CHAPTER II

Statistical description
of field and matter

1 Macroscopic laws

The electromagnetic and material quantities that occur in the atomic equa-
tions show rapid changes in space and time. To describe macroscopic situa-
tions one has to find laws which contain physical quantities that change much
slower in space and time. The reason is that such quantities are measured by
means of macroscopic devices. These instruments do not yield information
on individual particles, but averages over large numbers of particles contained
in domains which are small compared to the total system.

So, if one wants to derive the macroscopic laws from the atomic equations
some averaging procedure must be used. To that purpose one must define
macroscopic quantities as statistical averages over a number of atoms con-
tained in a mass element which is large enough so that the principles of sta-
tistical mechanics may be applied, but which is still small from a macroscopic
point of view. As is implied by the definition of the macroscopic quantities
the spatial dimensions of the mass elements should be on the one hand
large compared to the distance betwecn neighbouring atoms and on the
other hand small compared to macroscopic distances. The possibility to
realize such a situation requires the system to fulfil suitable physical condi-
tions. Gases, liquids and solids will satisfy these conditions under wide ranges
of physical circumstances. In gases the density should not be so small that
the dimension of the mass cell would have to be excessive in order to fulfil
the condition that the cell must contain many atoms.

The macroscopic quantities are thus rid of the extremely rapid changes in
space and time which the corresponding microscopic quantities show. In
fact, just as in the rest of macroscopic physics, the physical quantities can
then be considered as continuous functions of the space-time coordinates,
except at boundaries.

After having indicated how such macroscopic quantities may be described
with the help of distribution functions, we shall derive in this chapter the

21



22 NON-RELATIVISTIC CLASSICAL STATISTICS A CH.UI
macroscopic equations that govern the behaviour of fields and matter in
bulk: the Maxwell equations, the momentum, energy and angular momentum
balances and the laws of thermodynamics, all in the framework of classical
non-relativistic theory.

2 Average quantities

Formally one may represent statistical averages with the help of distribution
functions. In the non-relativistic approximation all dynamical quantities
depend only on the positions R;; and velocitics R,; of the particles ki. Thus
the averages of a microscopic quantity a(R,;, R, 1) can be considered as an
average in a ‘fluxion’ space spanned by the positions and velocities of the
particles:

AR, 1) = @ = | afd, o

where /= f(Ry;, R,; t) depends on the particle positions R,; and velocities
R,; and where dgp = HkideidR,(i is the fluxion space element. The pro-
bability to find the system in the volume element de is fde.

Now from the conservation of probability one may conclude that time
differentiation and averaging of a quantity commute. This is seen in the
following way. The probability to find the system in the fluxion space element
de is given by fd¢. This measure fd¢ remains constant in time if one follows
the region of fluxion space points in their natural motion in fluxion space.
Therefore one has:

0 d da da
— = = et = { - 2
S arfaqu) a’ <dt>’ @

where d/d7 is the total time derivative in fluxion space 8/0t+ ) 4; RV
+ RV, (where Vy; = 0/OR,; and where R,;, as a consequence of the
equations of motion, depends on all R,; and R;; and on time). Equation (2)
shows that time differentiation and averaging commute.

Space differentiation and averaging comunute trivially:

V{ay = <{Vap, ®)

because the fluxion space distribution function does not depend on the space
coordinates.

Often the quantities a are sums of functions which depend on the?variables
pertinent to one atom or to two atoms only. In such cases one may perform
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a number of integrations in the expression (1) for the average 4. For in-
stance, if @ = Y @,(Ry;, Ry;) (where R; stands for Ry, R, ...) or alter-
natively, with mass centre and internal coordinates and velocities, a =
Y a (R, Ry, ry;, F;) one may write the average 4 in terms of a ‘one-point
distribution function’ f;(R,, R, , ¥1;, ;3 £) as

4= fal(Rl > Rl s Fris 'zli)fl(Rl > R1 > Pris Fris Z)dRz de H dry;dfy;, (4)
or, in a shorter notation,
A= [apasa, )

where f1(1; 7)d1 is the probability, normalized to N (the number of atoms

in the system), to find an atom with parameters in the range dR, de T1:dry;

dfy; around the point R, Rl, ¥;, ¥y (= 1,2, ...) in fluxion space.
Likewise, if @ has the form a = ) 14z @i (K, [), one may write

A =fa12(1, 2)f5(1,2; Hd1d2, (6)

where f5(1,2; ¢)d1d2 is the joint probability, normalized to N(N—1), to
find one atom in the range d1 and another in the range d2.

It will be convenient to introduce also a two-point correlation function
defined as

(1,25 t) = £(1,2; H—f1(1; )12 ). (7)

This correlation function has the property to vanish rapidly with increasing
atomic distances for systems without long range order, such as fluids. For
crystals however this is not the case.

In the preceding the treatment was confined to one-component systens.
The extension to mixtures of several components is straightforward. In that
case one has to introduce distribution functions for each separate species.
The one-point distribution function f7(1; ¢) now gets an extra label @ which
indicates the species. Now f7(1; #)d1 is the probability, normalized to N°
(the number of atoms of species a), to find an atom of species a with param-
eters in the range dl in fluxion space. Similarly the two-point distribution
function is defined in such way that £7°(1, 2; £)d1d2 is the joint probability,
normalized to N°N® (if @ # b) or N4(N*—1) (if @ = b), to find an atom of
species 4 in the range d1 and an atom of species b in the range d2. The cor-
relation function ¢§’(1,2;7) is now defined as the difference f3°(1, 2;7)

—fi(1; D225 7).
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3 The Maxwell equations
The Maxwell equations may be found from the atomic field equations (1.35)
by the statistical procedure of the preceding section. Indeed one gets:
{Vey = (pH—<Vp),
—{0p ey +{VAby = {jlc+{3op>+<V Am),
(Vb =0,
{Cob>+<VAe>=0.

