
CHAPTER III 

Charged point particles 

1 Introduction 
Classica! electrodynamics in the non-relativistic approximation formed the 
subject of the preceding two chapters. Since the field equations are covariant 
with respect to Lorentz transformations one wants to give the complete 
classica! theory of electrodynamics in the framework of special relativity. 
The first step of this pro gramme will be concerned with the study of the fields 
and equations of motion of charged point particles. The results will serve 
as a basis for the derivation of the laws of electrodynamics for composite 
particles and for matter in bulk, which will be treated in the following pair 
of chapters. 
In this chapter expressions of the fields generated by charged point par­ 

ticles are derived. lt will be useful to give them not only in their covariant 
form, but also as series expansions in powers of c-1. Subsequently the equa­ 
tion of motion for charged particles with the inclusion of radiation damping 
terms will be discussed. An important ingredient for their derivation is the 
evaluation of the self-fields of the particles at their own position. 

2 The field equations 

a. Cooariant formulation 

The microscopie Lorentz equations for the electrornagnetic fields e and b, 
produced at a time t and a position R by a set of point particles with charges 
ei (j = I, 2, ... ), positions Rit) and velocities dRit)/dt = c/Jit) read: 

v-, = I, eib(Ri-R), 
j 

-è0e+V/\b = I,ej/Jj6(Ri-R), 
j (1) 

V·b = 0, 
o0 b + V /\ e = 0, 

l ?7 
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where o0 and V indicate differentiations with respect to et and R. We may put 
these equations into a covariant form by introducing the notations Ra ( a = 
0, 1, 2, 3) for (et, R), R1 for (ctj, RJ, àa for (o0, V),f41 (a, f3 = 0, l, 2, 3) 
for the antisymmetric field tensor with components (1°1,1°2,1°3) = e and 
(J23,J31,f12) = b. (We use the metric g00 = -1, gii = 1 if i = l,2,3, 
s" = 0 if o: =I= [3. The inner product a.b" of two four-vectors a' and ba will 
sometimes be denoted as a·b.) In this way the first two equations of (1) are 
the cases o: = 0 and a = 1, 2, 3 of 

à j"/J = 'v e-JdR; 3(R--R)3(R0-R0)dR0• 
/J 7 1 dR~ 1 1 1 

J 

(2) 

Considering RJ as a function RJ(sJ of an arbitrary parameter sj for each 
particle j, we can write (2) as 

àpf"/1 = L ej J d:'Xsj) 3(4l{R/sJ-R}dsj, 
J Sj 

8a{Jyó = 0 if two indices are equal), the dual field tensor fa; = ½ea{lyóró can 
be introduced, with components (/0*1 ,f0*2 J/;3) = b and (/2\ ,/3*1 J/2) = e. 
In terms of this field tensor we can write (7) as: 

op i'" 0. (8) 

The covariant equations (4) and (7) give the fields as measured in the space­ 
time reference frame (et, R). 

b. The solutions of the field equations 

In order to solve the equations ( 4) and (8 ), we note first that the genera! form 
of the solution of (8) is 

f *afJ _ Qa{Jyó:, a 
- " Uy /i, (9) 

(3) where aa is an arbitrary four-vector1. The field tensor/a/J = -½ea/Jyó/y~ be­ 
comes thus 

where 3<4l{RisJ-R} is the four-dimensional delta function. The param­ 
eters sj, which are integration variables, may be chosen independently for 
each trajectory (j = 1, 2, ... ). Por convenience we shall choose for sj a 
monotonically increasing function of the time c-1 RJ. We shall write equa­ 
tion (3) as 

àp["/J = c-1f, 

with the four-current r given by: 
c-1f(R) = ~ ej J u'.Î(si)3C4l{R/sj)-R}dsj, 

oaf = 0 

àa/p7+op/ya+o7fap = 0. 

(4) 

(5) 

where we introduced the abbreviation uj for dR1(sJ/dsi; it represents the 
four-velocity if si is the proper time. The components c-1-_r = (p, c-1j) are 
the sources of the first two equations of (1 ). From this expression the con­ 
servation of charge 

(6) 

follows immediately, since u1oa acting on the delta function is equal to 
-d/dsj acting on it. 
The last two field equations of (1) may be written in covariant form: 

(7) 

With the help of the completely antisymmetric Levi-Civita tensor Bapyó 
(with BafJyó = ± 1 if «, /3, y, 3 is an even/odd permutation of 0, 1, 2, 3, 

I" = éfaf! -è/Jaa. (10) 

The vector a" is called the four-potential, with components ( cp, a ). Substitu­ 
tion into (4) gives: 

[J a'-èxàpafl = -c-1f, 
where the d'Alembertian D is the operator àaoa. From the form of (10) it 
follows that the potentials a• are not uniquely determined by the fields r//: 
a gauge transformation (I.5) a" = a' + o"t/J with arbitrary t/1 yields the same 
fields. As a consequence one may choose the potentials such that the Lorentz 
condition (I.6) 

àaa" = 0 

is fulfilled. Then one finds the wave equation for the four-potential 

Da"= -e-1jX, 

(11) 

(12) 

(13) 

of which the solutions will be needed in the following. The genera! solution 
of this inhomogeneous linear differential equation may be written as the sum 
of one (arbitrary) particular solution and the genera! solution of the corre- 

1 In the first instance one finds from (8) that.f*a/J has the form oy(Î,afJyóµó) with )cafJy/J a 
tensor, antisymmetrie only in its first three indices, and /lii an arbitrary four-vector. 
The tensor Î.afiy/ift/J has four independent components. Instcad one may introduce the 
four-vector aa = {ëafJy/J},_fly/JÇµ( with the inverse Î,afJ,·ó11ó = ëafJ,óa/J. (Strictly spoken the 
quantity aa in (9) does not have to be a four-vector, if only its non-covariant part is such 
that it drops out in.f*«//. One may however confine oneself to a four-vector a" without im­ 
pairing the generality of f*afJ.) 
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sponding homogeneous equation. (This genera! theorem remains valid if the 
subsidiary condition (12) is added, since the Jatter is linear and homo­ 
geneous.) 
We may fix the arbitrary particular solution of (13) by imposing certain 

requirements. In the first place we want to confine ourselves to solutions 
linear ui j" (such linear solutions exist since (13) is linear itself). Then the 
genera! form of the particular solution sought is 

aa(R) = c-1 J Gaf!(R, R')jp(R')d4R' 

with the Green function Gaf!(R, R'), which must satisfy the equation 

0 Gaf3(R, R') = -gaf!c5(4)(R-R') 

(14) 

(15) 

with i'f! the metric tensor. 
In the second place we require the invariance of the Green function with 

respect to Poincaré transformations without inversions, i.e. translations in 
space and time and Lorentz transformations without inversions. In other 
words we require for the Poincaré transformation 

R."= A~pR/3 +c" (16) 

{with A"/3 Aay = g~, as follows from the defining relation RaR(/. = Ra Ra for 
c" = 0) that the Poincaré transform 

áa(R) = A~p aP(R) (17) 

of the four-potential follows from the Poincaré transformed four-current 

by the relation 
J"(R) = A~p /(R) 

áa(R) = c-1 J Gaf3(R, R')Jp(R')d4R' 

(18) 

(19) 

with the same Green function as in (14). With Rand .R' instead of Rand R' 
one has for (19) with (17) and (18) 

A~p aP(R) = c-1 J Ga/3(R, R')Apy /(R')d4 R.'. (20) 

Inserting (14) in the Ieft-hand side, and introducing the new integration 
variable R' instead of R' at the right-hand side (the Jacobian of this trans­ 
formation is unity) gives, since ris arbitrary: 

where we used the property A"/3 A(/.y = gt or alternatively A"/3 = (A -1 )P". 
In particular for pure translations one finds 

Gaf3(R+c, R' +c) = Gaf3(R, R'), 

so that aa/J ( R, R') depends only on the difference R- R': 

Gaf3(R, R') = G(/.13(R-R'). 

For Lorentz transformations the condition (21 ), with (23), reads 

G"f)(A·R) = A\A~ó GY0(R). 

To solve equation (15) with (23) we take its Fourier transform 

k2(;a/J(k) = g"P, 

where we employed the Fourier transforms G"P(k) and 1 of the Green func­ 
tion and the delta function according to 

G"/J(R-R') = -1-J G"/J(k)eik·(R-R'Jd4k, 
(2n)4 

c5(4J(R-R') = _1_ Jeik·(R-R')d4k. 
(2n)4 

The Fourier transform of the relation (24) is 

G"f)(A-k) = A~yA~ö(}Y0(k). 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

G"P(R_ R') = A" A/3 GY0(R R') 
' .y .0 ' ' 

(21) 

Hence the Fourier transform G"P(k) is a tensor which depends only on the 
vector k/, on invariant tensors (as gaf3) and scalars. This means that the so­ 
lution of (25) has the form 

G"P(k) = J_ g(/./3 +{À+ O(k) +r 0( ~ k)}g"PJ(k2) 
k2 

+ {µ+O(k)+ µ-0( -k)}k"kPJ(k2), (29) 

where O(k) = 1 if k0 ~ 0 and O if k0 < 0 and where À+, À-,µ+ and u" are 
arbitrary constants. (Since the Lorentz transformation A"/J in (28) did not 
contain inversions we could not exclude the possibility that (;a/3 has different 
values on the positive and negative parts of the light cone in k-space (k2 = 
0).) The Green function G"P(R-R') follows now by substitution of (29) into 
(26). The corresponding four-potential is then obtained with (14) and (23), 
and the field with (10). Then the contribution due to the 'longitudinal' term 
with k"kfl in (29) drops out. For that reason it may be suppressed from now 
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on, and we write the Green function as 

Gxfl(R-R') = gxflG(R-R') 

with the abbreviation 

B CH. lil 

(30) 

§2 

The poles of the integrand Iie at 

and at 

G(R) = ~J [ \ +p+e(k)+re(-k)}c5(k2)] eik·Rd4k. (31) 
(2n) k 

With (23), (30) and (31) inserted into (14), we have obtained the genera] 
form of the particular solution that satisfies the requirements of linearity and 
covariance ( without the longitudinal terms). It contains two arbitrary con­ 
stants, which may be chosen at wil!. 

