), (31) and (78). 

The Weyl transforms (73) of the field equations and (81) of the equation 
of motion have the same forms as the corresponding classica! equations 
(LI) and (I.12) respectively. This fact wil! be exploited in the following 
sections. 

In the preceding sections we derived the field equations and the equation of 
motion for a set of charged point particles in an external field. Their Weyl 
transforms turned out to have the same form as the classica! equations. As a 
consequence of this feature we may now find the equations that govern the 
behaviour of stable groups of charged particles in a way completely analo 
gous to the classica! treatment. In this fashion the 'atomie level' of the quan 
tum-mechanical theory wil! be reached. 
The Weyl transforms of the field equations at the 'sub-atomie' level have 

been given in (73). They have the same form as the corresponding classical 
equations (L l ). Indeed, in the Jatter one may read, if one wishes so, the time 
derivations denoted by cà., or by a dot as the sum of a Poisson bracket with 
the Hamilton function (I.16) and an explicit time derivative. Since the 
Hamilton function (I.16) has the same form as the Weyl transform (61) of 
the quantum-mechanical Hamiltonian, the classica! time derivation ca0 ( or 
the dot) acts on classical functions in exactly the same way as the operator 
ó,P = có0r (72) acts on Weyl transforms. 
The right-hand sides of the Weyl transforms of the field equations may 

now be handled in the same way as the classica] equations. In particular we 
expand the sources that are functions of R; or, with a double indexing, of 
Rki ( k numbering the atoms, i their constituent parti cl es) around a privi 
leged coordinate Rk of atom k (e.g. one may take for R, the Weyl transform 
of the position operator of the nucleus or the centre of mass ). Then with the 
same mathematica! steps as in the classica! treatment, we obtain for the 
Weyl transforms of the field equations (cf. (f.35)): 

V·e = p0-V·p, 

-Ó0re+VAb = c-1j+ó0rp+V rem, 

V·b = 0, 

80 b + V /\ e = 0, 

where o" andj are given by (cf. (I.33)) 

p0 = L ekc5(Rk-R), 
k 

(84) 

j = L ekvkc5(Rk-R) 
k 

(85) 

(with the abbreviation vk = atPRk, v. (72)) and where pand mare the series 
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( cf. (I.34 ))1: 
00 

p = I(-1)"-1v"-1: Iîit)è5(Rk-R), 
n= 1 k 
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00 

m = I (-l)"-1v"-1: I(v"l"l+c-1µ[") /\Vk)Zi(Rk-R). 
n=l k 

In these formulae we used the abbreviations (cf. I.31-32): 

(86) 

-(n) - 1 ' ," IJ-k - - L, eki1ki, 
n! ; 

(n = 1,2, ... ), 

-(11) n , ,, (" ) v; = -- L, eki rk; /\ Oop rki , 
(n+l)! , 

(87) 

Here the space derivations V could be written before the symbols with the 
bar, since the Wigner function does not depend upon R. Furthermore the 
time derivative in the fourth equation can also be written in the form of 
Do b, because b = b = Be, the external field in the present non-relativistic 
theory. It remains to discuss the quantities D0pe and D0pp. Since both e 
and p are independent of the momenta ( as follows from the first line of (86) 
for p, and for e from the fact that it is the multipole expansion of the first line 
of ( 69)) and since moreover the Hamiltonian ( 61) is of second degree in the 
momenta, it follows from (60) that 

(n = 1,2, ... ), 

with rki = Rki-Rk. 
Thanks to the use of Weyl transforms we did not need to give the deriva 

tions since formally they are exactly the same as in classica! theory. There is 
one difference with classica! theory connected with the convergence of the 
series expansion. In the classica! theory we considered only those points R 
that are outside the atoms (i.e. for which [Rki-Rk[ < [Rk-R[), since only 
then the series expansion of the sources converges. In the quantum-rne 
chanical treatment convergence is guaranteed under (formally) the same 
condition that [Rk;-Rkl < [Rk-R[. Here Rk, is a running variable, so that 
the condition means that the equations are only valid in part of phase space. 
If expectation values are taken, i.e. if integrals (52) over the Weyl trans 
forms multiplied by a Wigner function are calculated, the condition gets the 
meaning that only points R may be considered which have the property that 
the Wigner function is negligible for phase space points Rki that do not satisfy 
the inequality given above. The condition on Ris thus the quanturn-mechan 
ical version of the classica! condition that the observation point should be 
outside the atoms. 
From the Weyl transform (84) of the field equations one may derive equa 

tions for expectation values. In fact by multiplying with a Wigner function 
and integrating over phase space one obtains, with the notation (52) 

V·e = pe-V·p, 
-D0pe+ V /\ b = c-1]+D0pp+ V /\ m, 

V·b = 0, 
D0b+V Ae = 0. 

(88) 

1 The bars over the syrnbols 1-'- and v indicate non-relativistic multipole moments, in the 
same fashion as in classica! theory. They should not be confused with the symbol for ex 
pectation values. 

D0pe = Doe, 

DopP = DoP· 
(89) 

Therefore the atomie field equations (88) for the expectation values get the 
form 

V·e = pe-V·p, 

-D0e+VAb = c-1]+D0p+V r.m, 

V·b = 0, 

D0b+V Ae = 0. 

These atomie equations contain at the right-hand side expectation values of 
operators of which the Weyl transforms have been given in (85) and (86). 
From (85) and (31) it follows that the operators corresponding to p" and 
jare 

P~P = Iekè5(Rk,op-R), 
k 

jop = ½ I ek{vk,op, Zi(Rk,op-R)}, 
k 

(90) 

(91) 

where the velocity operator vk.op, which has the Weyl transform vk = D
1
pRk, 

is equal to 

Vk,op =~[Hop, Rk,op] = I_ L {Pki,op_C-1ekiAe(Rki,op, t)}, (92) 
h mk; 

if one chooses the centre of mass as the centra! point, as follows from ( 44 ), 
(61) and (72). In view of the way in which the expectation values of these 
operators occur in the equations (90), they may be called the operators for 
the charge and current densities. Furthermore it follows from (86) and (31) 
that the operators corresponding to p and m are 
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00 

P = '-' (-1)"-1V"-1: '-' ïî<"l 6(R -R) op ~ • ~ rk,op k,op , 
11= 1 k 

C CH. VI 

00 

_J_'-'(-l)"-1v11-1:'-'{-(11l J_-1r-<11l } ~(R -R)} mop - 2 L, . L, Vk,op + zC t!J-k,op /\, Vk,op , u k,op , 
11= l k 

(93) 

which will be called the operators for the polarization densities. The atomie 
rnultipole moment operators that occur here are 

-(11) - 1 " .11 li-k.op - 1 L, eki I ki,op' 
n. ; 

(94) 

-(11) _ 1 - 1 11 I { ·" : } Vkop - -zC --- eki 1kiopA, 1kiop, ' (n+l)!i ' ' 

with the notation (3): 

1\i,op = f [Hop, Yki,opJ. (95) 

7 The momentum and energy equations for composite 
particles 

a. The equation of motion 

The starting point to derive the equation of motion for composite particles 
is the 'sub-atomie' equation (81 ). Again replacing the index i by a double 
index ki, where k numbers the atoms, and i their constituent particles, one 
finds after a summation over i 

mkófrR1c = I eki{e1(Rki> t)+(ó0rRk;)A bi(Rki, t)}, 
i 

s; = I 111ki Rdmk. 
i 

(96) 

where we introduced the total mass mk = L; mki of the atom and the Weyl 
transform Rk of the centre of mass operator 

(97) 

Following the same procedure as in the classical theory we obtain from (96) 
for the atomie equation of motion (cf. (1.50) with (1.54) and (I.52)): 

with the long range force 

,L = - '-' ~ îï(11) : V" iï(m) : V"'V - 1 J k L, L, rk . k rl . l k --- 
1( *k) 11,m=O 4n/Rk-R1/ 

+ek{Ee(Rk, t)+c-1vkAB.(Rk, t)}+{VkE.(Rk, t)}·µf1l 

+ {Vk Be(Rk, t) }·('i:{1) + c - 1 .üP l A vk) + Ó0r{fi[1) A Be(Rk> t)}, 
and the short range force: 
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'.1 • ( ) avk utr vk = sm vk ; H + - . 
ót 