(®)

With the help of the commutation rules (2) and (3) one obtains from (8)
the set of equations

Veiey = {pH>—V<p),
=8> +V ALY = (jole+0o{py+V Am),
V{by =0,
0o<{b>+V Ale) = 0.

©)

With the notations (1) for the macroscopic quantities, i.e. macroscopic fields

E =<e, B = <b>, (10
the macroscopic charge and current densities
¢f =<p%, T =< (11)
and the macroscopic polarization vectors
P=L<p), M=<m), (12)
one may write for the set (9):
V'E = ¢°-VP,
—0gE+VAB =J[c+0,P+VAM,
(13)
VB =0,
OoB+VAE = 0.

These are the Maxwell equations. With the definitions of the displacement
vectors

D =E+P, H=B-M, (14)
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they may be written alternatively as

V:-D = o5,
—0oD+VAH = Jle,
(15)
VB =0,
0oB+VAE =0.

The latter could also have been obtained by averaging the atomic equations
(L.37).

Maxwell’s equations have thus been found from the atomic field equa-
tions, which in turn followed from Lorentz’s microscopic field equations.
This completes the derivation.

The macroscopic equation of conservation of charge

0gfor = —V-J (16)

follows from the averaging of (I.38) with the help of the definitions (11) and
the fact that averaging and differentiation commute.
Up to order ¢~ the solutions of the Maxwell equations (13) are

1
ER,t) = E(R, 1)-V | {¢*(R", {)—V"P(R’, 1)} ——— dR/,
(8. = Bk 0V [ (R, 0-v'P(®.0) L
B(R, ) = B,(R, 1) (17)
V -1 ’ —1 aP(R,9 t) ’ ’ } 1 ’
+ /\f{c J(R, t)+c¢ Y +V AM(R,t)]4—-—~n!R_R,[dR.

One may verify that these are the solutions of (13) by inserting them and
using (16) (v. problem 1). The first terms at the right-hand sides are the
external fields, which are solutions of the field equations without sources.

The macroscopic charge and current densities o® and J are the averages
(11) of (1.33)

o(R, 1) = {p°) = <;ek5(Rk“R)>a

(18)
IR, 1) = (j> = <;ekvk5(Rk“R)>,
or, in terms of one-point distribution functions, as in (4):
°(R, t) =Y e, fi(R; 1),
‘ (19)

J(R’ t) = Zfeavl ff(Rs vl; t)dvl H
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where the summation over a is extended over the number of species in the
system. These expressions include contributions from all charged ‘atoms’,
such as ions and free conduction electrons.

Furthermore the macroscopic electric and magnetic polarizations are
given by the averages (12) of (1.34):

P(R, 1) = {p) = <Z( 1y -tyt Z EP8(R,—R)D,
. (20)
M(R, 1) = (m) = (Y (1) 7V LY (0 +e 7T Av)d(Ry~R)),

or in terms of one-point distribution functions:

PR, &)=Y Z (=1 iyt :f‘m (R, 1; 1)d1,
o (21)
MR ) = X 3 (=17 [ G0 B A B)R, 15 a1,
a n=1
where the symbol 1 now indicates all atomic parameters except for the posi-
tion i.e. @i in the first line and E{™, ¥ and B; = v,/c in the second line.
Just as the multipole moments may be permanent or induced or both, the
polarization vectors P and M are the total polarizations, due to permanent or
induced effects or both.

The quantities (18-21) are continuous functions of space and time
coordinates; they contain the charge e, and the multipole moments @y and
v as atomic characteristics.

A few remarks may be made on the result. In the first place it is seen to be
valid for completely arbitrary polarizations of the material, that is to say
polarizations due to both permanent and induced (by means of external and
internal fields) elsctromagnetic moments of the atoms. The derivation leads
to polarization vectors P and M expressed in (20) and (21) as statistical
averages involving ths electromagnetic moments of the atoms. The deriva-
tion is therefore completely independent of the ‘constitutive relations’, by
which connexions between the polarizations and the fields are given, usually
in terms of electric and magnetic susceptibilities. In fact these connexions
belong to the dynamics (or statics) of the system, not to its set of field
equations.

In the second place the derivation shows the secondary character of the
displacement vectors D and H. They may be obtained from their definitions
(14) together with (10) and (12) for the fields and polarizations. The set (15)
is useful to formulate the boundary conditions which lead to the well-known
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operational definitions of the Maxwell fields E, B, D and H in certain cavi-
ties. But otherwise the set (13) is to be preferred since it shows better the
microscopic origin of the equations, as is apparent from the derivation.

The field equations (13) may be shown to be covariant under Galilei
transformations. These form a group comnsisting of spatial rotations and
pure Galilei transformations. The latter have the form

R = R+V1,
t' =1,

i

22)

where ¥V is the transformation velocity (independent of space and time).
The covariance of the field equations under rotations is guaranteed by the
fact that they have been written in vector notation. The covariance under
pure Gealilean transformations requires some further inspection. From (22)
we have for the transformations of the partial derivations with respect to
space and time

V =V,

23
99y, @)
ot ot

Furthermore the distribution functions are invariant:

I ) = £ o), (24)
as a comsequence of their probability interpretation. Here 1’ denotes the
transformed quantities of the atom 1, for instance R} = R +V¢, v| =
v +V, uy = uy and v = v,. With the help of these formulae one proves
the transformation properties of the charge and current densities (19) and
the electric and magnetic polarizations (21):

(_)e,(R,, t/) = QG(R, I),

(29)
J'(R',t") = J(R, 1)+ Vo (R, 1),

P(R,t) = P(R, 1),

M'(R,t)= MR, t)—c 'V AP(R, ?). @6)

From (23) and (25) one proves the covariance of the charge conservation
law (16). Furthermore from (23), (25) and (26) one finds that the field
equations are covariant if one imposes the transformation formulae for the
fields

E'(R,t) = E(R,1)—c 'V AB(R, 1),

B'(R',t") = B(R, t)+c 'V AE(R, ). @)



28 NON-RELATIVISTIC CLASSICAL STATISTICS A CH. II

We note again that in the present non-relativistic theory only terms up to
order ¢™* are included. As a consequence the transformation formula for
the electric field contains in fact only the external magnetic field B,, since
the magnetic field generated by the sources is itself of order ¢~ !, as follows
from the solution (17).