Since the first term of the integrand of (31) has po les if k2 = 0, we need 
a prescription for the treatment of these poles. Since the prescription must 
be invariant (G(R) itself has to be invariant) all poles on the positive part 
of the light cone (k° = !ki) should be treated in the same way, and likewise 
all poles on the negative part (k0 = -!ki). If various (invariant) prescrip­ 
tions for the integration of the first term are used, one obtains results which 
differ from each other by a multiple of the residues. Exactly such a multiple 
of residues is obtained if one performs the integration over k0 in the second 
and third parts of G(R). For that reason taking all possible (invariant) 
prescriptions for the integration and omitting the x" - and ;t - -terms is equiv­ 
alent to taking one invariant prescription, but maintaining the)"+ - and A - - 
terms with arbitrary values for these parameters. One may thus write instead 
of (31): 
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G(R) = _l_J _!_ eik·Rd4k 
(2n)4 C k2 

with an arbitrary invariant integration contour C in the complex k-space. 
A prescription ( of which we shall show that it is in deed invariant) consists 

in replacing k2 by (k+ie)2 or by (k-ie)2, where ex is a time-like infinitesimal 
four-vector with positive time-component e0, and integrating along the real 
axes k0, k1, k2 and k3. The resulting Green functions will be labelled by the 
indices r and a respectively: 

1 J 1 eik·Rd4k. 
Gr,a(R) = (2n)4 (k± ie)2 

(32) 

(33) 

For both signs the integral is real (since it is seen to be equal to its complex 
conjugate ). 

k0 = lkl+i (e0- e-k) 
lki 

k
0 = -lkl+i (e0+ ~;). 

(34) 

Gr(R) = 0 

Gr(R) = _l_ c5(R0-IRI) 
4n!RI 

Combining (36) and (38) we have as the Green function Gr for all R0: 

Gr(R) = l c5(R0 -jRI). 
4nlRI 

(if R0 > 0). 

(35) 

Since e" is a time-Iike vector with e0 > 0, the factors between brackets are 
both infinitesimally positive, independent of the precise values of the com­ 
ponents of ex and k. 
The integral (33) may now be calculated by performing first the integra­ 

tion over k0• For the upper sign, which we shall consider first, the poles (34) 
and (35) !ie just be low the real k0-axis in the neighbourhood of I ki and -1 ki. 
For R0 < 0 one may close the contour by a semi-circle in the upper part of 
the complex k0-p!ane. Since then no po!es are surrounded by the contour 
the result is zero, i.e. 

(if R0 < 0). (36) 
For R0 > 0 one closes the contour by a semi-circle in the lower part of the 
complex k0-p!ane. Cauchy's theorem then gives • f ijkjRO -ijkjRO G (R) = - _i_ dkeik·R e -e 

r 2(2n)3 !ki (37) 

Performing the integration (first over the ang!es and then over the absolute 
value of k) one gets thus 

(if R0 > 0). (38) 

(39) 

From the derivation it is apparent that the precise position of the poles in the 
complex k0-p!ane is irrelevant, provided that they !ie below the real axis and 
infinitesimally near to k0 = +!ki and -!kl. From (34) and (35) it then 
fo!Iows that the Green function Gr(R) given by (33) bas the same value for 
all infinitesimal time-Iike ex with e0 > 0. Hence the prescription for the in­ 
tegration was indeed an invariant prescription, since all such ë/ transform 
into each other under Lorentz transformations. 
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From (14) with (23) and (30) it follows that with the choice of the Green 
function (39) the potential only depends on the charge-current at time-space 
points which are earlier than the observer's time (R'0 = et' < et = R0

). 

For this reason the Green function G, in question is said to have retarded 
character. 
The Green function G.(R) (33) is found in a similar way (Iower signs in 

(33-35)): 

G.(R) = -
1
- c5(R0 + IRl)- 

4nlRI 

It has the property to lead to advanced potentials, since it vanishes if 
R0 > 0. 
From the property for delta functions 

c5{.f(x)} = I " 1
" c5(x-x11), 

n làf/oxl 

with x11 the (simple) roots off(x) = 0, it follows that 

c5(R2
) = J __ {c5(R0-IRl)+c5(R0+1RI)}, 

21RI 

and hence, with O(R) = 1 for R0 ;;:,: 0 and O(R) = 0 for R0 < 0, 

c5(R2)0(±R) -1-- c5(R0+1RI). 
2IRI 

G,,a(R) = 
2
~ c5(R2)0(±R), 

(40) 

(41) 

(42) 

(43) 

Then the retarded and advanced Green functions (39) and (40) may be 
written in the form 

(44) 

which shows explicitly their invariant charactcr. 
The integration prcscription, contained in (33), is such that the contour 

passes either below both polcs, or above both poles in the complex k0-p!ane, 
as (34) and (35) show. The only other independent invariant integration 
prescription consists in letting the contour pass below one of the poles and 
above the othcr one. This is achieved if in (32) one writes k2 =ie for k2: 

The choice of + ie in the denominator leads to a Green function 

G (R) _ 1 J 1 ik·Rd4/ af - -- --e (, 
(2n)4 k2 + ie 

which depends on the other three. In fact from (33), (45) and (46) it rnay be 
proved that the following linear relation between the four Green functions 
exists: 

G,+Ga = Gr+Gar· 

(Inspection of the various contours shows imrncdiately the validity of this 
connexion.) 
The evaluation of the Green Iunctions (45) and (46) proceeds in the sarne 

fashion as before, by closing the contours ( distinguishing between R0 > 0 
and R0 < 0) and applying Cauchy's theorem. This leads to the results 

i 1 
Gr(R) = --- , 

4n2 R2+ie 

. 1 
l - -. 

G.r(R) - 4nz R2-ie 

G = rxG,+/3G.+(1-rx-/3)Gr, 

re o: + re /3 = 1, im rx-im /3 = 0. 

(46) 

(47) 

(48) 

(49) 

The Jatter function is the complex conjugate of the forrner, as is also visible 
in (45) and (46). 
The most genera! invariant Green function is a linear combination of the 

independent functions G" Ga and Gr, i.e. 

(50) 

where x and /3 are complex constants. The sum of the three coefficients has 
to be equal to 1 in order to get a solution of the inhomogeneous equation 
(15) with (23) and (30). 

Since the vector potential and the four-current are both real functions, 
we want to confine ourselves from now on to invariant Green functions 
which are real. This imposes conditions on the complex constants in (50). 
In fact one finds from the reality condition G = G* and the relations 
G~ = G" a: = G. and Gi = Gar = G,+Ga-Gr that 

(51) 

Gr(R) = _l_J-2-~- eik·Rd4k. 
(2n)4 k =ie 

(45) 

The genera! form of the real invariant Green function is hence (with the 
notations ç = re a and 17 = 2 irn rx) 

G = G* = çG,+(l-ç)G.+17 im Gi , (52) 
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where ç and IJ are arbitrary real constants. The function im Gf follows from 
(48) with the identity (for real x) 

_l-:-- = ÇJJ ~ + irc6(x) (53) 
x±ie X 

( JJJ indicates the principal value ). One finds then 

. G 1 = 1 im f = -2 Y· z . 
4n R 

With this expression and (44) the genera! form (52) of the real invariant 

(54) 

Green function becomes 

G(R) = G*(R) = _!_ 6(R2){çO(R)+(l-ç)0(-R)}+17&~, (55) 
2n R 

( a factor ( 4rc2 )-1 has been absorbed into the coeflicient 17 ). 
The particular solutions of the (inhomogeneous) wave equation (13) that 

follow from (14) with (23), (30) and (55) read 

a"(R) = c-1 J [
2
~ 6{(R-R')2}{ç0(R-R')+(l-ç)O(-R +R')} 

+1J.'?JY l ] /(R')d4R'. (56) 
(R-R')2 

The genera! solution of the wave equation may be obtained by adding the 
genera) solution of the homogeneous equation to this expression with an 
arbitrary but fixed choice for ç and 17. As to the expression (56), it represents, 
as we have seen, the genera) solution of the inhomogeneous equation subject 
to the conditions that it be linear in the source _r and connected with the 
Jatter by means of an invariant, real Green function. In the following we 
shall be concerned with these solutions only. They still contain two param­ 
eters, which we shall now fix with the help of a further requirement. 
In the three terms of (56) the space-time points R' of the source and R of 

the observer are related in three different ways as a consequence of the dif­ 
ferent properties of the three Green functions. In fact the first term contains 
the retarded Green function Gr(R-R') (44) which ensures that the signa) 
from the source travels with the speed of light and reaches the observer at a 
later time. The second term, with the advanced Green function G.(R-R') 
(44), gives a contribution to the potential at an observer's time earlier than 
the source term. The third term is an integral over the whole of four-space, 
except for the light cone; it contains even source points R' which are at a 

space-like distance from the observer's point R. If one wants to exclude the 
acausal effects described by the last two terms, one has to choose the param­ 
eters ç = 1 and IJ = 0. Then one arrives at the retarded linear solution, 
with an invariant and real Green function, of the inhomogeneous wave 
equation: 

a~(R) = c-
1f 6{(R-R')2}O(R-R')f(R')d4R'. 