Then with (60) we get for the equation (101) 

diîk L -s 
mk- =I: +lk- 

dt 

(99) 

s ~ ~ieU Ik= - L, Vk;------- 
l(*k)i,j 4n/Rk;-Rul 

+ L f µi"); V~µ/m); V;"Vk l (100) 
Z(*k) 11,m=O 4n/Rk-R1/ 

Here Óor and Ótr have been defined in (72), while vk stands for ÓtrR". Fur 
thermore the multipole moments µk and vk, defined in (87), occur. 
Thus it turns out that the Weyl transform (98) of the quanturn-mechan 

ical equation of motion has the same form as the classica! equation with 
time derivatives replaced by the derivatives of the type (72 ). The latter con 
tain the sum of an explicit derivative and the Poisson bracket with the Weyl 
transform of the Hamiltonian. 
From (98) one finds an equation for the expectation values by multiplying 

with a Wigner function and integrating over phase space. Then, with the 
notation (52), one obtains 

-;:;-- L S mkotPvk =I; +Ik- (101) 

From the form of the Weyl transform of the Hamiltonian (61 ), the definition 
vk = àtrRk (with Ótr defined in (72)), it follows with the expression (80) for 
the sine symbol that 

(102) 

(103) 

mkÓtPVk = lkL+lkS (98) 

At the Ieft-hand side the time derivative of the expectation value of the veloc 
ity operator vk,op (92) appears, with Rk,op the operator that has the Weyl 
transform Rk, i.e. the right-hand side of (97) with Rki,op for Rki· Furthermore, 
at the right-hand side the expectation va!ues of the operators that have the 
Weyl transforms (99) and (100) occur. 
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b. The energy equation 

By scalar multiplication of the Weyl transformed equation of motion (81) 
(where i is to be replaced by ki) by the quantity ótPRki one finds after sum 
mation over i: 

L ½mkAr{(é\rRkJ2} = L ek;ei(Rki, t)-(ó1rRkJ (104) 
i i 

With the same steps as have been taken to obtain the classica! atomie energy 
equation we get then (cf. (I.63) with (I.65-66)): 

::i {1 2 1, (::i )2 , ekiekj l ,1,L .,,s 
u,p z111k vk + 2 L, mki u,r rki +. _L, . -~- --. -f = 'I' k + 'I' k 

, ,,1(•*1) 8nlrk;-1d 

with two terms representing work exerted on the composite particle per unit 
of time: a long range term 

CO 00 00 

i/Jt = - I I { I µfll): VZvk·'\\+ I (ó,pµf'l): vn 
l(9'k) m=O 11=0 11=1 

-(m). um 1 E (R ) {u E (R )} -(1) !J-1 : 'I'/ ·. ·- -· +ekvk· e k,t +vk· "'k e k,t ·µk 

+(ó µ-<ll)·E(R t)-(v(ll+c-1-µ<0Av)·óBe(Rk,t) 
tP k e k, k k k àt ' 

and a short range term 

i/1% = eki _ 
- L (8,r RkJ·Vki 4n1Rk; - Rljl 1( 9'k)i,j 

(106) 

00 00 (fJ 

+ L L { L µf11l: V~vk·\\+ L (ó1rPtl): V~} 
l(9'k) m=O n=O n=l 

ïï(m) : vm l , (107) 
rz . z 4n1Rk-Ril 

with vk = Ó1rRk and à0p = c-1Ó1r defined by (72). Again formally this result 
is the same as that of the classica! theory. 
The corresponding equation for expectation values may be obtained from 

(105) by multiplying with a Wigner function and integrating over phase 
space. Then with the help of (60), (61), (72) and (80) one finds: 

d {i 2 1 -v (::i )2 -v eki ekj l ,1,L ,1,s - 2mk vk +2 L, mki u,rrki +. _L., . _ f = 'l'k + 'l'k, 
dt , ,,1<,*1) 8n1Rki Rk) 

where the notation (52) has been employed. Since vk is the Weyl transform 

(108) 

of vk,op given by (92) and ó1rrki is the Weyl transform of 1\i,op given by (95), 
one obtains with the help of ( 43) that the Ieft-hand side contains the expecta 
tion values of the kinetic energy operator ½mk vf,or , the internal kinetic 
energy operator j Limk;rfi,op and the internal Coulomb energy operator. At 
the right-hand side the expectation values of two operators appear of which 
the Weyl transforms are (106) and (107). 

8 The inner angular momentum equation for composite 
particles 

(105) 
By vectorial multiplication of the Weyl transformed eq uation of motion (8 I) 
(with i replaced by ki) with rki = Rk;-Rk, one finds with the help of (97) 
and a summation over i: 

where we introduced the quantity1 

sk = ImkJ1c;A(ó1rrk;). (110) 
i 

Just as in the classica! case one finds from this equation (cf. (I.76) with 
(I.77-78)) 

a,rsk = d;+dZ (111) 

with the long range moment 

I
00 

...., -(11) · v11-1-<ml • V"' 1 nv /\ Il • Il . -- 
- k r'"k • k rl . 1 4 IR -R I n,m-0 n k l 

+µfl A {Ee(Rk, t)+c-1vkABc(Rk, t)}+W) ABe(Rk, t) 

and the short range moment 

d; = I 
l( 9'k) 

ó,rsk = I ekirk;A{ei(Rk;, t)+(ó0rRk;)Abi(Rki, t)}, 
i 

(109) 

(112) 

eki eu _ d! = - I. _rk;A vki 4njRki-Rljl l(9'k),,1 

- ' ~ u -(11) : vn-1-(m) : um 1 (113) 1..., 1..., n v k A µ" . k l'-z . v 1 ---- , 
l(9'k) n,m=O 4njRk-Ril 

with v" = 01rRk and 80p = c-1ó,r defined in (72). 

1 The bar denotcs a non-relativistic quantity, not an expcctation value. 
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Multiplying (l 11) by a Wigner function and integrating over phase space 
one obtains 

APPENDIX 

airsk = d{;+dL (114) 

where the notation (52) has been employed. With the help of (60), (61 ), (72), 
(80) and (110) we get for this equation 

Properties of the Weyl transf ormation 
and the Wigner function 

dsk - d-ï: ds 
-- k+ k· 
dt 

At the left-hand side the time derivative of the expectation value of the 
operator sk,op for the internal angular momentum, with Weyl transform 
(110), occurs, while the right-hand side contains the expectation values of 
two operators for long and short range moments of which the Weyl trans 
forms have been given in (112) and (113). 

(115) 

The field equations and the equation of motion for composite particles, as 
well as the ensuing energy and angular momentum equations, were obtained 
from the equations for point particles in formally the same fashion as in the 
classica! treatment. This could be achieved because already at the sub-atomie 
level we translated the quantum-mechanical operator equations into their 
Weyl transforms. Therefore at this stage it becomes apparent that a transcrip 
tion which leads away from the usual operator language gives rise to con 
siderable forrnal simplification since mutatis mutandis the classica! derivation 
may be taken over as such. 

1. A reformulation of quantum mechanics 

In the usual formulation of quantum mechanics one associates a vector in 
Hilbert space to each state of the system andto each physical quantity an 
operator acting in this Hilbert space. It is possible however to give an alter 
native description of quantum mechanics by using only ordinary functions 
in phase space for both the states and the physical quantities. An example 
of such an approach consists in introducing Weyl transforms instead of 
operators, and simultaneously the Wigner function instead of the state 
vector. 
This programme will be carried out in the following appendix for a one 

particle system. The reason for this limitation is merely to reduce slightly the 
length of the formulae. Indeed if N-particle systems are considered indices 
that label the particles and summation signs have to be added. 

2. The Weyl transformation 

a. Preliminaries 

A few notions of ordinary quantum mechanics will be summarized here for 
use in the following. The momentum and coordinate operators1 P and Q 
for a single point particle satisfy the commutation relations 

[P, P] = 0, [Q, QJ = 0, [P, Q] = fi UI, 
i 

(Al) 

with U the unit three-tensor and / the unit operator in Hilbert space. Their 
eigenvectors lp) and jq), defined by the eigenvalue equations 

Pip)= p/p), Qjq) = q/q), (A2) 
1 
Throughout this appendix we use capitals to denotc operators and lower case symbols 

for ordinary numbers. 

1A 1 
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satisfy completeness relations 

J dplp)(pj = /, 

and inner product relations 

J dqlq)(qj = / 

C CH. VI 

(A3) 

APP. WEYL TRANSFORM AND WIGNER FUNCTION 

or alternatively as 

A(p, q) = J duéfli)q·ulp-½u)(p+½ul, 

A(p, q) = J dve(iffl)p·vlq +½v)(q-½vl. 