In a fashion analogous to the definition of the macroscopic charge density,
which was the average of the atomic charge density, one can define macro-
scopic electric and magnetic multipole densities as:

PO = Z BV5(R—R)) = Zf—“) F(R, 1;0)dl = Z P2,
(28)
M = <Z§(")5(Rk —R)) = }jf—@ {(R. 1;0)dl = Z AP,

where 1 indicates the multipole order: n = 1 dipole, n = 2 quadrupole, etc.
These macroscopic multipole densities are functions of space and time
coordinates K and .

The expression (20) or (21) for the electric polarization vector P can be
written in terms of the electric multipole densities (28)

P = ZI(—l)"“lV""l CPO = PO_VPILVV  PI— . (29)

The right-hand side is a series expansion involving all multipole densities.
In the Maxwell equations (13) appear, besides ¢° and P, also the current
density J and the magnetization vector M. The latter quantity, which is
given in (20) or (21), cannot be expressed in terms of the multipole densities
(28) alone, just as the current density cannot be expressed in terms of the
charge density. In both cases the reason is that the atomic velocities v, appear
in a particular way as the expressions (18-19) and (20-21) for J and M
show. It is convenient for the physical discussion to resolve the atomic
velocity v, = B,cinto alocal mean velocily v = fe and a velocity fluctuation
b = ﬁkC:
v, = v+ 5. (30)

(The local mean velocity is in general still a function of space and time
coordinates R and £.) Then with the expression in (19) for the charge density
one can write the current density of (19) as

J = o%+ Zfea b fT(R, vy t)dy, = @v+1. (31
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In this way J has been resolved into a ‘convection’ current ¢°v and a ‘con-
duction’ current I. The fact that the former produces a magnetic field as
well has been demonstrated experimentally by Rowland!.

Similarly (30) can be used in the expression (21) for the magnetization
vector M. Then, using the definitions of the multipole densities (28), one
can write

M=y (—1y7'V AP+ PO AR+ ZJ“WABI iR, 1; t)dl} ., (32)
n=1
because differentiation and averaging commute.
Alternatively, with the help of expression (29) for the polarization vector,
the magnetization vector reads

o
M = Z (”‘1)’1_1V”_1 !ﬂ“(n)_i_PAﬁ

n=1
3 (-1 S [0 A SR 1 0L ()

The physical significance of special cases of these forms will be discussed
in the next section, where practical examples are treated. But it may be
remarked already here that M shows three contributions, Ist: a sum which
contains all magnetic multipole densities, analogous in structure to the series
in the electric polarization (29), 2nd: a convection term due to the convection
motion v = e of the total polarization vector P, and 3rd: a fluctuation
term, which contains the atomic electric multipole moments @y and the
velocity fluctuations B, c. The last term plays a role if the carriers of electric
multipole moments @{” do not all have the same velocity (i.e. if f # O).
Mazur and Nijboer® gave the first example of such a term. Expression (32)
shows explicitly that M cannot be expressed in terms of the multipole
densities (28) alone: the first and the second terms are functions of these
multipole densities, but not the third.

Let us summarize the general results obtained so far. The Maxwell equa-
tions were found in the form of the set (13). It contains the macroscopic
fields E and B, and moreover the four macroscopic quantities ¢%, J, P and M,
for which expressions were found:

(a) The charge density o, given as the average of the atomic charge density
in formula (18) or (19).

' H. A. Rowland, Am. J. Sci. 15(1878)30.

2 P. Mazur and B. R. A. Nijboer, Physica 19(1953)971; cf. reviews by P. Mazur, Adv.
Chem. Phys. 1(1958)309 and S. R. de Groot, The Maxwell equations (North-Holland
Publ. Co., Amsterdam 1969).
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(b) The current density J, given as the sum (31) of a convection current, due
to the bulk motion of the charge density, and a conduction current, due to
the fluctuations in the velocities of the atomic charges.

(c) The electric polarization vector P, expressed as a series expansion (29)
in the macroscopic electric multipole densities defined in (28).

(d) The magnetic polarization vector M, given by (33). It contains in the
first place a series in the macroscopic magnetic multipole densities of (28).
Furthermore two terms describing the cffects of moving electric multipoles
occur: a convection term, due to the bulk motion of the electric polarization,
and a fluctuation (or conduction) term, due to the fluctuations in the veloc-
ities of the atomic electric multipole moments.

4 Applications

a. The polarizations up to dipole moments

To simplify the discussion of the various physical systems let us give some
explicit formulae, containing lowest order multipoles. In fact in not too
dense systems one can limit oneself to the consideration of atomic charges
and dipole moments only. Then the polarizations (21) become

Y
o (34)
M= zj FO 420 AB)FAR, 1; L.

In these expressions occur the macroscopic electric dipole density 2!
and the macroscopic magnetic dipole density .4, defined in (28). With
the use of these quantities, and the splitting of the atomic velocity in a
local mean velocity fe and a deviation B, ¢ from it, one can write the polari-
zations as

P = P,

o . 35
M= D+ PONB+ Zfﬁ(l”/\ﬁl IR, 1; H)d1. (3)

The electric polarization vector P could be expressed in terms of the macro-
scopic electric dipole density alone. The magnetic polarization vector M con-
tains the magnetic dipole density. Furthermore terms due to moving electric
dipoles are present. First a convection term, due to the bulk velocity v = fic
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of the electric dipole density, is present. Its curl, which occurs in the Maxwell
equations, is called the Rontgen current. It has been observed experimental-
Iy'. But M contains also terms due to the fluctuations [?kc in the velocity of
the carriers of the electric dipole moments.