2rc 
(57) 

Inserting the expression (5) for the four-current we obtain 

a~(R) = _!_ I ejf u'.t(sj)6[{R-Rhj)}2]0{(R-RhJ}dsj, 
2rc j 

with the abbreviation dJ(sJ = dR1(sJ/dsi. 
Up to now the Lorentz condition has not been imposed explicitly on the 

solution. However one may verify that the solution (58) as it stands satisfies 
the Lorentz condition (12). 
The retarded fields follow by insertion of (58) into (10): 

f;P(R) = _!_ I eif {u1(sJo"-u1(sJèP}6[{R-Rhj)}2]0{R-RhJ}dsj. 
2rc i 

(59) 

(58) 

For future use in calculations we shall also need the advanced potentials 
and fields. They follow from (57--59) by replacing O(x) by 0(-x). Half the 
sum and half the difference of the retarded and advanced fields are conven­ 
tionally called the 'plus' and 'minus' fields. (The former is a solution of the 
field equations with sources, whereas the latter is a solution of the source­ 
free field equations.) They are obtained by replacing O(x) in (57-59) by 
½{O(x)±O(-x)}, i.e. by ½ and ½e(x) respectively (e(x) = 1 for x0;): 0, 
e( x) = - 1 for x0 < 0 ). One should note in this connexion that although 
we shall often treat the retarded and advanced fields on the same footing, 
only the first wil! represent the physical fields, while the Jatter ( and also the 
plus and minus fields) will only serve as mathematica! ancillaries. 

c. Expansion of the retarded and advanced potentials and fields into powers 
of c-1 

The retarded potential (58) and the corresponding advanced one may be 
written in an alternative form, if we use the identity (43): 

" (R ) _ I J a( ) ö{R0 
-RJ(sj)+ IR-Risi)I} d a t - e- u-s- ---~----~ s- 

r.a ' j J J J 4rc/R-Rhj)I J 
(60) 
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with u1(sJ = dR1/dsi. Choosing in particular as the parametrization of the 
world lines their time t j = c-1 RJ, we obtain for the retarded and advanced 
scalar and vector potentials ( cp, a) = a': 

(R t) = '\~ e-f 6{t-tj+c-
1
IR-Ritj)I} dt- 

cp,,a ' T 3 4nlR-Ritj)I 3
' 

(R ) _ I J p ( ) ö{t-ti+c-1 
IR-Rltj)I} d a t - e- - t- ---'-----"------__::...:-- /. 

r.a ' j 1 1 1 4nlR-R/tj)I 1 

(61) 

due toa set of point sources. Here cfJitj) stands for the velocity dRitJ/dtj. 
Let us consider in the following the potentials due to a single particle, of 

which for convenience we denotc the charge as e instead of ei and the veloc­ 
ity as c/J instead of c/Jj· If we furthermore employ the abbreviations 
r = R-Rj and r = [r] and write t' instead of tj for the integration variable, 
we have the potentials 

( ) f 1 , { , _ r( t')} d , cp,,.R,t =e --, u t-t+- t, 
4nr(t) c 

a,,.(R, t) = ef fJ(t'), 6 {t- t' + r(t')} dt'. 
4nr(t ) c 

The delta function may be expanded in a Taylor series 

6 {t-t'+ ~J!.'2} = Î {±r(!JJ~ a"o(t-t'). 
C n=O c"n ! àt'" 

00 

cp(R, t) = I q/"\R, t), 
n=O 

00 

a(R, t) = I a(n)(R, t), 
n=l 

with the partial potentials cp<11l and a(n) of order c-" given by: 

e (+- 1)" a"rn- l <11l(R ) - ( - 0 , ) CP,.a. 't - - -- -~--' n - 'l, ... ' 
4n c"n ! àt" 

a~'.'/1l(R, t) = ~ (+_0~ o"(r"-1/J) 4n c"n! at" , (n = 0, 1, ... ). 

(62) 

(63) 

Substitution into (62) and partial integration over t' yield the expansions: 

(64) 

(65) 

In this way 'synchronous' expressions for the potentials in the form of power 
series in c-1 have been obtained. From these expressions (in which 8/ot de­ 
notes the sum of an explicit time derivativc and an implicit one of the form 
-c/J·V) it follows that the power series in c-1 are in fact expansions with 
respect to a set of dimensionless parameters, namely the 'retardation time' 

r/c = t, multiplied by c/3/r, by P//3, by P/P, etc. These parameters are of two 
types: the first is simply f3 and thus independent of the retardation time, while 
the others have the genera! form of the retardation time divided by a charac­ 
teristic time of the (accelerated) motion of the source. Thus the series may 
be broken offifthe velocity of the source and moreover the distance between 
source and observer are not too large. (Sometimes it may be useful to con­ 
sider separately expansions with respect to one of the parameters only, then 
the ethers need not be limited in magnitude.) 
The potentials satisfy the Lorentz gauge condition, which reads for the 

partial potentials 

Do(f)(n)+V·a(n+l) = 0, (n = 0, 1, ... ) 

and for the total potentials 

à0cp+V·a = 0. 

If the lowest orders of (65) are evaluated one finds the expressions: 

cp(O) = _:_ 
r,a 4nr 

m(l) = 0 't"r,a , 

({)~~} = 4:r {tP2-½(n-/J)2- ;~ (w/i)}' 

cp;:} = ± 
4
:,. {- ~ (/J·/i)+ ;:2 (n-P)}, 

a(Jl = !!!_ 
r,a 4nr' 

a<ZJ = + e/i 
r,a 4nc' 

OCJ 

e(R, t) = I i"l(R, t), 
n=O 

00 

b(R, t) = L b(n)(R, t) 
n=O 

(66) 

(67) 

(68) 

a;:} = !!!_ f ½/J2-½(n-/J)2- !_ (w/i)} - ~p_(w/J) + er/Jz. 
4nr l 2c 4nc 8nc 

The fields follow from these potentials. We write the result as 

(69) 

with partial fields é"l and b<n) of order c-n given by the following connexions 
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with the partial potentials: 

i"l = -Vcl"l-Óo«(11-1J, b("l = VA a("l, (11 = 0, 1, ... ), 

with the partial fields 

(70) e(n) = 1.f 1 + (- l)"}i11l ± 2l - r , 

where, by definition, «(- ll and a(0J vanish. They read with ( 65) inserted 
(for n = 0, I, ... ) 

(n) e (+1)" ó"r"-1 e (+1)" ó"-2(r"-3/J) e -------V-----~~--~-~ 
r,a 4n c"n! àt" 4n c"-1(11-2)! ót"-2 

b(11J = !_ (+l)"-1 V ó"-1(r"-2/J) 
r,a 

1 
/\ -~---'- 

4n c"- (n-1)! ót"-1 

The lowest orders are explicitly 

e(oJ _ en ra - --·· 
' 4nr2' 
ill - 0 r,a - , 

(Zl _ en/J2 3en(n-/J)2 en(n-ÏJ) e/i e -------------- 
r,a 8nr2 8nr2 8nrc 8nrc 

eC3l = + eji 
r,a - 6nc2' 

b(O) = 0 r,a , 

(71) 

b~) = ½{1±(-1)"+1}wi. 

In particular it follows thus that the lowest order minus fields different 
from zero are n = 3 for the electric field and n = 4 for the magnetic field. 
In the non-relativistic theory, when only terms up to order c - l are taken 

into account, only the partial fields eC0l and b(1l occur. Then no retardation 
effects are included, as is also manifest from the fact that the retarded and 
advanced fields are the same in this order ( or, in other words, the minus 
field vanishes then ). 

(75) 

In the preceding we employed potentials which satisfy the Lorcntz condition (66). The 
field rnay be found alternatively from potentials tp' and a' in a different gauge. The partial 
potentials are then relatcd to the Lorentz partial potentials (65) as 

cp'(II) = cp(11)_001/f(11-1), 

a1<11l = aC") + V1//11l, 
with an arbitrary gauge function 

(76) 

(72) i/J = Ii//"l. 
Il 

(77) 

b(I) - e/J /\ n 
ra - - 
' 4nr2 ' 

b(2) - r,a - 0, 

The potentials (76) give the same fields as before, as follows from (70). 
In particular one may require for the vector potential: V·a' = 0, or 

V·a'(nJ 0. (78) 

b;:} = e/J\n {P2_3(n-fJ)2- !._(wP)} _ e/iAn(n-fJ) + eÏJAt _ ei}At. 
8nr c 4nrc 8nrc 8nc 

The partial advanced fields are related to the partial retarded fields by: 

i") = (- l)"i"l a r , b~") = C-1)"+1wi. (73) 

Since e<l), b(oJ and b(2J vanish, the lowest orders in which retarded and 
advanced fields differ are n = 3 for the electric field and n = 4 for the mag­ 
netic field. 
The plus and minus fields, defined as half the sum and difference of the 

retarded and advanced fields, may also be written as series in c - l: 

This defines the 'Coulomb gauge'. Quantities in this gauge will be indicated by an index 
(C). From the second line of (76) and (78) we get the differential equations 

Ai/i("J = - V·aC11l 

or with the partial potentials (65) inserted: 

j,!J(II) _ e (+ l)ll+l 0~11 ,n-2 
't' r,a - - ---''.___ 1 

4n c"(n-1)! 

(79) 

ót" 
(80) 

This equation has as a solution 

(Il)_ e (+1)"+1 à"r" 
1/lr,a_4_ "( l)li)" n c n+ . t 

(n = 0, 1, ... ) (81) 

00 

e± = L e~l, 
n=O 

00 

b+ = '\' b(n) - L- ± 11=0 
(74) (for negative values of n the function vanishes by definition). The Coulomb gauge 

potentials now follow by insertion of (65) and (81) into (76): 
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e 
(0) = --, cp (C)r ,a 4nr 

(11) 0 cp(C)r,a = , (n = 1,2, ... ), 

(n+1) = !!__ {(+1)" ê"(r"-1P) (+1)" 8"+
1
r"+

1
} _ a(C)r a --- + V ---'---'-- --- , (n - 0. 1, 2, ... ). ' 4 11 ! ~t" n+l( +2)! ~1n+l , n en. o c n . o 

(82) 
The partial potentials of lowest order read explicitly 

e 
(0) = ' cp(C)r,a 4nr 

(n) 0 ( cp(C)r,a = , n = 1, 2, ... ), 

a<lJ _ e{P+n(n-P)} (C)r,a - 
8nr 

(2) a(C)r,a 

(3) a(C)r,a 

- e[J = +-, 
6nc 

3 en(n-p)3 1 ep(n-P)2 3 en(n-P)P2 1 epp2 

= - - ---- - ---+- ---+ - - 
8 4nr 8 4nr 8 4nr 8 4nr 

3 en(n-P)(n-ÎJ) 1 ep(n-ÎJ) 3 en(P·ÎJ) 1 en(n-P)r - - -'---'--'---'- - - --- + - -- - - ~-~ 
8 4nc 8 4nc 8 4nc 8 4nc2 