343 

(Alü) 

(All) 

(pjp' > = b(p - p'), (qlq') = c5(q-q'), (qlp) = _!_ élh)p·q 
h½ . (A4) 

The trace of an operator may be expressed in terms of the complete sets IP) 
or lq) as 

Tr A = J dp(p!Alp) = J dq(qlAJq). 

a(p, q) = J duéln)q·"(p+½ulAlp-½u), 

a(p, q) = J dve<ifi•lv·v(q-½vlAlq +½v), 

A = h-3 J dpdq a(p, q)Ll(p, q), 
where the hermitian operator Ll(p, q) is defined as 

Ll(p, q) = h-3 J du dvéffz){(q-Q)·u+(p-P)·v} 

(AS) 

b. Definition' 

The Weyl transform of a quantum-mechanical operator A fora single point 
particle is a scalar function a(p, q) defined as 

(A6) 

where IP) is the eigenvector of the momentum operator with eigenvalue p. 
Alternatively one may write 

(A7) 

where I q) is the eigen vector of the coordinate operator with eigenvalue q. 
From (A6) or (A7) it follows that the Weyl transform a(p, q) is real ifthe 
operator A is hermitian. 
The operator A reads, in terms of the Weyl transform: 

(AS) 

(A9) 

1 The derivations of (A6-A14) and of (A54) have been given in § 3 and wil! not be re 
peated here. 

The Weyl transform may also be written as a trace involving this operator 
A(p,q) 

a(p, q) = Tr {ALl(p, q)}. (Al2) 

A different formulation of the Weyl correspondence consists in giving both 
the operator and the Weyl transform as a Fourier integral 

A = J du dv à( u, V )e -(i/li)(Q·u + "", 

a(p, q) = J dudvà(u, v)e-(i/li)(q·u+p·v), 

(
h i) i)) a(p, q) = h3 exp ---: - • - (pJAlq)(qjp). 
21 op aq 

(A13) 

(A14) 

with the same function à( u, v) in both integrands. 
A still different way to get the Weyl transform a(p, q) from the operator A 

is obtained by starting from (A12) with (A9). Application of the identity 
eA+B = eAeBe-½[A,B] (AIS) 

for operators A and B that cornmute with their commutator (v. problem l) 
yields with the help of (AS) and (A2) 

a(p, q) = _!_fdudvdp'dq' exp (- _!__ u-v) exp [~ {(p-p')·v+(q-q')-u}] 
h3 2h h 

(q'IAlp')(p'lq'). (A16) 

The product u-v in the first exponent may be replaced by -h2(o/op')·(o/oq') 
acting on the second exponential, or, by partial integration, by the same 
operator acting on the rest of the integrand. The integration over u and v 
then yields delta functions, so that the integration over p' and q' may also be 
performed, with the result 

( 
h i) i) ) a(p, q) = h3 exp - - - • - (q!Alp)(p/q), (A17) 
2i ap aq 

or alternatively, if the roles of p and q are interchanged in the proof, 

(A18) 
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Finding the operator A from the Weyl transform a(p, q) is in principle 
possible from the formulae (A8) with (A9), (AIO) or (Al 1 ), or otherwise 
from (A13) with (Al4). A method which is often more convenient will be 
indicated now. From (A8) with (A9) and the identity (Al 5) it follows that 

A = ,> I dpdq du dv a(p, q)e(i/h)(q-Q)·ue(i/n)(p-P)·ve(i/2n)n-•·. 
Again the product u·v may be replaced by -Pt2(ó/óp)·(ó/óq) acting on the 
first two exponentials, or, after a partial integration, by the same operator 
acting on a(p, q ), so that one has, after integration over u and v, 

(A19) 

A = f dpdqc5(q-Q)é5(p-P)a0(p, q) 

with 

(A20) 

(
h ó ó) a0(p, q) = exp --: :;-- · :_- a(p, q). 
21 op oq 

These formulae show that one may find the operator A from its Weyl trans 
form a(p, q) by calculating first a0(p, q) from (A21) and then replacing the 
variables q and p by the operators Q and P, always writing the coordinate 
operators at the left of the momentum operators. This shows that the proce 
dure is only convenient if one has to do with binomials of Pand Q. 
The Weyl transform a(p, q) of a quantum-mechanical operator A may be 

employed to find the function in classica! mechanics that corresponds to the 
operator A. This function is in genera! not simply the Weyl transform itself 
( since the latter depends in genera! on Planck's constant h ), but is obtained 
if one takes the limit for h ---+ 0: 

(A21) 

APP. 

A ~ ac1(P, q) = lim a(p, q). 
ri-o 

a(p, q) = f(q)p" 

(A22) 

c. Examples 

One often encounters physical operators of which the Weyl transforms are 
of the form 

(A23) 

with fan arbitrary function and n a natura! number (for convenience we 
limit ourselves to the one-dimensional case in this subsection). Application 
of (A21) gives 

Hence according to (A20) the corresponding operator is 

A = ± (n) (!!_)k d"j(Q) r». 
k=O k 2i dQk 

The result may be cast into the form: 

A = _!_ i (11) P"J(Q)P"-k, 
2" k=O k 

as may be seen in the following way. From the commutation relations (Al) 
one finds 

k ' j / 

P"j(Q) = L (~) ('~) d '.f(Q) pk- j. 
j=O 1 ] dQ1 

Inserting this expression into (A26) and using the identities 

G)C) = C)C=;), 1 
111 

(111) - I = 1 
2"' n=O 11 ' 
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(A25) 

(A26) 

(A27) 

(A28) 

one recovers indeed (A25), so that we have established the Weyl correspon 
dence 

J(q)p" +±: f, ktO C) P"f(Q)P"-k. 
It may also be formulated in terms of repeated anticommutators: 

f(q)p" +±: _1_ {{ ... {f(Q), P}, P}, ... , P}. 
2" 

Special cases are for instance 

p +±:P, 

q +±: Q, 

pq +±: ½(PQ + QP), 
p2q +±:¼(QP2+2PQP+P2Q), 

p2q2 +±: ¼(Q2p2 +2PQ2P+P2Q2). 

(A29) 

(A30) 

(A31) 

(A32) 

(A33) 

(A34) 

(A35) 

ao(P, q) = ± (11)(!!_)k ~f(CJ] n-k 
k=O k 2i dl p . 

(A24) 
d. The A-operator 

The zl-operator (A9), (AIO) or (All) has as Weyl transform a product of 
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delta functions as follows from (AS): 

Ll(p', q') ~ h3l5(p- p')b(q-q'). 

C CH. VI 

(A36) 

lts matrix elements between eigenvectors of the coordinate and momentum 
operators follow with (AIO), (All) and (A4) 

(q'JLl(p, q)/q") = l5 ( q- q' :q") e(i/n)p·(q'-q"), (A37) 
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( ' ") (p'/A(p, q)Jp") = b p- p: p e-(i/n)q·(p'-p"J. 

In particular the diagonal elements are 

(q'/Ll(p, q)Jq') = b(q-q'), 

(p'ILl(p, q)/p') = c5(p- p'). 

(A38) 

(A39) 

(A40) 

Mixed matrix elements are found by using (Al 7) for A = Ll(p', q'). Then 
with (A36) and (A4) one finds 

(i ') (h a a) (q'ILl(p, q)/p') = exp - p'·q exp -: - ·-;;- b(p- p')l5(q-q'). (A41) 
h 21 op oq 

Integration of the zt-operator (All) or (AIO) over p or q respectively 
yields 

J dpLl(p, q) = h3Jq)(q/, 
J dq A(p, q) = h3lp)(p/, 

h-3 J dpdq Ll(p, q) = /. 