Only if the carriers of the electric dipole moments all have the same
velocity B, = B do the fluctuation terms vanish. The polarizations then
reduce to

P=2Y  M=#D+PDAB (36)

These expressions are the same as Lorentz’s original results?. Loreniz’s
model did not include the possibility of the appearance of the fluctuation
terms. It should be noted that in contrast with the general formulae the
special expressions (36) are functions of the macroscopic dipole densities
alone.

If the system is completely at rest, i.e. if all atoms have velocities §, = 0,
then (36) further reduces to

P=20 M=, (37)

b. The polarizations up to quadrupole moments

In the dipole plus quadrupole approximation one retains the terms with
= 1and 2 in (21):

P = Zfﬁ%” ‘R, 1; f)dl— Y v-fag” 4R, 1; 1)dl,

69
M= 3 [ G049 A g 2R, 1 001

2[R+ EP A R 1 a1

Introducing the macroscopic dipole and quadrupole densities (28) with
7 = 1 and 2, and resolving the atomic velocity f, ¢ into a local mean velocity
Bc and a velocity fluctuation f,c one can write (38) as

P = PV_y.5®

M= D NP+ (PD VPOV B+ Zf,—,g”/\ﬁl AR, 15 £)dl (39)

~ SV [ B A B AR 15 0.

! W. C. Rontgen, Ann. Phys. Chem. 35(1888)264, 40(1890)93; A. Fichenwald, Ann.
Phys. Chem. 11(1903)1, 421.
2 H. A. Lorentz, Proc. Roy. Acad. Amsterdam (1902)254; Enc. Math. Wiss. V 2, fasc. 1
(Teubner, Leipzig 1904) 200.
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The electric polarization vector P is equal to the macroscopic electric
dipole density minus the divergence of the electric quadrupole density. The
magnetization contains three dipole contributions; the first is the macro-
scopic magnetic dipole density, the second is a convection term due to the
bulk motion of the macroscopic electric dipole density (), and the third is
a fluctuation term, due to the fluctuations in the velocities of the individual
atomic dipole moments _ﬁ,(cl). This last term plays a role in systems in which
the electric dipoles do not all have the same velocity. (In the following sec-
tions some practical examples will be given.) In all terms the negative diver-
gence of a quadrupole term is added to the corresponding dipole terms. In
uniform systems the quadrupole terms will thus not play a role, but for
instance boundaries will give quadrupole (and perhaps even higher multipole
order) contributions.

If all electric multipoles have the same velocity (B, = B, the fluctuation
terms disappear from the expressions for the magnetization vector M.
Formulae (39) then simplify to

P = PO_Vy- PP,

M = 7D =V 4 (FD —V-F D) 7 p. (40)

These expressions were originally found by Frenkel'. They include quadru-
polar effects, but otherwise their validity is limited in the same way as
Lorentz’s, since the fluctuation terms of (39) are missing. Earlier Fokker?
found these formulae, but without the magnetic quadrupole term.

For the still more special case of no motion at all (8, = 0), the expressions
further reduce to

P=PO_v-PD M= -V (41)

Full symmetry between electric and magnetic terms is present only in this
last static case. Rosenfeld® obtained these expressions but without the
magnetic quadrupole term.

¢. Examples

In this subsection the Maxwell equations for specific physical systems will
be discussed. The expressions for the material quantities which occur in the

1 J. Frenkel, Lehrbuch der Elektrodynamik II (Springer, Berlin 1928), p. 26.

2 A. D. Fokker, Phil. Mag. 39(1920)404; Versl. Kon. Acad. Wet. Amsterdam 28(1920)
1040; Relativiteitstheorie (Noordhoff, Groningen 1929).

3 L. Rosenfeld, Theory of electrons (North-Holland Publ. Co., Amsterdam 1951); cf.
J. Voisin, Physica 25(1959)195.
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Maxwell equations, namely the charge and current densities ¢° and J, and the
electric and magnetic polarization vectors P and M, will depend on the
characteristics of the particular physical model studied.

(i) Metals. A metal is supposed to consist of free electrons moving in a
rigid lattice formed by positively charged ions. The ‘stable groups’ of point
particles of the present theory are then those free electrons and ions. They
will be labelled by an index ¢ = I and a = II respectively. The model is
then specified by assigning charges to the electrons, and charges and electric
and magnetic dipole moments to the ions. Furthermore in the model one
supposes that the metal can only move as a whole, with a velocity v = fc.
This means that all ions move with this velocity. The free electrons however
have velocities f, ¢ = fc+ B, c. On the basis of these properties of the model
we can now give the expressions for the material quantities ¢°%, J, P and M,
which occur in the Maxwell equations. The charge density (19) becomes

o® = e fiR, ) +ey fi'(R, 7). (42)
The current density (31) is
J=0%+l, I= e;fﬁlcff(R, 1; 1)dl. (43)

The convection current ¢°v contains contributions (42) from the free elec-
trons and the ions. The conduction current I contains only contributions
from the free electrons, since the ions have no velocity fluctuations. The po-
larization vectors P and M follow from the formulae (36) for the dipole
case, with the macroscopic dipole densities (28), as
P=20, M=.4d}+PP A (44)
Only the ions contribute. Since the ions have no velocity fluctuations no
fluctuation contribution arises in M. The free electrons do not give rise to
such a contribution either, because, although they do have velocity fluctua-
tions, they possess no dipole moments. This is the reason why the expres-
sions (44) turn out to be of the particular type (36). The latter were also
Lorentz’s results. So for the model of the metal — and Lorentz apparently
had this model in mind - these results are justified from the general theory.
A possible influence of multipole moments of higher than dipole order
might have been taken into consideration. However in a system in which the
total charges of “stable groups’ play a role, their effects usually overshadow
those due to the dipole moments. The corrections obtained by taking into
account also quadrupole effects are then negligibly small.
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(ii) Insulators. If the stable groups in insulators are positively and nega-
tively charged ions of the kind I and II, then the model can be specified as
follows. The ions possess charges as well as electric and magnetic multipole
moments of order n = 1, 2, .... The system is a rigid lattice moving with the
velocity v = fc as a whole. This means that the ions have this velocity, so
that all velocity fluctuations vanish. Often the charges of the two kinds of
ions just cancel] so that the system as a whole is electrically neutral. Then we
have the charge density ¢° = 0, just as for an atomic or molecular lattice.
The current density J (31) also vanishes because both the convection current
¢°v and the conduction current I are zero: the first because ¢° = 0, and the
second because all velocity fluctuations vanish. Since the ion lattice is usually
fairly closely packed, one may need to include terms of higher than dipole
order into the polarizations. Because no fluctuation motion is present, the
expressions (29) and (32) become