5 e/i(n-P) 3 ePr ----+--. 
8 4nc 8 4nc2 

(83) 

The potentials used in the well-known Darwin Lagrangian are the same as ,p)g( and a\~( 
given above. From (82) it follows now that, since 'P)~( and ,p\~( vanish and a)~( is independent 
of R, one finds from the 'Darwin potentials' the fields with n = 0, 1, 2. In other words 
the fields e and b which play a role in the Darwin approximation are correct up to order 
c-2 (v. problem 6). 

d. The Liénard-Wiechert potentials andfields 

The retarded and advanced four-potentials of a single particle with charge 
e, four-position R~(s) (with s an arbitrary parameter along the world line 
of the particle, which increases as a monotonie function with time) and the 
derivative u"'(s) = dR~/ds are (cf. 58)): 

a~,a(R) = _!_ ef u"'(s)ö[{R-R1(s)}
2]0[±{R-R1(s)}Jds. (84) 

2n 

This integral may be calculated if the delta function is written in an alternative 
form by making use of the property ( 41 ). Denoting the two roots of the light 

cone equation 
{R-R1(s)}2 = 0 

by s, and sa (where R0-R~(sr,a) ~ 0), we have for R i= R1(sr,.): 

b[fR-R (s)}2] = - 1 
b(s-s) l 1 ,...1 / '" '"...... ...... / -,..., , r 

(85) 

+ 1 
21u(s.)·{R-R1(s.)}l ö(s-s.). (86) 

Hence we have 

c5[{R-R1(s)}2]0[±{R-R1(s)}J = f 
1 

è c5(s-sr,a)- 
2lu(sr,a)·'- R - R1 (sr,a)J 1 

The potentials (84) then get the form 

a:,.(R) = eu"'(sr,a) 
4nlu(sr,a)·{ R - R1 (sr,a)}I 

The expression between the bars is negative and positive for the retarded 
and advanced solution respectively, since u"' is a time-like vector with a 
positive zero-component. Therefore we may write (88) alternatively, using 
moreover the abbreviation r"' = R"'-R~, as: 

(87) 

(88) 

0: 1 
eu 

a - + -- , 
ar,a - 4nu·r r,a (89) 

where the bar with the suffixes r, a indicates that one should take the dynam­ 
ica! quantities r"' and u"' at s = s, and s = s. respectively, 
The formula (89) shows again, explicitly, that the parametrization of the 

world line may be arbitrarily chosen without changing the result, since both 
the numerator and the denominator contain one differentiation with respect 
tos. If one chooses in particular the time RV c of the particle as the parameter 
one has 

u"' = c(l, P), 

u•r = +cKr,ar, 

e 
cpr,a = 4nKr,a r 

(P = dRifdR~) (90) 
and, si nee rr~ a = ± 1 rl = ± r according to (85), 

(Kr,a = 1 + P·n, n = r/r). 

ep 1 - ' ar,a = 4nKr,a r r,a 

(91) 
Then one obtains for the scalar and vector potentials ( cp, a) = a"': 

(92) 

which are the expressions of Liénard and Wiechert1. 
1 A. Liénard, L'éclairage électrique 16(1898)5, 53, 106; E. Wiechert, Archives néerlandai­ 
ses 5(1900)549. 
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The retarded and advanced fields follow by differentiation of the poten­ 
tials. From (89) one has 

[ 
" p {d ( p)} ] "" p + eu u _ e u ':1" oa = ---+-- - us 

r,a - 4n(u·r)2 4n ds u·r 

Here the partial derivative of the parameters follows from differentiation of 
the light cone equation (85): 

(93) 

'"'(X r" os=-. 
u-r 

(94) 

With (93) and (94) we find for the fields (10): 

e d (r"uP - ,-P u") J,c,{J - - r,a - + - 4nu-r ds u :r 

or, if the differentiation is carried out, 

f,~~ = {± e 
3
(a·r-u2)(r"uP-,-Pu")+ e (r"aP-rPa")} 

4n(u·r) 4n(u-r)2 

where a" = du"/ds (not to be confused with the four-potential). 
Choosing for the parameter s the time component RVc one 

with (90 ), (91) and 

(96) 

a" = c(O, P), 
for the fields: 

(P = C d2 R1/dR~2), 

e f n+P (n+P)P-n /J } e,,a = - 2 3 2 + 3 - -2- 
4n ly Kr.a r CK,,a r CKr,a r 

b e ( PAn PAnP·n /JAn) 
r,a = 2 3 2 + 3 ± -2- 

4n )' K,,a r CKr,a r CKr.a r 

(95) 

obtains, 

(97) 

(98) 

where y = (l -P2)-t. These expressions show that the fields consist of two 
types of terms: one without the acceleration, proportional to lrl-2, and 
another with acceleration, proportional to lrJ-1 (all taken at the retarded or 
the advanced times). 

e. The self-field of a charged particle 

In the following we shall need the field due toa point particle with charge e at 
the position of the particle itself". To that purpose we shall start from ex- 

1 P. A. M. Dirac, Proc. Roy. Soc. A 167(1938)148. 

pression (96) for the retarded and the advanced fields, which reads 

c: = {± e (a·r+c2)(r"ufl-rflu")+ e (r"aP-rPa")} ! , (99) 
4n(u-r)3 4n(u·r)2 ' 

where we have chosen for the arbitrary parameter s of (96) the proper time 
along the world line. Furthermore we have r"(s) = R"-R~(s), with Rl(s) 
the four-position of the particle and R" the four-position of the observer, 
u" = dR1(s)/ds the four-velocity (u2 = -c2) and a" = du"(s)/ds the four­ 
acceleration. The indices rand a denote that one has to take fors the retarded 
and advanced values s, and sa respectively, which satisfy 

{R-R1(s, .• )}2 = 0, 

n2 = 1, 

R0 
- R?(s,,a) ~ 0. 

The field (99) wil! be considered here for positions of the observer 

R" = R~(s1)+w\ 

with fixed s1 and space-like unit vector n" orthogonal to u'(s1): 

--/4c-
4a2 ±-¼c-3 á·n}s2 + ... ], 

(100) 

(101) 

u(s1)-n = 0. (102) 

If the parameters ( > 0) tends to zero, one gets the expression for the field 
at the position R~(si) of the particle. lf (101) is substituted into (100) one 
finds upon a Taylor expansion of R~(sr,a) around R}(s1)that s, and sa are 
the two roots of the following equation in s: 

{m"-(s-s1)u"(s1)-½(s-s1)2a"(s1)--¼(s-s1)3á"(s1)+ ... }2 = 0. (103) 

(The dot indicates a differentiation with respect to s1.) Solving fors in terms 
of s we find the roots s, and sa: 

s -s = +-c-1s[l--1_c-2a·1w+{l.c-4(a·n)2 r,a 1 2 8 

(104) 

where at the right-hand side the quantities a and á depend on s1. By Taylor 
expansions of those quantities in (99) that depend ons, or s. around their 
values at s1 and introduction of (104) we get expansions in powers of the 
parameters. In this way one finds, using also (101 ), the auxiliary formulae 

u(s)-r(s) = +cs[l +½c-2a·ns 
+{-½c-4(a-n)2+½c-4a2+½c-3a·n}s2+ ... J, (105) 

a(s)·r(s) = s{a-n+c-1(á·n+½c-1a2)s+ ... }, (106) 
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r"(s)u/J(s)- r/J(s)ua(s) = s{nail + ( + c - l naaf) -½c-2uaaP)s 
+(±½c-3a·nnaaf! +½c-2n"à/l +½c-4a-nuaafl ±½c-3u"à/J)s2 + ... } 

-(ex, /3), (107) 
r"(s)a13(s)- rf!(s)aa(s) = s{ naaf!± c-1uaaf! 

+(+c-1n"àf!+½c-3a·nu"afl -c-2u"à13)s + ... }-(ex, /3), (108) 

where ( ex, /3) stands for the preceding terms with ex and /3 interchanged. 
With the use of these expressions we obtain for the field (99) up to order 

so: 

,af!= - !__ c-1s-2[naufl+.1c-2(u"a13-a-nnauP)s 
Jr,a 4n 2 

+c-2{½c-2a2n"il-¾c-2a-nuaaP +¾c-2(a-n)2n"u13 

-½n"àf! +½c-1u"àfl}s2 + ... ]-(ex, /3). 

3 The equation of motion 

(109) 
It is useful to write also separately half the sum and half the difference of 

the retarded and the advanced fields, i.e. the plus and minus fields. From 
(109) one has then immediately 

J"/ = - !__ c-1s-2[nauf3 +½c-2(uaaf!-a·nnaufl)s 
4n 

+c-2{½c-2a2n"u13-¾c-2a·nu"af! +¾c-2(a-n)2n"uf! 
-½n"àP}s2+ ... ]-(ex, /3), (110) 

J':! = !__ ½c-4(uaàP-uPàa)+ .... 
4n 

While the plus field diverges at the world line, the minus field is finite in the 
neighbourhood of the world line. The minus field at the world line is the 
part of the self-field that will give rise to the radiation damping force in the 
equation of motion. 
An alternative way to obtain the minus part of the self-field starts from the 

expressions (69) with (71) for the fields developed in powers of c-1. In the 
series ofproblems 7-12 it is shown how the expression (111) may be obtained 
in this way. 

(111) 

a. A single particle in a field 

If a particle with charge e and mass m is moving in an external field paP, 
it will be subject to a Lorentz force. As a direct generalization of the non- 

relativistic law one might write 

ma" = c-1eF"f!up, 

where u' and a/7. are the four-velocity dR~ (s )/ds and the four-acceleration 
d2 R~(s)/ds2 with R1(s) the four-position and s the proper time. The field has 
to be taken at the four-position R~(s) of the particle. 
The equation of motion (112) is certainly not complete, since it does not 

contain the damping force due to the fact that the particle emits radiation 
and hence is subject to a recoil force. Such a recoil force may be added ad 
hoc. It is however more illuminating to obtain it starting from the equation 

m0 a" = c - i e(F"13 +fr"f!)up. 