(A42) 

(A43) 

i.e. projection operators on a particular member of the complete set of eigen 
vectors of the coordinate and momentum operators. A second integration 
yields according to the closure relations (A3) 

(A44) 

The trace of a product of zf-operators has different genera! forms for an 
even and an odd number of factors1: 

Tr {Ll(P1, qi) ··· A(pn, qn)} 

= h3b(p1 Pz + ··· -pn)b(q1 -qz + ··· -qn) 
Tr {Ll(p1, q1) ··· Ll(Pn-1, q,,-1)}, (11 even), (A46) 

Proof: With (AS), insertion of complete sets /q;) (i = 2, ... , 11) by means of 
(A3) and the use of (A37) we may write the left-hand side of (A45) or (A46) 
as 

J dq; ... dq~b (ql - q; :qi) ... () (q,,- q;,:q;) 
exp U {pi'(q; q;)+ ... p,,·(q~-q;)}] . (A47) 

It is convenient to introduce as new integration variables q;' = ½(q;+q;+
1
) 

with i = 1, ... , 11 (q;,+1 = q;). The Jacobian ofthis transformation is equal 
to 2- 3(n-J) for n = odd and O for n = even. Therefore the proof continues 
for n = odd only. In that case we obtain, writing also the exponential in 
terms of the new variables and performing the integrations, the right-hand 
side of (A45). 
To find the result for 11 even we use formula ( A45) for 11 + I, and formula 

(A44) to write 

Tr {Ll(p1, q 1) ... A(p,,, q,,)} 

(2") 
3J [2i n . = -- dp,,+1dq,,+1exp -{ I (-l)1+k(p/qk-pk·qj) 

h h j,k= l(j<k) 

Tr { L1 (p 1 , q 1) ... Ll (p,,, q ,,) } 

= 23(n-1) exp {2i Î (-l)j+\p/qk-Pk'qj)}' 
h j,k= l(j<k) 

1 R. L. Stratonovich, Soviet Phys. JETP 4(1957)891. 

(n odd), (A45) 

Il ] +J'}-l)j+l(P/qn+l-Pn+l·qj)} · (A48) 

The integration over P,.+ 1 and q,.+ 1 may be performed to yield a product of 
two delta functions. In the remaining exponential the part with k = n in the 
double sum vanishes because of the occurrence of the delta functions. Then 
one is Ieft with the right-hand side of (A46) with the expression (A45) for 
n-1 inserted. Q.E.D. 
The special cases 11 = 1, 2 and 3 of (A45-46) have already been mentioned 

in the main text (33, 34, 36): 

Tr L1 (p 1, q 1) = 1, 

Tr {Ll(P1, q1)Ll(pz, qz)} = h3b(p1 -pz)ö(q1 -qz), 

(A49) 

(ASO) 
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Tr {A(p1, q1)A(pz, qz)A(p3, q3)} 

= 26 exp [f {pi"(q3-q2)+p2·(q1-q3)+p3°(q2-q1)}]. (A51) 

The traces of products of operators follow by application of (AS), (A45) 
and (A46). In particular one finds thus from (AS), (A49) and (A50): 

Tr A = h-3 J dpdq a(p, q), 
Tr AB= h-3 J dpdq a(p, q)b(p, q) = Tr BA. 

(A52) 

(A53) 

e. Products of operators 

The Weyl transform of a product of the operators A and B follows from 
(A12), (AS) and (A51 ). One then obtains 

{
ih (aca) ifbJ o(a) o(b))} 

AB+± exp - -~ · -~ - - · -:;-- a(p, q)b(p, q), 
2 oq op op oq 

where the indices (a) and (b) at the differential operators indicate which 
functions have to be differentiated. From this correspondence it follows that 
the Weyl transforms of the anticommutator and the commutator are given by 

(A54) 

{h (a(a) a<b) 3(a) 3(b))} HA, B} +t cos - -· · - - - · - a(p, q)b(p, q), \2 oq op op èq 

i 2 . fh (aca) 3(b) 3(a) o(b)) î 
- -[A,B]+t-sm - -·- - --·-f 1a(p,q)b(p,q). 

h h \2 aq op èp aq 

While the transforrn (A54) of a product AB of operators is a series in h, both 
(half) the anticommutator and ( - i/h) times the commutator are series in h2• 
The classica! functions that correspond to the product AB and the opera 

tors HA, B} and -(i/h)[A, B] are, according to (A22), the Iimits for h-+ 0 
of the right-hand sides of (A54), (A55) and (A56) 

(A55) 

The last expression obtained is the Poisson bracket of the classica! functions 
ac1(P, q) and hc1(P, q). 

3. The Wigner function 

a. Definition 

The state of a quantum-mechanical system may be described by means of a 
density operator 

P(t) = lf(t))(f(t)I, 

where lf(t)) is the state vector in Hilbert space. The expectation value of an 
operator A rnay be written in terms of this density operator as: 

(A56) 

AB -=t ac1(p, q)bc1(P, q), (A57) 

HA, B} ~ aci(p, q)bci(P, q), (A58) 

_ !_ [A, B] ~ oaci(p, q). obci(p, q) _ oaci(p, q). ~~3/p, q). (AS9) 
h àq op op aq 

A(t) = Tr {P(t)A}. 

With the use of (A53) this expectation value becomes 

A = a 
with the abbreviation 

ëi(t) = J dpdq a(p, q)p(p, q; t). 
Here h3 p(p, q; t) is the Weyl transform of the density operator 

P(t) +t h3 p(p, q; t). 

(A60) 

(A61) 

(A62) 

(A63) 

(A64) 

Since the density operator is hermitian its W eyl transform p(p, q; t) is real. 
The function p(p, q; t) is called the Wigner function. lts original form1 

follows from (A7) with (A60) inserted: 

p(p, q; t) = h-3 J dvé1'•Jp·uijJ(q-½v; t)if1*(q+½v; t) (A65) 

with the notation if1(q; t) = (qjf(t)), the wave function in the coordinate 
representation. From (A6), with (A60) inserted, one gets the Wigner func 
tion in terms of the wave functions cp(p; t) = (plf(t)) in the momentum 
representation 

p(p, q; t) = h-3 J due(ifn)q·"cp(p+½u; t)cp*(p-½u; t). (A66) 

1 E. P. Wigner, Phys, Rev. 40(1932)749. 
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A third form is obtained by inserting (A60) into (AIS) and using (A4). One 
then obtains ( omitting the time dependence from now on): 

p(p, q) = h-t exp (~ ~ · ~) {cp(p)tfi*(q)élnlp·q}. 
21 op àq 

Since p is real one may also write the complex conjugate of the right-hand 

(A67) 

side: 

p(p, q) = h-t exp (- 7!__ _a • ~-) {cp*(p)t/f(q)e-<ifh>p·q}. 
21 ûp aq 

J dpdqp(p,q) = 1, 

(A68) 

The fact that the trace of the density operator is unity is reflected by the 
property that the Wigner function is normalized 

(A69) 

as follows from (A52). 
Expectation values of an operator A are thus obtained as integrals (A62) 

with (A63) over its Weyl transform a(p, q) and the Wigner function p(p, q), 
which is normalized according to (A69). 

b. Properties 

The function p(p, q) is real and normalized, but not necessarily positive 
definite. The integrals over the coordinates or momenta however are positive 
definite as follows from (A65) and (A66) 

J p(p, q)dp = lt/l(q)l2 ~ 0, 
J p(p, q)dq = lcp(p)l2 ~ 0. 

Jp(p, q)I ~ (2/h)3• 

(A70) 

(A71) 

Tirns, in contrast to the function p(p, q) itself, these integrals may be inter 
preted as probability densities. (They are indeed normalized to unity.) 
One may show that the Wigner function is limited: it satisfies the inequality 

(A72) 

To prove this one starts from Schwarz's inequality, applied to the expression 
(A65) for the Wigner function 

IP(P, q)l2 ~ h-6 {J dvle(ifh)p·vt/l(q-½v)J2}{f dvltfi*(q+½v)l2}. (A 73) 

From the normalization of the wave function it follows that the right-hand 
side of(A73) is indeed the square of the right-hand side of(A72). 

Since pis norrnalized, it follows from the inequality (A72) that pis differ 
ent from zero in a region ofwhich the volume in phase space is at least equal 
to (h/2)3, in other words its support has a volume larger than this volume. 
Hence the Wigner function can never be sharply localized both in pand q: 
a delta function character is thus excluded. (This situation is a reflection of 
the uncertainty principle.) 
The density operator has the form of a projection operator, so that 

pi= P. (A74) 

As a consequence the trace of P2 is equal to unity (since the trace of P is 
unity ). In terms of the Wigner function this property is 

J dpdq{p(p, q)}2 h-3, 

as follows from (A53). 
The property (A 74) has as a counterpart for the Wigner function 

(A75) 

{ 
ih (a(a) ;p> a<a) a(b))) 

p(p, q) = h3 exp - ~ · -,, - -;_;-- · --::_-- f p<a>(p, q)p<b>(p, q), (A76) 
2 cq op op oq 

as follows from (A54). The two factors pat the right-hand side are in fact 
the same, but indices (a) and (b) have been employed to indicate the way in 
which the differential operators are acting. 
To every wave function t/1( q) corresponds one single Wigner function as is 

apparent from the expression (A65). The inverse is also true1: to every real 
function.f(p, q) in phase space, which satisfies equations of the form (A69) 
and (A 76) corresponds one single normalized complex function g( q) of the 
coordinates ( apart from a phase factor), in such a way that ( cf. (A65) ): 

f(p, q) = h-3 J dve(i/h)p·vg(q-½v)g*(q+½v). (A77) 

In other words every real function in phase space, satisfying (A69) and (A76), 
may play the role of a Wigner function. To prove (A77) we first define the 
function 

Yt(q+½v, q-½v) = J dpe-(i/hJp·"f(p, q). 
1 G. A. Baker jr., Phys. Rev. 109(1958)2198. 