P = Z (_1)n~—lvn-—1 g"i(n)’
n:l (45)
M = Z (_1)n-—1vn—~1 : (%(n)_*_ﬁ(n)/\ﬁ),
n=1
with the complete multipole series. One has here for the macroscopic multi-
pole densitics:

PO = FOLPY, A = A+ . (46)

The number of space differentiations in (45) increases with the multipole
order. The effects of the higher order multipole densities show up especially
at boundaries between different media.

(iil) Plasmas. A plasma is a gas in which a sensible proportion of the atoms
or molecules is ionized, so that virtually the properties of the system are
completely determined by the effects of the charges of the ions and free elec-
trons. In fact in practice one neglects completely the multipole moments
of the atoms, molecules and ions. In such a model the charges of the ions
and free electrons determine the value of the charge-current densities ¢°
and J, which are given by (18). If all multipole moments are neglected, the
polarization vectors P and M vanish. The Maxwell equations (13) read then

V-E = ¢f,
—8,E+VAB = ¢,
47
V'B = 0, (47)

8o B+VAE = 0.
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These equations form indeed the starting point which is generally adopted
in plasma theory. In this connexion it should be noted that sometimes
electric polarization vectors are introduced that are not defined as the
average over the microscopic electric multipole moments. As a matter of
fact various ‘effective polarization vectors’ can be found in literature. One
of these is the ‘effective polarization vector’ P*, which is related to the
charge density ¢° as

g¢ = —V-P*, (48)

Then one introduces also an ‘effective displacement vector’ D, defined as
D* = E+P*. (49)

Another formal ‘effective displacement vector’ which is sometimes used
is the quantity D** which satisfies

8o D™ = G E+c 1. (50)

Then one can accordingly also introduce ‘effective dielectric constants’. The
dielectric constants E are normally defined as the proportionality constants
between the fields D and E. The ‘effective constants’ e* or ¢** are defined as
the proportionality constants betwecn the fields D* or D** and E. Some of
these ‘effective’ quantities may be useful abbreviations in certain cases, but
one should not confuse them with the ordinary polarization and displace-
ment vectors, which are directly connected to the multipole moments of the
particies in the system.

In particular the model of a plesma is such that the refractive index » is
different from unity, whereas ¢ = 1, since D = E. In fact for a plasma n*
is therefore not equal to &. Again one can of course introduce an ‘effective
dielectric constant’ equal to the square of the refractive index, but one
should not confuse it with the ordinary dielectric constant ¢.

(iv) Fluids. Inafluid which consists of neutral molecules the charge density
0% and current density J both vanish. The polarizations P and M contain
contributions from the various molecular multipole moments.

In a gas it is usual to limit onesclf to the dipole contributions alone. The
velocity B, ¢ of the molecules will again be written as the sum of a local mean
velocity e (which depends on space and time coordinates R and f) and a
velocity fluctuation f, c. Then the dipole approximation (35) for the polar-
ization vectors applies. The electric polarization vector is simply equal to
the electric dipole density 2. The magnetic polarization vector contains
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three contributions. The first is the magnetic dipole density; the second is a
‘convection term’ and the third has a fluctuation character: even for a gas
at rest this term will not disappear.

In a liquid, because of its high density, one may need to take into account
the effects of higher multipole moments, for instance the quadrupole mo-
ments. In the latter case the polarizations are given by (39).

(v) Electrolytes. Inanelectrolyte one has positively and negatively charged
ions, and usually also a neutral component. In this respect it is similar to a
plasma. However the density of an electrolyte is much higher than the density
of a plasma. The effects of dipoles (or even higher order multipoles) should
therefore be taken into account. The model adopted here is a mixture of
three components labelled by the indices I, 1I and IIT of which I and IT are
ions, with charges ey and ¢, and 11T neutral molecules; all three components
are supposed to carry electric and magnetic dipole moments.
The charge density (19) gets the form

11

0 =Y e, fi(R;1). (51)

a=I

The velocities of the ions and molecules can be written as the sum of a local
mean velocity of all ions and molecules and fluctuation velocities. Then the
current density (31) is

J = o%v+1, (52)

where ¢°v is the convection current and I the conduction current:

I
I=3 Jed fi(R vy ;t)dv. (53)
a=}

With the macroscopic electric and magnetic dipole densities (21) for the ions
and the molecules 2.V and 4" (a = 1, II, IIT) one can write the polariza-
tion vectors (35) as

I

P=Y 2P,
agl
(54)
I . R
M=Y {/Zgl>+g>g1>/\ﬁ+ fﬁ‘l”/\ﬂl fUR, 1; t)dl} .
a=1

The polarization vector P contains the three electric dipole densities. The
magnetization vector M consists of three kinds of terms. First the magnetic
dipole densities due to the ions and molecules appear. Then the convection
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of the electric dipole densities with the bulk velocity v = Bc gives a contri-
bution. Finally the electric dipoles also have fluctuations in their velocities
around the bulk motion. These effects give rise to the last term. They do not
occur in solids, but they can play a role in fluid systems, in which freely
moving electric multipoles exist.