(112) 

(113) 

At the Ieft-hand side we have written a constant m0 - the 'bare mass'. lts 
relation to the experimental mass 111, which has been written in (112), will 
become apparent from the following. Furthermore at the right-hand side 
figures the total field which is the sum of the external field F"P and the re­ 
tarded field J;."13, generated by the part iele itself. The fields have to be taken 
at the four-position of the particle. One should thus have to substitute for 
ftp the expression (109), or the sum of (110) and (111), taken with s---> 0. 
The minus fieldj_<:P presents no difliculties but the plus fieldf:/J diverges at 
the world line. Therefore the equation has to be handled with caution. 
To begin with, (113) will be written in the form of a conservation law of 

energy and momentum. To that purpose we first write it in the form of a 
local equation by multiplying it by a four-dimensional delta function and 
adding an integration over proper times: 

cm., J a"(s)c5(4J{R1(s)-R}ds 

= J e[Faf!{R1(s)}+fr~f!{R1(s)}]up(sW4){R1(s)-R}ds. (114) 

The right-hand side of (114) may be transformed with the help of the field 
equation (4) with (5) fora single particle. In the Ieft-hand side we may per­ 
form a partial integration. In this way the equation becomes 

cóp m0 J u"uf!c5(4>{Ri(s)-R}ds = {F"f!(R)+Jtf!(R)}óyJ;J(R). (115) 

With the use of the homogeneous equations (7) for J;."13 and the equations of 
the form (4) and (7), but without sources, for the external field F"P one may 
cast the right-hand side in the form of a divergence. Thus (115) is then indeed 
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a conservation law of the form 

ap t~!, = o (116) 

with an energy-rnomentum tensor defined as 

t~!(R) = cm0 f u"uP[J<4l{R1(s)-R}ds+F"\R)ffy(R)+JtY(R)F~y{R) 

+ fr"Y(R)J!,y{R)- {½J/"(R)Fy,/R) +¾f/'(R)Jry,/R)}g"fl. (117) 

We note that instead of (117) one might alternatively use in (116) a tensor 
with a field part of the Maxwell-Heaviside type 

-(F +J,)"Y(F + J,)/-¼(F +f,)Y'(F + f,)y,g"fl, (118) 

since it differs from the field part in (117) only by a divergence-free contri­ 
bution. 
Let us, following Dirac", integrate (116) over a narrow tube around the 

world line. For each value of the proper times the tube section is chosen to 
be spherical with constant radius sin that Lorentz frame in which the particle 
is momentarily at rest. Furthermore the tube extends from proper time s1 
to proper time s2 and is closed by plane surfaces through R~(s1) and R~(s2) 
with normals c-1u"(s1) and c-1u"(s2) respectively. A convenient starting 
point for this integration is the following hybrid of equations (114) and 
( Il 6-117), viz. 

cm., J a"[JC4)(R1 -R)ds = J e(F"fl + J':!)up [JC4l(R1 -R)ds 

a (fayj .p + l JY'j af!) + f! + + y 4 + + ye g , (119) 

where the retarded field has been split into a plus and a minus part according 
to 

J;fi = ½Ut(! + J:f!) + ½U:"f! - 1:f!) = 1:{J + j:P (120) 

withfa"/J the advanced field. The reason fora different treatment of the plus 
and minus fields is that the minus field, in contrast to the plus field, is fini te 
on the world line2• Integration of (119) over the tube and application of 

1 P. A. M. Dirac, op. cit. 
2 Alternatively one may refrain from splitting the retarded field, or split it in a different 
way, v. C. Teitelboim, Phys. Rev. D 1(1970)1572, D 3(1971)297, to obtain the same final 
equation of motion. · 

Gauss's theorem give now 

Js2 Js2 cm0 a"ds = e( paP + J':!)u f! ds 
s1 s1 

+ J (f~YJ/y+¼n'J+yeg"fl)np d3J; + <ff(s2)-<J>"(s1)• (121) 
I1at 

Here l'1at indicates the lateral part of the surface of the tube, while <P"(si) and 
<J>"(s2) are integrals over the closing plane surfaces of the tube; the definition 
of <P"(s) is: 

<P"(s) = -c-1 J u:rftr+¼n'J+yeg"f!)upd3l'. (122) 
Isect 

The index at the integration sign means that the integral is to be extended 
over that part of the plane surface J:(s) ( which passes through R~ (s) and has 
nonna! c-1u"(s)) that lies within the tube, i.e. over a sphere with radius s 
around the world line in the plane surface J:(s). 
In the first term at the right-hand side of (121) one may substitute (111) 

for the minus field and in the second term (llO) for the plus field. Then the 
integrand of the first term becomes: 

e2c-2 
eF"f!up+ -- Llp(u)àf!, 

6n 

{R"+hu'"(s)/c-R~(s+ds)}·ua(s+ds) = 0. 

(123) 

where the tensor Llp(u) is defined as öp + c-2u"up, The integrandofthe second 
term becomes: 

(fayj.f! ljY'j ap) + +,+4 + +y,g np 
2 

= l;n2 e-4[½n"-½c-2(a"+n"a-n)s+{½c-4(a·n)2n" 

· -½c-4a2n"+¾c-4a·na"}s2 + ... ]. (124) 

This expression has to be integrated over the lateral part J:1at of the surface of 
the tube. We now need an expression for the surface element d3 J:. Let us 
consider to that end a surface element at the position 

R" = R~(s)+sn"(s), (125) 

namely a (three-dimensional) strip with edges parallel to the velocity u"(s), 
with basis situated in l'(s) and top situated in l'(s+ds). The height hof the 
strip is given by the condition that R"+hu"/c !ie in the plane J:(s+ds), i.e. 
by the condition 

(126) 
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After expansion in powers of ds, insertion of (125) and the use of the relation 
(v. (102)): 

n(s)·u(s) = 0 
one finds 

h = cds(l +c-2swa). 

B CH. III 

(127) 

(128) 

The surface element d3E of L'rat at the position Ra may now be written as 

d3..r = cs2d2Qds(1 +c-2swa), 

e2c Js2 --2 8-
2 {½n"' -½c-2 a"8 + (¾c -4 a-na" -½c-4 a2n")82}d2Q ds. 

16n Sj 

After integration over the solid angle we obtain 

2 -1 Js2 e C "d --- a s, 
8n8 s, 

(129) 

where d2Q is the differential of the solid angle which parametrizes the direc­ 
tion of the unit vector n" in the frame in which uo: = (c, 0, 0, 0) 1. 
If one inserts (124) and (129) into the second term at the right-hand side 

of (121 ), one finds, up to terms of order 8° 

(130) 

(131) 

since the integration of the unit vector n"' yields a vanishing result. 
With (123) and (131) we obtain from (121), since s1 and s2 are arbitrary, 

2 2 -2 o: d4>"' 
m0a" = c-1eF"Pup+ 1!_ c-3Llµ(u)áf!- e c a +c-1 -----. 

6n 8n8 ds 

We are left with the task to calculate the four-vector 4>"' (122). In the frame 
in which u" is (c, 0, 0, 0) the components of 4>" are 

(132) 

fe J4" q:,0 = -½ r2dr d2Q(e~+b~), 
V 0 

Je J4" 
q> = - /2dr d2Q(e+ /\ b+), 

where we have written the integrationelement d3Easr2 drd2Q. Wemayinsert 
here the expressions (74) with (75) and (71) for e+ and b+. They show that 
the partial fields e<;l (and b<;l) are given by (71) for neven ( odd) and equal 

(133) 

1 From (129) one finds an expression for the volume of a parallelepiped with basis 
d3.E in L'(s) at the position R", with edges parallel to u" and top in L'(s+ds), namely 
d4V = cd3.Eds[l +c-2{R-R1 (s)}·a(s)]. An expression ofthis type will be needed in section 
3c of the following chapter. 

§ 3 

to zero for n odd (even). In the expression (71) the time derivative stands for 
the sum of an explicit time derivative (which we shall denote here as à/àt) 
and an implicit time derivative - c/J·V. In this way we have 

(n) -e ..--, (à /J ....,)" n-1 e (à /J ....,)"-
2
1 n-3/J) e+ = -- v - -c ·~ r - ----- - -c ·v 1_r , 

4nc"n! àt 4nc"-1(n-2)! àt 

(neven), 
et;il = 0, (n odd), (134) 

b(n) _ e (à )n-1 
+ - 4 n-1( ) V /\ - -c/J·V (r"-2a) nc n - l ! êt ,, , 

b(_{:) 0, 
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(n odd), 

(neven). 

We used the frame in which d' = (c, 0, 0, 0) and hence /J = 0. To find the 
consequences for the expressions given, one has to work out the powers of 
the operator à/àt-cfJ·V. This gives in the first term of the expression for 
e<;l (for neven) a sum of terms which contains p times the operator à/àt and 
n-p times the operator -c/J·V in all possible arrangements withp = 0, ... , 
n. Since /J = 0 the contribution to e<;l wil! vanish if the number (p) of times 
that the operator à/àt occurs is smaller than the number (n-p) of times that 
the velocity c/J is present. Hence only the terms with p ;,, ½n contribute. 
These terms contain less than ½n+ 1 times the operator V; since they operate 
on r"-1 the lowest power of r which occurs in the first term of e<;l for n even 
is ,-t" - 2• With an analogous reasoning one finds that the lowest power in the 
second term of e~l for neven (;,, 4) has the exponent ½n-1 and the lowest 
power in b<;l for n odd (;,, 3) has exponent ½n-½- In other words the partial 
electric and magnetic fields for /J = 0 have the form 

(n) - 0( ½n-2) ( - 0 2 4 ) e+ - r , n - , , , , 
e<_;:l = 0, (n = 1, 3, 5, ), 
b(n) _ 0( tn-t) ( - " 5 7 ) + - r , n - -', , , ... , 
b<_;:l = 0, (n = 1; n = 0, 2, 4, ... ). 