(A78) 
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lts inverse is 

f(p, q) h-3 J dve(i/n)p·vyf'(q+½v, q-½v). (A79) 

We shall have to show that the kern el :11' ( q + ½v, q -½v) factorizes, so that 
(A79) reduces to (A77). To that purpose we write the properties (A69) and 
(A76) forf(p, q) in terms of the kernel .;/f'. Tnserting (A7S) and (A79) into 
(A69) and (A76) one finds: 

I Yt(q, q)dq = 1, (ASO) 

Yf'(q+½v, q-½v) 

J 
( · ( -(a) -(b) -(a) -,(b)) Î 

= h-3 dv'dv"dp exp l- !_ p-v+½if1 ~ · ~-- - 
0
_ • ~ j 

h oq op op oq 

exp {i (l"l·v' + p<bl·v")} Yt(al( q + ½v', q -½v'):tf'<b\ q + ½v", q -½v") . 

(A81) 

If the differentiations in (ASI) with respect to the momentum variables are 
performed, the integration over these variables may be carried out. This gives 

I f 1 ( -(b) -(a)· } 
:tf'(q+½v, q-½v) = dv'dv"c5(v'+v"-v)exp - v'·~-- -v"·~) \2 oq oq 

:;t·<al(q +½v', q-½v'):tf'<bl(q +½v", q-½v"). (AS2) 

The exponential acting on the kernel may be seen as the operator which 
yields a Taylor expansion. Hence we may write now 

Yf'(q+½v, q-½v) = J dv' dv"c5(v' +v"-v)Yt{q+½(v' -v"), q-½(v' +v")} 

Yi:-{q +½(v' +v"), q +½(v' -v")}. (AS3) 

With new integration variables v"' = ½(v' -v"), v"" = v' +v" one finds, 
writing v' instead of q + v"', 

..%(q+½v, q-½v) = J dv' ::f'(q+½v, v')Yt(v', q-½v). 

A third property of the kernel :11' is its hermitian character: 

Yt*(q+½v, q-½v) = Yt(q--}v, q+½v), 

(AS4) 

(AS5) 

as follows from (A7S). From (AS4) it is seen that the eigenvalues À of the 

kernel YÎ satisfy the equation i = i2, so that Î, is O or 1. Furthermore it 
follows from (ASO) that the sum of the eigenvalues is unity. Therefore only 
one eigenvalue is 1, and the rest 0. This means that the kernel may be ex 
pressed in terms of the normalized eigenfunction g' that corresponds to the 
single eigenvalue 1: 

Yt(q+½v, q-½v) = g'(q+½v)g'*(q-½v), (A86) 

or, writing g instead of g'* (g is likewise normalized to unity ), 

Yf'(q +½v, q -½v) = g(q-½v)g*(q +½v), 

which completes the proof of (A77). 

G _ 2 . ffi (iJC") • U i/h) • U )' !f'(p, q) = - - Sll1 - - - - -- -- h(p, q). 
11 l2 oq op op aq J 

Then the time evolution of the Wigner function is described by 

?_f_(P: q_; t) = _ !f'(p, q)p(p, q; t). 
ot 

It has the forma! solution, for a time-independent Hamiltonian, 

p(p, q; t) = exp { -!f'(p, q)(t-t0)}p(p, q; t0). 

(AS7) 

c. Deoelopment in time 

The time evolution of the Wigner function is a direct consequence of the 
equation 

óP = _ i[H,P], 
(][ h 

(A8S) 

which governs the time evolution of the density operator. In fact one finds 
from (A56) for the Weyl transform h3p(p, q; t) of the density operator: 

ap(p, q; t) 2 . fh (ê/h) a(/n ê/") a<p))} . ------ = - sm - -··· · - - - • - h(p, q)p(p, q; t), (A89) 
ot h b aq op ap aq 

where h(p, q) is the Weyl transform of the Hamilton operator. One may 
introduce a Liouville operator defined as 

(A90) 

(A91) 

(A92) 

The equation (A91) may be used to find an expression for the time deriva 
tive of the expectation value (A62) with (A63) of an operator A: 

da(t) I - = - dp dq a(p, q)2(p, q)p(p, q; t). 
dt 

(A93) 
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Partial integration gives 

da(t) Id• ,<P( )( )t ( . ) -- = p aq 1_ -z p, q a p, q J p p, q, t , 
dt 

C CH. VI 

(A94) 
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one gets for the logarithm of (A99) 

x(q-v)+x*(q+v) = o:(v)+f3(q). 
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(A103) 

or with the explicit Liouvillean (A90) 

da(t) 2 ~ , [ . {n (è(a) ê(h) è(a) è(h)\ ) ] 
---- = -:-j dpctq Slll - -- • -- - -- • -lf a(p, q)h(p, q) 
dt h 2 oq op op êJq / 

p(p, q; t). (A95) 

In particular if one chooses for a(p, q) the Weyl transforms p and q of the 
momentum and coordinate operators this relation gets the simple form 

-c) r óh ) ~~ = - dpdq - p(p, q; t' 
dt ~ èq 

~0 = rdpdq ~~ p(p, q; t). 
dt ~ op 

p(p, q) = P1(P)P2(q). 

(A96) 

(A97) 

These equations are the Weyl transform versions of the Ehrenfest equations 
of the ordinary formulation of quantum mechanics. Their connexion with 
the Hamilton equations will be discussed in the next subsection. 

d. The classica! limit 

Let us try to find those Wigner functions which are products offunctions of 
the coordinates and momenta 1 

(A98) 
From the form (A65) of the Wigner function one finds for the Fourier trans 
form of (A98), replacing ½v by v for convenience, 

if;(q-v)if;*(q+v) = {f dpe-(li/n)p·vp1(p)} pi(q), (A99) 

where the expression at the right-hand side is a product of a function of v 
and a function of q. Writing 

Developing the functions in the left-hand side in powers of v, we get the 
identity in q and v 

- -2 
re x(q)-iv· -:,CJ__ {im x(q)}+½vv: ~ [re x(q)}- ... = -½a(v)+½f3(q). (A104) 

oq èq oq 

From this identity it follows that 
-11 

O f ( )t - C --- l re X q ; - n , 
èq" 

è" . __ {11n x(q)} = c,., 
èq" 

(n = 2,4, ... ), 

(n = 1,3, ... ), 

with ( real) constants c11 independent of q. These formulae yield for n = 1 
and n = 2 respectively: 

im x(q) = c1·q+do, 

rex(q) = ½c2: qq+d1·q+d2, 

with c1 and c2 constants which already occurred, and d0, d1 and d2 other 
real constant quantities. The expressions (A106) satisfy (A105) also for 
n = 3, 4, .... From (A106) and (AIO0) one finds 

if;(q) = exp (a2: qq+a1·q+a0) 

if;(q) = C exp (- f (q-qo); + ~o·q\ 
\ i= 1 4.d; h f 

(A105) 

(A106) 

(Al07) 

with a2 = ½c2 real, and a 1 = d 1 + ic 1, a0 = d2 + id., complex constants. By a 
rotation of the coordinate axes one may bring the quadratic expression in 
diagonal form. Subsequently the real part of the linear term is taken to 
gether with the quadratic term so as to form a square. In this way one finds 

(Al08) 

if;(q) = ex(ql, I dpe-(2i/h)p·VP1(P) = ea(v), 
pi(q) = eP(ql, 

1 T. Takabayasi, Progr. Theor. Phys, 11(1954)341. 

(Al00) 

(Alül) 