5 The momentum and energy equations

a. Introduction

The motion of matter in bulk is described by the balance equations of mo-
mentum, energy and angular momentum. The derivation of the former two
from the corresponding atomic laws by means of a statistical averaging
procedure will be the subject of this section, while the latter will be discussed
separately in the following section. As a result we shall find macroscopic
laws that contain quantities, such as the pressure, the internal energy and the
heat flow, which are given as statistical averages of atomic quantities.

In contrast to the field equations the material equations mentioned con-
tain quantities that are two-point functions on the atomic level, so that they
contain two-point distribution functions (or correlation functions) on the
macroscopic level. As a consequence one will have to distinguish in the course
of the treatment between physical systems for which these correlation func-
tions show marked differences: systems in which the correlations have short
range — such as gases, liquids, plasmas and amorphous or polycrystalline
solids — and systems such as crystalline solids with correlation functions of
long range character.

b. The mass conservation law

In the course of the derivation of the momentum and energy laws, we shall
need the macroscopic mass conservation law, which is an immediate con-
sequence of the atomic conservation law. In fact, the atomic mass density is

PR, 1) = Y m, S(R,—R), (55)
k
where nz, is the mass of the (identical) atoms for a one-component system?,

1 For formal convenience we treat in the following subsections one-component systems.
The generalization to mixtures is obvious (cf. subsection 9)-
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Then the macroscopic mass density becomes:

o(R, 1) =< z m, 6(R,—R)y = mfy(R; 1), (56)

where f;(R; ) is a one-point distribution function, which depends only on
the position Ry (= R) and the time. The time derivative of the macroscopic

mass density (56) is according to (2)

%_Q = Y mve Vi (R, — R), (57)
t %

since in this case d/d¢ = v, 'V, (with v, the atomic velocity Rk). Introducing
the local barycentric velocity »(R, ¢) by

o(R, (R, 1) = (>, m v, 6(R,—R)> = fmvl fi(R, vy; t)do,, (58)
k

we may write (57) in the form

Q
fia

|

= —V+(ov), (59)

(o3
IS

which is the macroscopic law of mass conservation.

c. The momentum balance

The momentum law is obtained by taking the time derivative of (58). With
(2) and the equation of motion (L50) one gets

-~

9O VYm0, 5(R— R+ Y (FE IR —R)>.  (60)
1A k k

Introducing the velocity fluctuation 9, as
(R, 1) = v,—v(R, 1), (61)

we obtain from (60) with (56) and (58) the momentum balance equation

= —V-(ouo+P*)+F"+F, (62)

where the kinetic pressure

P* = fmﬁl b, f1(R, vy ; t)dv, (63)
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is written with the help of an appropriate one-point distribution function.
Furthermore we introduced the abbreviations F* = { ¥, fX6(R,—R))> and
FS = {3, f35(R,— R)) for the long and short range terms.

The long range term contains f, which has been specified in (1.54). We
shall first treat the part with the external fields (E,, B,) (it will be called FL).
It can be expressed in terms of the macroscopic charge and current densities

(v. (18)):
(R, 1) = < 12 e, 6(R,—R)), J(R, 1) = < ; e, v (R —R)), (64)
(where ¢, = e is the charge of the (identical) atoms) and the macroscopic

polarization and magnetization densities which read, if only dipoles con-
tribute for the system under consideration (v. (20))*

P(R, 1) = <; EDO(R,~ R)>,

(65)
M(R, 1) = (Y (W7 + 8P Av/c)d(R,—R)).
k

(Note that according to (1.30) the magnetization is of the order ¢~ !, while
the other three densities are of the order ¢°.) In this way we get the expression

Fi = 0°E.+c¢"'J AB +(VE,)P+(VB.YM
- d .
TS GO AB R D)o RY. (60
k

The last term becomes with (2)
¢t LY D AB SR —R)Y + ¢V Y 0, BV A B S(R,—R)>.  (67)
gtk k
If (61) and (65) are used in this expression and the result is substituted into
(66), one gets

Ft = 0°E.+c™'J AB+(VE,)P+(VB)M

+c7t :a— (PAB)+c 'V-(vPAB,)
ot

+c"1V'Jﬁ1 BUAB, fi(R, v, 785 t)dv, dEl. (68)

! Higher multipoles could be included at this point, v. problem 3 for the case of quadru-
poles. As a result it turns out that the macrosopic force density which for the dipole case
will be given in (106) can no longer be expressed in terms of the Maxwell fields and the
total polarizations alone. (Cf. also H. A. Haus, Ann. Physics 45(1967)314.)
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The remaining part of the long range term of (62), which is due to the
interatomic interactions (v. (1.54)) may be written with the help of a two-
point distribution function:

1

F'—FL = — f ) ( ™ VIE VIV »_-——-)
L (Vi " 4n|R, — R,

S(R—R)f(R,, 1, Ry, 2; 1)dR, d1dR,d2, (69)

where 1 (and 2) denote the whole set of electric multipole moments 24" (and

(’")) with n, m = 0, 1, .... Let us split the right-hand side into two parts
with the help of (7). In the “uncorrelated’ part, which contains the product of
one-point distribution functions, we add a factor 5(R'—R,) and an integra-
tion over R’. Furthermore we introduce the macroscopic charge and polar-
ization densities (64-65), omitting here all multipole moments of order two
and higher. The latter moments would give rise to terms containing the
macroscopic multipole densities of order two and higher, which are assumed
to be negligible in our system. In the ‘correlated’ part (which contains the
correlation function) the integration over Ry may be performed. In this way
we obtain:

1 ar’

L _pl — _ .; e . o
F-—F; J.\Q (R, 1)+ P(R, ) V}{o(R', 1)+ P(R, )V'}V R-F|

S (ErvEr v ) e LR 2 R Gl
R
(70)

The total long range force density is now given by the sum of (68) and (70).
Introducing the macroscopic electric and magnetic fields (17), which read
up to order ¢~* and ¢° respectively:
1