(135) 

The expressions (133) for 4>0 and P may be written in terms of the partial 
fields: 

co n lf" f 4" 4>0 = - I L - r2dr d2Q e<;'.'l·e<_::-m) 
n=O(even) m=O(even) 2 0 

00 n-3 lJ" f 4" - L L - r2dr d2Q b~")·b<_;:-ml, 
11=6(even) m=3(odd) 2 0 

co n-3 J" J4" {P = - L L r2dr d2Q e<;'.'l /\ b<.{:-"'l. 
n=3(odd) m=O(even) 0 

(136) 
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From (135) it follows that 

(m) b(n-m) - O(·"-f) ( - 3 5 · - 0 2 3) e+ A + - 1 , n - , , ... , 111 - , , ••• , n- . (137) 
divergent integral at the left-hand side, which represents the Coulomb energy 
of the charged point particle. This difficulty may be veiled by means of a 
'renormalization' procedure, namely by writing 

This means that the integrand for the expression <fJ contains powers of r 
with exponents greater than 0, so that the integrand vanishes in the limit in 
which 8 tends to zero: Jro 2 

-2 e m0+c --- dr = m 
o 8nr2 

(146) 

<[J = 0. 

Furthermore it follows from (135) that 

(138) 

/;l,/;-m) = O(r-}n-4), 
b<:_')·b~-m) = O(r1"-3), 

(n = 0, 2, ; m = 0, 2, , 11), 
(n = 6, 8, ; 111 = 3, 5, , n-3). 

and taking m to be the finite (experimental) mass of the point particle. (1110 
turns out to be negative infinite.) With this artifice the equation of motion 
(145) gets its final form: 

(139) 2 
ma"= c-1erflup+ !:_ c-3 Ap(u)dfi. 

6n 
(147) 

Hence one finds that in the limit e -* 0 the expression for tJ>0 becomes 

Je J4" <P0 = - /2dr d 2Q(JeS?l2 + eS?l·é;l). 

With the expressions (72) (with p = 0) we get 

0 J' ·f 4" 2 e
2 (1 P·n) tJ> = - d, d Q -- - - - 2 - 

o 32n2r r c 

and thus, after integration over the angles, 

e
2J' 1 tJ>o = - 8n: o "2 dr. 

(140) 
This is Dirac's equation of motion. Dirac did not calculate an expression 

for IJ>\ but instead assumed that it is proportional to the four-velocity u". 
The genera! form (147) of the equation of motion rnay be cast into the 

form of a local la w, in a way analogous to that leading from ( 113) to ( 116) 
with (117). First we write it as 

(141) 
ma"= c-1e(F"fl+J':!)up, (148) 

(142) 

The expressions (138) and (142), valid in the rest frame, show that in an 
arbitrary frame the expression for the four-vector <P" is, up to terms of order 
80 

' 
e
2itf' 1 <P" = - ~ -dr. 
8n:c o r2 

(143) 

Substituting this result into the equation of motion (132) and using the 
identity 

! =f 00 __!_ dr 
2 ' 8 e r 

(144) 

one finds an equation of motion, which is independent of i;: 

( Joo 2 ) 2 -2 e a - 1 af/ e -3 a ·fl m0+c --2 dr a = c eF up+ - c Ap(u)a. 
o 8nr 6n 

(145) 

This equation has a pathological character in so far that it contains a 

where ( Il 1) has been used. We then multiply by the four-dimensional delta 
function 3<4l{R1(s)-R} (with R1(s) the four-position, depending on the 
proper time s) and integrate over s ( cf. ( 114)): 

m J a"3<4l{R1(s)-R}ds = c-1ef (rfl +f'.:/J)upb<4l{R1(s)-R}ds. (149) 

This equation may be written as a conservation law or as a balance equation. 
An equation of the latter type is obtained by bringing the left-hand side in 
the form of a divergence by means of a partial integration and by using at the 
right-hand side the field equation for the plus and minus parts of the field 
T": 

t= = J"! + J':!1. 

These equations, which follow from (4) and (7) with (5), read 

ópJ~fl = e J u"(s)b<4l{R1(s)-R}ds, 

" J"fl 0 Op - = ' 
O"jfY +JfJfr+o'i~f) = 0. 

(150) 

(151) 
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Then one obtains for (149) the balance equation: 

opt"fl =f\ (152) 

where we introduced the energy-momentum tensor of the charged particle 
(cf. (117)): 

('P(R) = cm J uaufl(5C4l{R1(s)-R}ds+f~Y(R)f~_./R)+f":_Y(R)ff/R) 

-½n'(R)f-r,(R)g"P (153) 

( which is seen to be symmetrie) and the Lorentz force density 

r(R) = c-lpfl(R)jp(R). (154) 

Here _r(R) is the four-current, given by (5): 

c-1j\R) = e J u"(s)<'5<4l{R1(s)-R}ds. (155) 

Often the derivative á" of the acceleration which appears in the last term 
of (147) is much smaller than the acceleration itself divided by the charac­ 
teristic time e'[mc". Then one may limit oneself to the truncated equation 
(112). In non-relativistic approximation the equations (112) and (147) reduce 
both to the form that has been used in the previous chapters. 

b. A set of particles in a field 

A particle i of a set moves in the combined field due to the other particles 
j ( # i) and to sources outside the system considered: 

I JJfJ(R)+rfl(R). 
j( 'Fi) 

Hence the eq uati on of motion of particle i becomes ( cf. ( 14 7)) 
2 

a -1 ( '\" fa/3 F"/J) ei -3 A"'( ) .p m.o; = c ei L, j + uip+ -
6 

c LJp u; ai, 
j(*il n 

(156) 

(157) 

The balance equation (152) with (153-154) represents the local law, cor­ 
responding to the equation of motion (147) or (148). 
The energy-momentum tensor contains as components t00 the energy 

density, ct'" the energy flow, c-1 /0 the momentum density and tij the mo­ 
mentum flow. The total energy and the total momentum follow by integrat­ 
ing t00 and c-1 tw respectively over the whole of space for a fixed time t. 
From the expressions (110) and (111) for the plus and minus fields one 
notices that these integrals converge in the neighbourhood of the world line. 
However for large distances from the world line it follows from the expres­ 
sions (96) or (98) that the fields diminish inversely proportionally to the 
distance if the particle suffers accelerations in the remote past and future. 
As a consequence the integrals for the total energy and the total momentum 
of the charged particle diverge in that case. However if one imposes the sub­ 
sidiary condition that in the remote past and future the particle is not ac­ 
celerated, one is left - according to (96) or (98) - with fields that diminish 
inversely proportionally to the square of the distance. Thus the integrals 
mentioned converge under those circumstances. This means that one is led 
to the conclusion that only those solutions of the equation of motion (147) 
or (152) make sense, for which the subsidiary condition about the asymptotic 
behaviour of the particle is satisfied 1• This is indeed a necessary condition 
since the equation (147) as it stands would allow runaway solutions of self­ 
accelerating particles. 

1 R. Haag, Z. Naturf. 10A(l955)752; F. Rohrlich, Ann. Physics 13(1961)93. 

where 111 i is the mass of the particle, dt its four-acceleration, ei its charge and 
uf its four-velocity. The fields depend on the four-position Rf. 
A local law follows from (157) in a similar way as discussed fora single 

particle. One then finds the balance 

O t•P = f' fJ • ' 

with the (symmetrie) energy-momentum tensor of the set of charged parti­ 
cles defined as: 

t"/J(R) = c ~ mif uf(sJuf(sJ5<4l{R;(sJ-R}dsi 

+ L {J;"'Y(R)Jf y{R)-¼J/'(R)Jjye(R)g"/3} i,j(i'Fj) 
+ L {f~~(R)J!;.r(R)+f':_~(R)J!;.y(R)-½ff;(R)f-iy,(R)g"'/J} (159) 

i 

and the Lorentz force density 

r(R) = c-1F"P(R)jp(R), 

that contains the four-current 

c-1j"(R) = ~ e;J uf(s;)<'5(4J{R;(s;)-R}dsî. 

(158) 

(160) 

(161) 

The balance equation (158) has the property that it reduces toa conserva- 
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tion law if no external electromagnetic fields paP are present, as (160) shows. 
This is a reflection of the fact that (159) is the complete energy-momentum 
tensor of the set of charged particles and the fields generated by them. 
In the preceding subsection it has been remarked that often the self-force 

term in the equation of motion may be neglected. Then one must also omit 
the last sum of the energy-rnomentum tensor (159). 
The balanceequation (158)with(159)and(160) is not the only way to write 

the equation of motion (157) in a local form. An alternative way is discussed 
in the appendix. In the next chapter it wil! turn out that the form given here 
has certain advantages over the alternative. 

In this survey of the classica! covariant theory of charged particles and their 
fields we considered the field equations with their solutions and the equa­ 
tions of motion for the particles in each other's fields. These results of the 
microscopie theory wil! form the basis for the theory of atoms, considered as 
groups of point particles, and of matter in bulk. 