(A102) 

with real constants p0, q O and L1 i and a normalization constant C, which 
may be chosen to be real. If, for simplicity, we limit ourselves to the case 
L11 = L12 = L13 = Ll, we have the wave function 

if;(q) = \ , exp f - (q-qo)2 + ipo·q} 
(2n)'L1' l 4L12 n ' (A109) 

a 'minimum wave packet'. The Wigner function (A65) which corresponds to 
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this wave function is 

p(p, q) = (2/h)3 exp {- (q-q20)2 - 2~~ (p-po)2f\. 
2L1 h 

(A110) 

This expression is the product of two Gaussians, one in the coordinate and 
one in the momentum space. The integrals of (Al!O) over p or q are the 
probability densities (A70) and (A71). They are Gaussians with widths L1 
and h/2L1 respectively. The product of their widths is Fi, which explains the 
name 'minimum wave packet' for (Al09). 
In the preceding section the classica! limit of a physical quantity was de 

fined as the limit, for h tending to zero, of the Weyl transform of the cor 
responding operator (v. (A22)). The situation is not exactly the same for the 
density operator, since physical states exist in quantum mechanics which 
have no classica! counterpart. This means that taking the limit h -+ 0 of the 
Wigner function wil! not always lead to a classica! function. Even if one 
utilizes minimum wave packets in their form (Al 10), the limit h -+ 0 has to 
be taken in a special way so as to obtain the classica! limit. In fact one must 
let tend both hand L1 to zero, but the Jatter in such a way that hl á tends to 
zero as wel!. In this way one finds from (Al 10) as the classica! limit of the 
Wigner function 

which is the Poisson bracket. With the help of (A112) we may write the clas 
sica! limit of the left-hand side as: 

P(P, q) ~ Pcb, q) = ö(P-Po)o(q-qo). 

A = ëi ~ aciCPo, qo). 

da( t) cl ra ( ) ( ) 
-- -+ .,;z; cl Po, qo acl Po, qo · 
dt 

Here the classica! Liouville operator is 

becomes 

(Al 11) 

With this classica! function and (A22) we obtain as the classica! limit of the 
expectation value from (A62) with (A63) 

(Al12) 

The time derivative of an expectation value follows from (A94) with (A90). 
In the classica! limit one finds then with (Al 11) and (A22) 

(Al13) 

G _ • G ohcl • 0 ohcl • 0 !f?ci(p, q) = lim !l?(p, q) = -- --- - -- -- , 
ri-o op ûq àq op 

where hc1(P, q) is the classica! limit (A22) of the Hamiltonian. Thus (A113) 

(A114) 

dëi(t) cl dacbo, qo) 
-- -+- -~--- 
dt dt 

Comparing (A115) and (Al 16) we obtain the classica! equation: 

~aci(JJ_o ,_ q()2 = o~i(JJo, q(Jl. oacbo ,_'i_o) _ qhci(Po, qo). oaci(Po, qo) 
dt op0 oqo êq0 èpo 

In particular for the momenta and coordinates we get 

dpo 
dt 

d_qo = ohci(Po, qo) 
dt opo 

which are the classica! Hamilton equations. 

P(t) = U(t, t0)P(t0)Ut(t, t0). 

~ oU(t0l)_ = HU(t, t
0
) ; at 

with the initia! condition U(t0, t0) = 1: 

U(t, to)= e-(i/n)ll(t-to): 

(A 116) 

(A117) 

oho/po' qo) 
oqo 

(Al 18) 

(A119) 

e. The propagator 

The density operator at time t follows from the density operator at time t 
0 

with the help of the expression 

(A120) 

The evolution operator U(t, t0) follows from the Schrödinger equation (for 
a time-independent Hamiltonian) 

(A121) 

(A122) 

The Wigner function, which is the Weyl transform of the density operator 
(times h-3) follows from (Al2), with (A120) inserted, 

dëi(t) c1 ohci(Po, qo) . oacbo, qo) ohci(Po, qo). oaci(Po, qo) --- -+ -----~- -~ -- - - - ~---- ' 
dt op0 êqo oq0 êpo 

(Al15) 
p(p, q; t) = h-3 Tr {A(p, q)U(t, t0)P(t0)Ut(t, t0)}. (AI23) 

According to (A8) the third factor between the brackets may be written as 
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an integral with a Wigner function at the timet O, so that one has for (A123): 

p(p, q; t) = f dpodqo-9'!(p, q, t/Po, e«. to)P(Po, q0; t0) (A124) 

with the propagator of the Wigner function, defined as 

,9'!(p, q, t/p0, q0, t0) = h-3 Tr {Ll(p, q)U(t, t0)L1(p0, q0)U1(t, t0)}. (A12S) 

The propagator, which is a real function ( as follows from its definition and 
the hermiticity of the zl-operator) is not necessarily positive. Hence an inter 
pretation as a conditional probability is not justified. From the definition 
(Al25) and (Al2) it follows that it may be looked upon as the Weyl trans 
form of the operator s=u«; t0)L1(p0, q0)Uf(t, t0). Thenas a consequence 
of (AS) one has 

U(t, t0)L1(p0, q0)Uf(t, t0) = J dpdq .9(p, q, t/p0, q0, t0)L1(p, q). (Al26) 

In a similar way one finds: 

ir«, t0)L1(p, q)U(t, t0) = J dp0 dq0 9(p, q, t/po, qo, to)Ll(Po, qo)- 

The symmetry of the propagator: 

&(po, qo, tolP, q, t) = -9'!(p, q, t/po, s«. to) 

(A127) 

The propagator is normalized, as follows from (A44) with (A49): 

f dpodqo.9'!(p, q, t/po, ««. to)= 1, 
f dpdq&(p, q, tlPo, ««. to)= 1. 

and similarly 

f dpodqo&(p, q, t/po, e«. to).9'!(p', q', t/po, s«. to)= c5(p-p')c5(q-q'). 

(Al32) 

From the definition (AI25) and the explicit form (A122) for the evolution 
operator it follows that one may write for arbitrary t 

1
: 

.9(p, q, t/p0, q0, t0) = 1,-3 Tr {Uf(t, t1)L1(p, q)U(t, t1)U(t1, t0)L1(p0, q0) 

»«; t0)}. (A133) 
With (Al26), (Al27) and (ASO) this gives the convolution property 

&(p,q,t/po,qo,to) = f dp1dq1&(p,q,t/p1,q1,t1) 

.9(p1, q1, t1/Po, qo, 10). (A134) 

Since :?(p, q, t/p0, q0, t0) is the propagator of the Wigner function, it 
satisfies the same equation for the time evolution as the Wigner function 
itself, i.e. (A91): 

a&(p, q, t/po' qo' to) 
at - !i?(p, q)3'(p, q, t/po, q0, t0). (A135) 

(A128) 

(A129) 

follows from its definition with (A122). 
For the initia! value of the propagator one finds from (Al22) and (ASO): 

&(p, q, to/Po, qo, to)= c5(p-po)c5(q-qo). (A13O) 

Since the propagator &(p, q, t/p0, q0, t0) is the Weyl transform of the 
operator h- 3 U(t, t0)L1(p0, q0)Uf(t, t0) one may write, with (A53), (Al22) 
and (ASO), the orthogonality property: 

f dpdq&(p, q, t/Po, s«. to)&(p, q, t/p~, q~, t0) = c5(p0-p~)c5(qo-q~), 

(A131) 

Its forma! solution follows with (A13O): 

&(p, q, t/po, s., t0) = exp {-.2?(p, q)(t-t0)}c5(p-po)c5(q-qo)- 
(AI36) 

The symmetry (AI29) permits to write this alternatively as 

3'(p, q, t/p0, q0, t0) = exp {2:(p0, q0)(t-t0)}c5(p-p0)c5(q-q0), (A137) 

which is the solution of 

a:Y(p, q, 1/Po, qo, to)_= 2:(po, q
0
)9(p, q, t/p

0
, ««. to) 

at (A138) 

4. Generalization to particles with spin 

a. lntroduction 

In the preceding we confined ourselves to the consideration of quantum 
mechanics for single point particles. In that case the three coordinate ( or 
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momentum) operators form a complete set of commuting operators. The 
eigenstates that could be characterized by the eigenvalues of the coordinate 
( or momentum) operators formed a basis of the complete Hilbert space of 
all possible states of the particle. 
For particles with internal degrees of freedom this holds no langer true. 