E(R, 1) = E(R, { ~—f o°(R, )+P(R’, {)V'}V ————dR/,

B(R, 1) = B(R, 1),
(v. problem 1) we obtain thus up to order ¢
F* = 0°E+c¢ 'J AB+(VE)yP+(VByM

s a(P/\B)-}—c_lV(vP/\B) VEFHFS, (72)

n,m=0

-1

with
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a contribution to the pressure tensor due to the action of the field B on the
electric dipoles. Furthermore FC is the ‘correlation contribution’ given by

the last term in (70). It reads written with s for the interatomic separation
R—R":

= % {(— D Vg vy, L}

n,m=0 4d7s
(R, 1, R—s,2; 1) dsd1d2. (74)

The short range term F* = (3, f35(R,—R)) at the right-hand side of (62)
contains the force f given in (1.52). We may write it with the help of an
a.ppropriate two-point distribution function. Again performing the integra-
tion over R; and introducing the integration variable s = R—R, we get
with r,; = R,;—R,:

" :J {"’ YV S 1y v vy, L]

i) 47zls+rh Fail  mm=0 * 4ns)
fo(R, 1, R—s,2; 1)dsd1d2, (75)
where e; and e; are the charges of the constituent particles i and j of the

(identical) atoms.

The equation (62) with (63) and (72-75) constitutes the macroscopic
balance of momentum. It will be studied further for specific systems in sub-
sections f, g and 4.

d. The energy balance

'ljhe macroscopic energy law will be derived from the atomic energy equa-
tion (I.63). Let us first consider the macroscopic quantity

<z (+z+ > ~—-—) H(R,~R))  (76)
P i 1, JG# ) 87|y — 1yl

(?k is the atomic velocity R,). Introducing the appropriate distribution func-
tions, the notations m for the mass m7, of the (identical) atoms, and »z; and
e; for the mass m,; and charge e,; of their constituent particles 7, one gets
for this expression, with the help of (56), (58) and (61):

Lov? + gu® (77)

with an internal energy density

K T onn R .
ou =f(42—mvf+%;mirfi+ > meh“m)fl(Rl dt;  (78)

i, j(i# ) 87r[rh 15
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due to the velocity fluctuations and the intra-atomic kinetic and potential
energies.

The energy balance equation is obtained by taking the time derivative of
(77) in its form (76) and by using (2) and (1.63):

9 (1ov” + ou®)
ot

= -V <Z v (%mk LY mgtnt Y, —-eﬁi—%‘j‘——) 5(Rk——R)>

- i, i D) 87l —ryjl

+< Z (i +YR)dR~R)>. (79)

Splitting the atomic velocities according to (61) one obtains with the help
of appropriate distribution functions the energy balance equation:

éa? (oo +0u) = = V-{v(3ev” + Qu) + PCo+ i} + ¥E+ V% (80)

with P¥ the kinetic pressure given in (63) and

Iy Efﬁl (-%mfaf-l——lz—z mEh+ Y -~——e————~) fi(R, 1; H)dl,  (81)
7 1, jG# 0 8nlrg—ry
a contribution to the heat flow. (In fact it is due to the transport, with the
velocity fluctuation, of the atomic quantity occurring in (78).) Furthermore
the last two terms of (80) represent long and short range contributions de-
fined as ¥V° = ( Y, ¥i S5(R,—R)>, with ¥;° as specified in (1.66) and
(1.65). They will now be investigated in detail.
The long range part contains a contribution due to the external fields
(E., B.) which may be written in the form

v =SB M (S (o (VR + BV ERR), (82)
where (64) and (65) have been used. With the help of (2) one may write
(S HPORR) = 2 (TSR R4V L 0 SRR (53)
Using this identity and (65) we get for (82):

L ——JE+ E -M- %li+vf<zvkﬁ§1>5(kk R)>E.}. (84)
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Introducing velocity fluctuations (61) and the appropriate distribution
functions, and using again (65), we obtain finally

pL _JE+6PE+V(vPE) . 9B

+V- [{fviyl (R, v, 5Vt do, dy(l)} ] (85)

The interatomic contribution to " (v. the first term of (1.66)) reads,
written with distribution functions,

glL_ III‘I; J‘{ Z (Z _(”) V’i vl.Vl -+ Z p‘ Vlz)—(m) Vm 1 }
m=0 n=0 n=1 47EIR1 RZ‘

S(R—R)f»(R;, 1, R;,2; )dR, d1dR,d2. (86)

With the help of (7) the right-hand side may be split into two parts. In the
uncorrelated part we introduce the macroscopic charge and polarization

densities (64-65) taking only dipole moments into account and using (61)
and (83). Then we get:

’

veewt = = i e FEI wiew, g ep@ o)

LI
" 4niR—R|

7

f”(R HP(R, 1) V{o*(R', )+ P(R', t)V'} -

—V-ff:l [’“’ V{¢°(R’, )+ P(R/, I)V}Z_[EIZEJ

FiR, vy, B ; 1)dR' do, dalV

- Z { Z"“(") V’l‘ vl.vl+ Z M Vn‘)—(m) m 1 }

m=0 n=1 4TC’R1—R21
3(R—R))cs(Ry , 1, Ry, 2; )dR, d1dR,d2. (87)

The total long range contribution is the sum of (85) and (87). It reads written
with the Maxwell fields (71) and the pressure P* (73)

oP B
pk JE+a— *E+V-(vP-E)—M- 9-~V(PFv+JF)+‘PC (38)
ot

with

Jl}; = {fﬁl ﬁ(ll?fl(R: Y1, .ul 5 ?)dvl d”(i)} (E-FC_LD/\B), (89)
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a contribution to the heat flow due to the interaction of the fields (E, B)
and the electric dipoles. Furthermore the correlation contribution P given
by the last term of (87) may be written as

. _ 1)
mn ~—(n n (n) nyso(m) ogm
S (- ((L P Vo Y EO VRV

m=0 n 0 n=1
&R, 1, R—s,2; f)dsd1d2, (90)

where the integration over R, has been performed and the variable s =
R - R, introduced.