APPENDIX 

On an energy-momentum tensor 
with 'local' character 

In the main text we have written the equation of motion for a set of charged 
particles in an external field in the form of a balance equation. The way to 
arrive at such a balance equation is by no means unique. It depends on the 
choice of what is called the force density acting on the particles and what is 
called the energy-momentum tensor of the particles. An alternative way will 
be discussed in this appendix. 
The energy-momentum tensor (159) that figures in the balance equation 

( 158) contains the fields generated by all parti cl es of the system. These fields 
may be split into plus and minus fields that have a different behaviour in the 
neighbourhood of the world line, as has been shown in section 2e. A special 
different form of the balance equation may now be obtained by writing the 
contributions of the minus fields generated by all particles at the right-hand 
side of (158), so that one gets 

op t'7:[3 = f*a 
with the energy-rnomentum tensor 

t't(R) = c ~ m; J uf(s;)uf(s;)<5(4){R;(s;)-R}ds; 

+ L {J~~(R)J! j,i{R)-¼JfäR)f + jy,(R)gaf!}, (A2) i,j(i*j) 

(Al) 

( which is also symmetrie) and the force density 

J*a(R) = f"(R)+ ~ e; J J':~(R)u;pè/4){R;(s;)-R}dsi, (A3) 
i.: 

where.f\R) has been given in (160-161). 
The equation (Al) is not modified if a divergenceless tensor is added to 

t"/. This freedom will be used to introduce instead of t";/! a different tensor 
t*aP, which is 'local' in a sense that will be explained below. 
To obtain such a tensor we shall start from the expression which Wheeler 

and Feynman 1 have given for the total energy-momentum of a set of charged 
1 J. A. Wheeler and R. P. Feynman, Rev. Mod. Phys, 21(1949)425; J. W. Dettmann and 
A. Schild, Phys. Rev. 95(1954)1057; cf. footnote on page 160. 
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particles which internet via plus fields. This total momentum.p'{ê') associated 
to a plane space-like surface I with nonna! n'f. (and thus given by the equa­ 
tion 

tr Rw c« = 0 (A4) 

with fixed r) reads as follows 

pa(I) = L mi u~(s?) 
i 

- _l_ "'\" e-e-Jflu.·u-(R--R-)a-(R--R-)·u-u~-(R--R-)·u-u7;' 
4 

L,,1 ,.,, 1 'J!J '11' nc i,j(i*il 

{0(n-R,+cr)O(-n-Rj-cr)-0(-n-Ri-cr)0(n-Rj+cr)} 

b'{(Ri-RJ2}dsidsj, (A5) 

where s? is the proper time of the intersection of world line i with I, i.e. given 
by: 

n-R;(s?)+c-r = 0. (A6) 

The first term of pa(I) is the contribution of the material momentum of the 
particles, while the second is the momentum carried by the plus fields. The 
unit step functions 0 ensure that in (A5) only those parts of the world lines 
of i andj contribute for which Rf is on one side of the surface E and R1 on 
the other. One may write the difference of products of step functions alter­ 
natively as 

0(-s,+s?)O(sj-sJ)-O(si-s?)O(-sj+sJ). 

-c-1J t"f d3I/J = pa(E). 
I 

(A7) 

The prime at the delta function in (A5) indicates a differentiation with 
respect to its argument. From the form of pa(I) it is apparent that only fini te 
parts of the world Iines of the particles i contribute to the field momentum, 
namely those parts that lie outside the light cones having their top at the in­ 
tersections of the world Iines j ( =/: i) with the plane I. 
From the expression (A5) for pa(I) one may infer the energy-momentum 

tensor tf which gives back p"(I) by integration over the plane E, i.e. 

(A8) 

(The tensor tf wil! lead to the tensor t*"fi, which we are trying to find.) To 
that end we write a tensor with the plus field momentum localized on the 
line that joins the positions Rf and R1 and with the particle momentum 
localized - of course - at the positionr Rf themselves 

t't(R) = c ~ mJ ufufc5<4l(R,-R)ds, 
+ 4-1 L e,ejff 1 {u,·ulR,-Rjt-(R, RJ·u;U1-(Ri-RJujun 

Tï. i,j(i*j) i.=O 

(R;- RYb' {(R;-RY}J<4l{R;+ }.(R j- R;)-R}ds;dsjdJ. (A9) 

We have to show whether this tensor satisfies (A8) and moreover whether 
it differs from t"/ (A2) by a divergenceless part so that 

"' t"fi a a/J Op ,;, = fit+. (A10) 

To begin with we check the validity of (A8) by integrating t";f over a space­ 
like plane I. One has then to ernploy the identity 

l(R;-Rj)·nl If =o<5<4l{R;+Jc(Rj-R;)-R}dï.d3I 

= O(n-R,+cr)0(-wRj-cr)+O(-n-R,-cr)O(n-Rj+cr), (All) 

which may be proved by evaluating the left-hand side in a Lorentz frame in 
which I is pure]y space-Iike (i.e. in which na = (1, 0, 0, 0)) and using the 
relation ( 41 ). Then one obtains for the integral of t"/: 

-c-1 J t°'l difi -m-J uau.·nb14l(R- -R)ds-d3E --r- l l- l- l l- x 

4
_!_ I e;ejf {u;-uiR;-R_J-(R,-RJ·u,u1-(R;-RJ·ujun 
nc i,j(i*j) 

s{(R,- R Jn }{0(n-R;+ cr)0( - n-Rj-cr) + 0( - n-R,-cr)0(11'Rj+cr)} 

b'{(Ri-RJ2}ds,dsj. (A12) 

In the first term at the right-hand side the integrations overs; and E may be 
performed if use is made of ( 41 ). As a result one finds the first term at the 
right-hand side of (A5). In the second term at the right-hand side of (Al2) 
the product of the s-function and the sum of products of the 0-functions is 
equal to the difference of the products of the 0-functions so that also the second 
term at the right-hand side of (AS) is recovered, 
The use of tf instead of t1 in (Al) is justified if we succeed in proving 

(AIO). With the explicit form (A9) of t«/ one finds, by performing a partial 
integration in the first term and using the chain rule of differentiation, for its 
divergcnce 
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Optf = cfm;J a~i5(4)(R;-R)ds, 

+ J_ I e;ejJJ
1 

{uï"ulR;-RJ"-(R;-RJu;U1-(R,-RJujun 
4n i,j(i*j) J.=0 

i5'{(R;-RY} a c5(4){R;+}c(Rj-R;)-R}ds;dsjd).. (A13) 
rU 

The integration over }, may be performed so that the difference of the two 
delta functions i5(4l(Rj- R) andi5<4l(R;-R)arises. Byusing the antisymmetry 
- in i andj - of the remaining part of the integrand the last term of (A13) 
becomes 

- _!_ I e;ejJ{uï"ulR;-Rj/-(R,-Rj)'U;U1-(R;-RJ·ujun 
2n i,j(i*.il 

i5' {(R;-R J2}i5(4l(R;- R)ds; dsi. (Al4) 

The last term between the brackets gives a vanishing contribution since it 
leads to an integrand which contains the factor (d/dsj)i5{(R;-RJ2

}. The 
integral of this term overs j may then be perforrned, with a vanishing result. 
The other terms may be handled similarly, with the result 

- J_ L eiejf ccaruJ-ofu'Dui(!i5{(R;-R_;}2}Ji5(4\R;-R)ds;dsj. 
4n i,jU*n 

In contrast to t~f! the tensor t"J has 'local' character in so far that it vanishes 
for positions outside the 'envelope' of the world lines. 
The tensor t"J is asymmetrie with respect to the indices IX and /J. The sym­ 

metry may be restored, without loosing the Iocality, by adding another 
divergenceless tensor, as we shall now show. The first two terms of the right­ 
hand side of (A9) are already symmetrie in IX and /J so that we shall focus 
our attention on the third and fourth term. In the third term we may employ 
the identity 

(R;-Rj}u;i5'{(R;-RY} = ~ d~i5{(R;-RY} (A18) 
' 

(A15) 

In this expression one recognizes the plus field due to particle jat the position 
i: 

f~(R;) = ~n ej J (uJof-u1of)i5{(R;-RY}dsj, (A16) 

as follows from (59) and the subsequent remarks. Collecting the results 
(A13) with (AIS) we have obtained 

of!t;f! = c If {m;af-c-1e; I f~~(R;)u;f!}i5(4l(R;-R)ds;. (A17) 
i j( *i) 

From the expression (A2) for t"/ it now follows that we have found here the 
relation (AIO), which shows that the tensor t"/ (A9) may be used as well as 
t"/ (A2) in (AI)1. 
1 The reader may note that the Wheeler-Feynrnan expression (AS) has p!ayed a heuristic 
role, since it was only used toinferthetensor t'f (A9) from it. Themain result is the equiv­ 
alence of t'f and t't in the sense of (AIO). The relation (AS) clarifies the connexion be­ 
tween t'f and the expression (A5). 

and perform a partial integration with respect to s;. If the fourth term is 
trcated in a similar way and use is made of the symmetry in i andj the third 
and fourth terms of t"J become 

_;_ I e;ejff 1 {ufuJ+},uf(R;-Rj)f!u;o,} 
4n i,J(i*.i) ?.=0 

i5{(R;-RY}i5(4){R;+ },(R_;-R;)- R}ds; ds, dL (A19) 

By adding a divergenceless term to this expression one obtains 

~--. -~. e;eJJf 1 {ufuJ +}.ufuJ(R;-R_;)Yo1,} 4n 1.1(,-1) ?.=0 

i5{(R;- R_;)2}i5(4J{R;+ },(R_;-R;)-R}ds; ds, d},. (A20) 

If we use once more the chain rule of differentiation we may write this as 

_!_ L e;e.iff 1 ~- [Jcu~uJi5{(R;-R_;)2} 
4n i,j(i*j) J.=0 01. 

c5(4J{ R; + },(R.i- R;)-R}Jds;dsi dl, (A21) 

so that the integration over }, may be performed. Only the value at the 
boundary }, = I contributes: 

J_ '\""' e-e-f u"uflM(R.-R -)2'l1i5(4J(R .-R)ds-ds- (A22) 
4 L., L 1 l 1 C L 1 1 L 1' n i,j(i*iJ 

This is still not symmetrie, since j a!one occurs in the second delta function. 
Let us write (A22) as half the sum plus half the difference of that expression 
and its transposed: 

8
1 I e;e.if (ufuJ +ufu1)i5{(R;-R_;}1}i5(4\R;-R)ds;dsi 
n i,iU * n 

+ J_ I e;ejff
1 

ufuJ(R;-RJ'oïi5{(R;-R_;)2} 
8n i,j(i*j) J.=0 

c5(4J{ R .i + l(R,- R J- R}ds; ds, dl. (A23) 
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Adding a divergenceless part to the second term, we get 

8
1 I e;ejf (ufu1 +ufu'J)c5{(R;-R_;)2}c5<4\R;-R)ds;dsj 
n i,j(i* j) 

+ ...!_. -~~. e1ejff 
1 

{uf(R1-RY +uf(R1-RjY}u1;é\c5{(R1-Rj)2} 8n <,J(<rJ) J.=O 

c5<4>{ R j+ À(R;-Rj)-R}ds; ds, dÀ. (A24) 

Indeed the second part of the second term has vanishing divergence in view 
of the antisymmetry in i andj (together with À- 1-),); the first part of the 
second term has the same divergence as the second term of (A23). 