Then several eigenstates correspond to each eigenvalue of the coordinate ( or 
momentum) operator. They may be labelled by a new index K. The eigen 
value equations for the momentum and coordinate operators P and Q read 
in this case 

Pip, K) = PIP, K), Qlq, K) = qlq, K), (A139) 

with eigenvalues p and q and K = l, 2, ... , n. (For particles with spin for 
instance, which are described by the Schrödinger-Pauli theory one has 
n = 2, while in Dirac's relativistic theory of spin particles 11 = 4.) The 
vectors IP, K) or lq, 1<) with K one of the numbers I, 2, ... , n form n bases in 
11 Hilbert spaces of the same structure. The total Hilbert space is the direct 
sum of these 11 spaces. 
The closure relations for the bases IP, 1<) and lq, K) read now 

~ J dpip, K)<P, KI = /, 

~ J dqlq, «>;«. KI = /, 

while their inner products are 

<P, Kip', K') = è5(p- p')è5KK'' 

<q, Klq', K') = ó(q-q')óKK'' 

<q, Kip, K') = _!_ e<iJn)p·q3""'. 
hl 

In the following we need the operator QKi. which is defined as 

QKÎ. = J dplp, K)<p, XI = J dqlq, «>;«. ).1. 

(A140) 

(A141) 

(A142) 

The last equality follows directly if one farms matrix elements of the operator 
QKJ.. 
The trace of an operator may be expressed in terms of the bases IP, K) 

or lq, 1<): 

Tr A = ~ J dp<p, KIAlp, K) = ~ J dq<q, 1<IAlq, K). (Al43) 

b. The Weyl transform 

The above generalization of the formulae for point particles permits to re 
peat the derivations of section 2 and 3 for the Weyl transforms and the 
Wigner functions. In the results the indices of the inner degrees of freedom 
wil! appear now and then. 
Thus one finds for the Weyl transform of an operator A, instead of (A6), 

(A7) and (A12) 

( ) -Jd <,1ri)q·11< 1 IAI 1 ') a";· p, q - ue p+2u, K p-2u, I. , 

( ) -Jd (i/n)p·v< 1 , IAI 1 ') a";_p,q - ve q-2v,K q+2v,J., 

aKi.(P, q) = Tr {AL1;.iP, q)}. 
The zt-operator which occurs here is given by 

L1 ·(P q) = 1i-3Jdudve(ifn){(q-Q)·u+(p-P)-v)Q = Ll(p q)Q 
KI, ' KJ.. - ' KÀ' 

A = '°'f dudvà -(u v)e-(i/n)(Q·u+P·v)Q . 
f_,; K/, ' Kl. ' 
K,À 

aKi.(P, q) = Jdudvà (u v)e-(ijf,)(q·u+p·v) 
K). ' • 

(A144) 

(A145) 

(Al46) 

(A147) 

with Ll(p, q) as given in (A9). Alternative forms for Ll";_(p, q) are: 

L1Ki.(P, q) = J due(i/n)q·"lp-½u, K)<P+½u, XI, (A148) 

L1K;.(p, q) = J dvéln)p·vlq +½v, K)<q-½v, ).J, (Al49) 

instead of (AIO) and (All). The operator A is now a sum of integrals: 

A = h-3 IJ dpdqaKi.(P, q)L1";.(p, q) 
K,J. 

(A150) 

instead of (A8). The Weyl correspondence may also be expressed, as in 
(Al3-14), by 

(A151) 

(A152) 

If an operator A does not connect the different parts of Hilbert space labelled by ", its 
Weyl transform is diagonal in the discrete indices, as follows frorn (Al44) (or (Al45)): 

a";.(p, q) = è5";J duéln)q·u<P+½u, KJAlp-½u, K). (A153) 
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If the operator moreover acts in the same way in each subspace, the integral is independent 
of K and may be denoted as a(p, q): 

aKlP, q) = öK;. a(p, q). (Al54) 
Upon introduction into (AI 50) and the use of the relation Z::K.Q 1(1( = I that follows from 
(Al40) and (A142), one recovers (AS). 
As a different special case we consider operators A which are independent of the coor 

dinate and momentum operators, as for instance the spin operator. Then the Weyl 
transform (AI44) or (AI45) is independent of pand q: 

aK;.(P, q) = aK;. · (A155) 
Upon introduction into (Al 50) one finds with the help of (A44) that the operator may 
be written as 

A = I aKi. QK;. · 
K,i 

(A156) 

As formula (Al47) showed the basic operator LIK;.(P, q) has the simple form 
Llû(P, q) = Ll(p, q)QKi.· Therefore one may derive properties for the LlKi. 
(p, q )-operator from those of the L1 (p, q )-operator derived in section 2d. As 
corollaries one finds for the traces of an operator and a product of two 
operators (cf. (A52-53)): 

Tr A = h-3 ~ J dpdq aKJp, q), 

Tr AB= h-3 f.I dpdq aK;.(P, q)b;.iP, q) = Tr BA. 

(A157) 

(A158) 

. 1 . fh a<a). a<b) - a<a). ~(b))} L [aKµ(p, q)bµ;.(P, q) 
1 B] --+ sm - (- 0 àq 1, ( )} 

- /j [ A, - h \i Oq Op p + b,,,(P, q)a,, P, q 

i fh (a(a2. a<b: - a"(a). a<b)} I {aKµ(p, q)bj,;,(P, q) 

- h cos \2 Oq Op op àq " - b,,,(p, q)a",(p, q)). (A 161) 

In the special case that the operators A and B do not act on the indices K, i.e, if they have 
Weyl transforms of the type (Al54), the expressions (AI60) and (Al61) reduce to 

fh (a(a) atb) a<a) a<b))} 
½{A, B} +t cos 1- -"- • -::_-· - - • -- a(p, q)b(p, q)öKï., 

\2 oq op op óq 

i 2 . {h (a(a) a<b) a<a) a<b))} 
- - [A, B] +t- sm - ·- · -_;-- - - · - a(p, q)b(p, q)c5K?., 

h h 2 èq op op àq 

½{A, B} +t ½ I (aK1,bµ;.+bKµaµ;.), 
µ 

- ~ [ A, B] +t - .!_ L ( «; hµ;. - u.; a1,;.). h h µ 

(A162) 

(Al63) 

which have the sarne form as the right-hand sides of (A55) and (A56), apart from the 
trivia! Kronecker deltas. 
In the special case that the operators are independent of the coordinate and momentum 

operators, i.e, if their Weyl transforms are of the type (AI55), one finds from (A160) and 
(Al61) 

(A164) 

(A165) 

Furthermore one finds for the Weyl transform of a product of two operators 
(cf. (A54)) 

{
ih (a(a) a<b) a<a) a<b))} 

AB +t exp - -" · - - ~ · - I aKµ(p, q)bµ;.(P, q). (A159) 
2 oq op op èq u 

The commutator and the anticommutator of two operators are given by 
(cf. (A55) and (A56)): 

{
h (a(a) a<b) a<a) a<b))} 

½{ A, B} +t ½ cos - - • -_;-- - -"- • - I { aKµ(p, q)bµ;.(P, q) 
2 èq op op èq µ 

+bKµ(p, q)a1,;.(P, q)} 
i . {h (a(a) acb) a<a) a(b))} + 2- S111 -2 -,,- • -a - -,,- • -"- I {aKµ(p, q)bµ;.(P, q) 

oq p op oq µ 
- bKµ(p, q)aµ;.(p, q)}, (A160) 

While the special case (A162-163) has a classica! limit of the form (ASS-59), the special 
case (Al 64-165) has no classica! limit. 

c. The Wiqner f unction 

As the Weyl transform of the density operator P(t) = li/t(t))(i/t(t)I the 
Wigner function wil! be equipped with indices if one considers a particle with 
internal degrees of freedom. Indeed from (A145) one finds ( cf. (A65)): 

PK;.(p, q; t) = h-3 J dveCi/n)p·vi/tiq-½v; t)V1f(q+½v; t), (A166) 

where the wave function (q, Kli/t(t)) in the coordinate representation has 
been written as i/t i q; t ). The expectation value of an operator A follows now 
from (Al58): 

Ä(t) = a(t) = L:f dpdq PK;.(p, q; t)a;.iP, q) 
K,I. 

(A167) 
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(cf. (A62) with (A63)). The Wigner function is normalized to unity (cf. 
(A69)) as follows from Tr P(t) = 1 and (Al57): 

~ J dpdq PKiP, q; t) = l. (A168) 

The time evolution of the Wigner function follows by taking the Weyl 
transform of the equation for the time evolution of the density operator 
(A88): 

opKi.(P, q; t) 1 . f h (a<") a<P) au,) • a<P))} ~ · = - Sll1 \- - • - - ·- - '\' (h p · +p h ,) ,, 1' 2 _,, :'.l " :'.l L, Kµ JU Kµ µ,. ot ,1 oq up op uq 11 

; {h (a<"J a<P) a<") a<P)) 1 - - cos - - . -- - - • - h . - h . 
h 2 " " ;:, " 1I( K/1Pµ1. PKµµ,), oq op up oq µ 

where hKi. depends on p and q and PK;. on p, q and t. This equation may be 
used to find an expression for the time derivative of the expectation value of 
an operator (cf. (A95)) 

(A169) 

PROBLEMS 

1. Prove the following theorems on exponentials of operators A and B, 
which commute with their commutator [A, B]: 

eA+B = eAeBe-½[A,B] = eBeAe½[A,BJ, 

eA+B = e+AeBe½A = e½BeAe½B_ 

Hint: Prove first the lemma (}, is a number) 

f(},) = ei.ABe-J.A = B+}.[A, B]. 

(Pl) 

(P2) 

(P3) 

This follows by integration of of/à},. In the same way it follows, using also 
(P3), that 

da(t) 1 J [ . {h (a(a) a<") a<a) au,))\ -·- = - '\' dpdqp- sm - -·-- - -·-- j (a h -+h. a -) '-' .M( ,..,, ;') ,..., ,..., KJl µ),, Itµ µ1. dt h K,i.,11 2 oq op op oq 

. (h (a<a). a<"> a<a). a(/•))1 _ ] 
- i cos 1- - -::;-· - - f (aKµ hµi. hK1, a1,J , 

\2 àq op op aq 
where aKi. and hKi. depend on pand q, and PKi. on p, q and t. 

If the operator A does not act on the spin indices, i.e. if its Weyl transform is of the type 
(Al54), expression (Al70) becomes 

da(t) 2 J [ . {h (a(a) a<"> a<a) a<"))} ] --- _'\' dpdq sm - ·--•---·- ah.: P· 
d h L, ,, :'.l ,, -, Kl. /.K ' t K,i. 2 oq up op oq 

(Al70) 

(A171) 

where a, hKi. and PKi. depend on p and q, and PKJ. moreover on t. If on the other hand the 
operator A is independent of the coordinate and momentum operators, so that its Weyl 
transform is of the type (Al55), one has for (Al70) 

_<:J_~(t] = ~ L J dpdq(hKµaµ;. -aKi. h1,J.)PJ.K 
dt h K,).,µ 

lim hKJ.(P, q) = 6Ki. hc1(P, q), 
fz-+O 

(A172) 

with hKi. depending on p, q and PKJ. on p, q and t. If the Weyl transform of the Hamiltonian 
is such that 

(A173) 

the expression (Al 71) has a classica! limit. The expression (Al 72) however has no classica! 
limit. 

g(X) = eJ.Aei.B = ei.(A+B)etJ.2[A.BJ 
' 

of which (PI) is a special case. Note the useful corollary of (PI): 

eAeB = eBeAe[A,BJ_ 

(P4) 

(PS) 
The relation (P2) follows if (P5) is used at the right-hand side, and then (PI) 
applied. 

2. Show that taking the Weyl transform of an operator A(P, Q) and per 
forming a linear transformation of the coordinate and momentum operators 
Q = c·Q and P = P·c-1 (c is a matrix of c-numbers) (or {j_ = c·q, p = 
p·c- 1 of their Weyl transforms) are commuting operations. The proof con 
sists in showing - on the basis of (29) and (30)- that one gets the same result 
if one takes the Weyl transform of the operator and then transforms q and 
por if one transforms Q and Pand then takes the Weyl transform. 

3. Prove the relation (38) from (37) and (41). 

4. A relation like (A29), but with the operator P interchanged with Q and 
the Weyl transformp interchanged with q, is valid also. An example ofthis 
relation is 

p2q ~ ½(P2Q+QP2). 

Compare this result with (A34) and show that they are identical. 



366 NON-RELATIVISTIC QUANTUM PARTICLES C CH. VI PROBLEMS 367 

5. Prove from (A33) and (A35) that the square of the operator ofwhich the 
Weyl transform is pq is different from the operator of which the Weyl trans 
form is (pq )2 by explicitly evaluating both operators in terms of the operators 
Pand Q. 

6. Prove the relation (A30) by making use of the Weyl transform (A55). 

7. Prove that for the propagator 

s: = <ql U(t, to)lqo) 

of the Schrödinger equation lf(t)) = U(t, t0)ltf,r(t0)) with U(t, t0) = 
exp { -(i/h)H(t-t0)} and the Hamiltonian operator H = P2/2m+ V(Q), 
with Weyl transform h = p2/2m+ V(q), one can derive the Feynman path 
integral 

J J 11-l { }¾ 4, = 1- d d TI 111 - (i/h)(t;+, -t;)l; 
Ji !ITI ... q1 ... q11_1 .- e 

11->x j=O zh(tj+l -tJ 
with 

t, = l (qi+ i -qi' qi+qi+1) = ½m (q_;+1 -qi)2 - V ('q_;+q_;+ i)' 
f_;+1-t_; 2 t_;+1 -t_; 2 

which is sometimes 1 symbolically written as 
s: = I élh)Jl(<Î,q)dt_ 

all paths 

Hint: The propagator may first be written as 

J J 
11-l 

::lî = lim . .. dq 1 ... dqn-1 _fl <q_;+ 11 U(tj+ 1, t_;)/q_;) 
u-e co 1::::::0 

with ç, = qandt = t,. > t,,_1 > ... > t1 > t0.Nowuse(l3)forU(t_;+1,tJ 
= l-(i/h)(ti+I-tJHup to terms linear in t_;+1-ti (its Weyl transform 
may be written again as an exponential) and apply the relation (A37). 
Integration over p will then yield the result. 
Note: The result may be generalized to the case of a particle in a field, 

described by a Hamilton operator 

H = (P- ~ A r/2m+ V(Q). 
The theorem is not true for arbitrary Hamiltonians (v. Groenewold, loc. cit. ). 

1 R. P. Feynrnan, Rev. Mod. Phys. 20(1948)367; H. J. Groenewold, Mat. Fys. Medd. 
Dan. Vid. Selsk. 30(1956)no. 19. 

8. Show that for a free particle the wave packet, which at time t
0 
is de 

scribed by the Wigner function (Allü) as a minimum wave packet, is at 
time t i= t0 described by the Wigner function 

p(p, q; t) = (2/h)3 exp [- {q-qo-~~1;)(t-to)}
2 
_ 2L12(~~p0)2], 

by using the time evolution equation (A89) with h = p2/2m. Note that at 
times t i= t O the wave packet shows correlations between the variables p and 
q; in other words it is only a minimum wave packet at time t = t

0
• 

9. Prove that for Hamiltonians, which are at most quadratic in the coor 
dinates and momenta the time evolution equation (A89) for the Wigner 
function reduces to the simple form 

óp 
-={h,p}p 
ót 

with the Poisson bracket of the Weyl transform hof the Hamiltonian and the 
Wigner function. Physical examples are: the free particle (h = p2/2m), the 
particle in a constant force field (h = p2 /2m - a-q) and the harmonie oscilla 
tor (h = p2/2m + ½mw2q2 ). It is well known that not all aspects of quantum 
mechanics show up clearly for these examples. The fact that the time evolu 
tion equation for the Wigner function, although quantum-mechanical, looks 
formally like the classica! equation for the time evolution of a classica! 
distribution function (h is then to be replaced by the classica! Hamiltonian) 
is another illustration of this feature. 
Prove also that for these Hamiltonians the expression (A95) for the 

time derivative of an expectation value reduces to 

~a(_Q =Jdpdq{a, h}p(p, q; t), 
dt 

which is again analogous to, but different from the classica! case. 

10. Prove the Weyl correspondence 

{
ih (a(a) ó(b) a(a) ó(b) a(a) a(c) a(a) a(c) 

ABC~exp - -·---·-+-·---·- 
2 óq óp Óp óq óq Óp àp óq 

jj(b) a(c) ó(b) a(c))} 
+ -;- ·-;- - --;- ·--;- L aKµ(p, q)bµv(p, q)cv;.(P, q), 

oq up up oq µ,v 
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valid for the product ofthree operators A, Band C, acting on a spinor, with 
Weyl transforms aK;.(P, q), bKi.(P, q) and c";.(P, q). 

11. Verify that the expressions (74) for the field operators satisfy the equa 
tions (2). 