Since the expression (A24) is symmetrie with respect to an interchange of 
a and /3, we have found now a symmetrie energy-rnomentum tensor with 
the same divergence ast"/ (and hence as t1). It is found by adding (A24) to 
the first two terms at the right-hand side of (A9): 

t*afJ = C '°' m-f U~U~ö(4)(R--R)ds. 
~ l l- l l l- 
i 

law if no external fields are present. The typical feature of (A26) with (A3) 
and (A25) is that the contributions of the minus fields (which, just as the 
external fields, are fini te at the world lines of the particles) are written at the 
right-hand side just as has been done in (148). The energy-momentum 
tensor (A25) has local character in the sense that it vanishes outside the re­ 
gion in which the world lines are situated, in contrast to the energy-momen­ 
turn tensor ( 159) which also dirninishes with increasing distances in space-like 
directions, but which does not possess a finite support in such directions. 

Often the effect of the minus fields on the equation of motion is small ( as 
may be discussed if they are explicitly evaluated: see the appendix of the 
following chapter ). If they are neglected the force density (A3) reduces to 
(160). 
In the next chapter we shall employ (158) extensively, but we shall also 

have occasion to show, in an appendix, theconsequences of the use of (A26). 

+ ...!_ '°' e. e ·f (u~u~ + ilua)ö{(R- - R -)2}c5(4l(R- - R)ds-ds. 
8 L..,; i J i J i J z J i t J n i,j(i*j) 

+ ...!_ I e;ejff 
1 

[2u(ulR;-RjY(R;-Rj)f1c5'{(R;-RJ2
} 

8n i,j(i1"j) ic=O 

+ {uf(R;-RY +uf(R;-Rl}u} é\ö{(R;-RY}J 

c5<4>{Rj+X(Rï-RJ-R}ds1dsjdJ.. (A25) 

This symmetrie tensor", which still has 'local' character, satisfies the energy­ 
mornentum balance 

opt*"/J = f*" (A26) 
with the force density (A3). 
The two balance equations (158) and (A26) are both equivalent with the 

equation (157). Each of them may be used for the description of the system 
of charged particles. As remarked in the main text the typical feature of the 
balance equation (158) with (159-160) is that it reduces toa conservation 

1 An cnergy-rnomentum tensor of the same type has been given by S. Emid and J. Vlieger 
(Physica 52(1971)329) in the form of a series expansion, valid fora continuous charge­ 
current distribution. If that formula is applied to a set of charged point particles, one 
finds a result that is nearly the same as the expression that is obtained from (A25) if the 
integrand of the last term there is developed into powers of}, and the integration over Î. 
is performed - the sole difference being that the summations in (A25) exclude the contri­ 
butions i=j, thus avoiding infinite self energy contributions. 
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PROBLEMS 
where I" has to be understood as the quantity 'inside' the bar symbol, as 
explained after (89). 

Show that this identity reads in three-dimensional notation 

and 
hl,,a = ±(nAe)lr,a 

1. Show that the expressions (44), (48) and (49) for the Green functions 
G" Ga, G, and Gaf satisfy the relation ( 47). 
Hint: use the identity (53). 

2. Prove that the retarded and advanced potentials due toa sourcej"(R, t) 
may be written as 

aa (R, t) = ~J-a (R', t+ IR-R'l) _l_dR'. 
r,a 4n: J C jR-R'j 

This may be proved from (14) with (23), (30), (39) and (40), or alternatively 
from (57) with (43). 

3. Prove - by insertion - that the potentials (61) satisfy the equations 

D <p(R, t) = -pc(R, t) = - L ejc5{R-Rit)}, 
j 

D a(R, t) = -c-1j(R, t) = - I ejfJit)c5{R-Rit)}, 
j 

which are the equations (13) with (5) in three-dimensional notation (check 
that first). 

4. Show that the expressions (61) for the potentials may be written alter­ 
natively as the following integrals over the space-coordinates 

(R, t) = '\' e-Jc5{Rif+c-1jR-R'l)-R} dR', 
((),,a 7 1 4n/R-R'I 

a (R, t) = '\' e-JfJ.(t+c-1/R-R'l)ö{Rit+c-1/R-R'l)-R} dR'. 
r,a 7' 1 1 4n/R-R'j 

Hint: add a factor c5{R/tJ-R'} and an integration over R' to (61). Then 
replace in the integrand R/tj) by R' and integrate over ti. 

5. Prove that for the fietdrp (95) or (96) one has the identity 

Jap •. , 0 Sapyo r' r,a = , 

b·nl,,a = 0 
with the same convention for the fields e and b. 

6. Prove that the Hamilton equations that follow from the so-called Darwin 
Hamiltonian (C. G. Darwin, Phil. Mag. 39(1920)537) for two particles with 
charges e1, e2, masses 1111, 1112, positions R1, R2, momenta P 

1
, P 

2
, moving 

in each others fields 

2 ( p2 p4 ) H(P 1 , R1 , p 2, R2) = .I -' - -h 
,=1 2m; 8m;c 

{
l P1·T(R1 -R2)·P2) e1 e2 +- 2 ---, 

2m11112c f 4n/R1-R2I 
with T(R1-R2) = U+(R1-R2)(R1-R2)/IR1-R2j2, lead to equations of 
motion for the particles that are, up to order c-2, equal to the c-2-approxi­ 
mations of the complete relativistic equations (157). 
Hint: Use the relevant expressions from (72) for the retarded fields. 

7. In the following series of problems the minus part ( 111) of the self-field 
at the world line of the particle will be obtained from the expressions (69) 
with (71) for the fields in terms of series in powers of c- 1• 

Prove that in the limit r-+ 0 the expressions (75) with (71) for the partial 
minus fields of order n (i.e. n odd for the electric and n even for the magnetic 
field) lead to: 

-2 n-2 

e~l = - =-c-V I (n-2-k-l){P.V(/J·V)"-3 
4nn ! k,1=0 

k+l;éin-2 +(n -3-k)(ÏJ-V)2(/J·V)"-4}r"-1 
-2 n-3 

+ ec L [P(fJ·V)''-3+(n-3-k)ÎJP-V(fJ·V)"-4 
4n(n-2)! k,1=0 

k+l~n-3 

+(n-3-k-l){PP,V(fJ·V)"-4 + /JP.V(/J·V)"-4 
+ (n-4- k)/J(/J·V)2(p·v)"-5}Jr"-3, 

and toa similar expression for b~l. (The dots indicate time derivatives.) 
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Hints: remembcr that à/àt in (71) contains an explicit and an implicit 
differentiation, i.e. 8/àt = (o/ot)0xpl -c/Vv. Furthermore notc that in the 
limit r _, 0 only terms with V"'r"', or in other words with two explicit time 
differcntiations, subsist. 

8. Prove the relations 
n 

I (n-k) = Jn(n+l)(n+2), 
k,l=0(k+l:;;i11) 

Il 

I (n-k-l) = -l,n(n+l)(n+2), 
k,l=0(k+l:;;i11) 

Il I (n-k-l)(n-1-k) = ½(n-l)n(n+l)(n+2). 
k,l=0(k+l:;fi11) 

Hint: use the sums I~=o k ½n(n+ I), I~=o k2 = ¾n(n+ 1)(211+ 1) and 
L~=o k3 = ¼112(11+ 1)2. 

9. Prove the relations (n odd) 

(/J·V)''-2rn-1 = (n-1)![3"-3 fh·, 
(/J·V)"-3r"-1 = ½(n - l)(n-3) !f3"-3r2 +½(n- l)(n -3)(n -3)!f3"-5(/J·r)2, 

(/J·V)"-4rn-l = ½(n-l)(n-3)(n-4)!f3r5/J•rr2 

+-l,(n - l)(n -3)(11 -5)(n -4) !f3"-7(/J·r)3. 

10. Prove from the results of the preceding three problems that 

e~l(r = 0) = !!__ c-2{½(n-l)Pf3"-3+¼(n-l)(n-3)P/J·Pf3"-5}, 
4n 

(n odd), 

b~l(r 0) = !!__ c-2[½(n-2)/JAP/3n-4+¼(n-2)(n-4)PAP/J·Pf3"-6}, 
4n 

(neven). 

11. Prove from the preceding result that the total minus field at the position 
of the particle is given by 

e_(r = 0) = -~ c-2(¾lP+2y6pp·fJ), 
4n 

b_(r = 0) = ~- c-2(¾"//J.A#+2y6/JAP/J·/1). 
4n 

12. Show that the results given in the preceding problern are the cornpo­ 
nents of the tensor ( 111) ( at the world line): 

r{J = !!__ c-4(uacl-ufJàa), 
6n 

where i? and a' are the four-velocity and four-acceleration and the dot now 
stands for a differentiation with respect to proper time. 

13. Show by use of (Al8) and a partial integration of the second and third 
terms in the first bracket expression of the integrand in (A5) that one may 
write this formula alternatively as 

pa(I:) = I miuf(sf)- _!.._ I eiejf u(uiR;-RJ' 
; 4nc i,j(i*j) 

{ 0(n-Ri+ cr)0( -n-Rj-cr)-0( n-Ri- cr)0(n-Rj+cr)}c5'{(Ri-RJ2}dsi ds, 

- -
1
- I eiejf i(1n-uièi(n-R;+cr)o{(Ri-RJ2}ds;dsj. 4nc i.j(i*j) 

Prove the ancillary formula (cf. (All)) . Jl (Ri-RJnj U/oèi<4l{Rj+).(Ri-Rj)-R}d3I:d). 
J; ,1.=0 

= -u/n{o(n-R,+cr)-c3(n·Rj+cr)}. 
Hint: evaluate the Ieft-hand side in a Lorentz frame in which I: is purely 

space-like; then one may apply Gauss's theorem to prove that only the 
time differentiation (i.e. uJo0) gives a contribution. 

Show with the help of the Jatter formula that the total momentum (in a 
plane I:) which corresponds to the tensor t*"fJ (A25) is equal to that which 
corresponds to t"/ (A9), i.e. that 

p*a(I:) = -c-1J t*afJd3I:fJ -c-1 J t'td3I:p = pa(I:), 
where the last member is given in the first formula of this problem (v. also 
(A8)). 