The short range term ¥° = ¥, Y35 (R, —R)Y, where 7 is given in (1.65),
may be written in terms of a two-point distribution function:

Pe = —f{ Z(”1+"1i)'vs——ﬁ”—
i, J

drls+ry—ry4

- —==(n) « gy (m) - gm 1
3 (-1 (SR ViV, TR VIR 1V

m=0 n=0 n=1

f(R, 1, R—s,2; t)dsd1d2. (91)

The equation (80) with (78), (81), (88-91) is the balance equation of energy.
The correlation and short range contributions (90) and (91) will be studied
for special systems in the following subsections.

e. The short range terms in the momentum and energy laws

We shall consider in this subsection the terms F> and ¥® occurring in the
momentum and energy equations (62) and (80), and given explicitly in (75)
and (91). Their short range character will allow us to write them in a con-
venient form.

Since the bracket expression in (75) vanishes if the atoms are outside each
other the integral needs to be extended over small values of s only.'In
sufficiently homogeneous systems the two-point distribution funqxon
f>(R, 1, R—s, 2; t) in (75) varies slowly as a function of R, i.e. appre'cxably
only over macroscopic distances whereas it varies rapidly as a function of
the interatomic distance s. Hence one may limit oneself in the integral to the
first two terms in a Taylor expansion of f; as a function of R L

SR 1, R—s5,2; 1)
= fo(R+3s, 1, R—1s,2; 1)—3s'Vf,(R+1s, 1, R—3s5, 25 1), (92)

1 Cf. J. H. Irving and J. G. Kirkwood, J. Chem. Phys. 18(1950)817.
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(with V = 0/0R). In this way (75) becomes

F® = —V-PS (93)

with the abbreviation

e, - — 1
PS = __f{svs ( €; ej 1) (n) Vrsz (m) V)Sn _.,.)}
LZ} 8rls+ry;—ryyl ; o( Ve 2 8ns

foR+%s, 1, R—1s,2; 1)dsd1d2. (94)

The latter quantity will turn out to be a contribution to the pressure tensor.
Owing to the (trivial) symmetry of f, with respect to an interchange of the
first pair of variables with the second pair, the first term of the right-hand
side of (92) does not give rise to a term in (93).

Let us now turn to the discussion of the short range term ¥* (91) of the
energy equation. The expression between brackets in (91) vanishes if the
atoms are outside each other. With the use of the expansion (92) we obtain
now

P = PV (PSo+JY). (95)

The first term ¥** reads like (91) but with fo(R+%s, 1, R—1s, 2; t) instead
of /2(R, 1, R—s, 2; 1), while the second contains, apart from a term with the
local velocity v, a divergence of the vector

f IZ(”l“P’h)V

8n |s+r1l Fal

m —(n A © = T (m m 1
Z( 1)(2 P EVEh Y Y VRS v
m= n=1 87s

fo(R+1s, 1, R—1s,2; H)dsd1d2. (96)

The contribution ¥* to (95) may be written in a simpler form. For that
purpose we shall consider the time derivative of the quantity

o’ Ef(z ee; Z (=15 : Ve yr _L)

i ]87[]S+11L "2;1 n,m=0 8ns

f(R+3s,1, R—1s,2; )dsd1d2, (97)

which will turn out to be a contribution to the internal energy density. With
the identity
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&ﬁm+%JmR—%ﬂmﬂ):,fFEﬁZV+@fmgm
ot 2
+':1i'Vr1i+';2j.Vrzj} fZ(R+%s: Uy, Py 'zliﬂ R_lfs> Uy, ¥ ';ZJ'; t)
dv, dv, [ [ dFy,di,;, (98)
ihJ

which follows from the conservation of the number of particles (or the pro-
bability in fluxion space), we get for the time derivative of (97) after partial
integration and the use of the (trivial) symmetry fo(R+%s, 1, R—1s,
2; )=fo(R—1%s, 2, R+1s, 1; 2):

~ S . .
U V(oS + IS ) ¥° (99)
ot
with the abbreviation
Jy=f@%ﬂ)(2~—4fl~w-%(~Hﬁ@iﬂ@%swui)
“ A W 16mls+r;—ry;l  am=0 16ms

fo(R+1s, 1, R—3s,2; t)dsd1d2. (100)

The divergence in (99) contains a convective part vo1® and the conductive
part (100).
With ¥ from (99) we get for (95):

a S
S = —V-(vou* +Poo+J5)— W%I:‘ . (101)

Since ¥ occurred in the energy equation (80), it appears that gu® (97) is a
contribution to the internal emergy density, and that JZ, which is the sum
of J§ (96) and J; (100), is a contribution to the heat flow. .

In this way, the short range quantities F® and ¥®, which occur in the mo-
mentum and energy equations, have been found, in formulae (93) and (101),
for sufficiently homogeneous systems. It may be noted that i.f the ‘atoms’
carry charges, but no multipole moments (as in plasmas, for instance), the
quantities F* and ¥* simply vanish.

f. The momentum and energy equations for fluids

In this subsection we want to consider the momentum and energy equations
for systems in which the correlation function has short range i.e.
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¢;(R, 1, R—s, 2; t) vanishes rapidly as the interatomic distance s increases.
This is usually the case for one-component fluid systems, at least if the con-
stituent atoms are electrically neutral. (Amorphous and polycrystalline
solids of neutral atoms are other examples of systems with short-range cor-
relation functions, to which the treatment of this subsection applies.) For
such systems we shall cast the correlation terms F€ (74) and ¥° (90) in the
momentum and energy equations in a convenient form.

In normal fluids the correlation function becomes negligible for s greater
than the so-called ‘correlation length’. This correlation length is much smal-
ler than the distances over which the macroscopic quantities change appre-
ciably. Then the correlation function may be approximated by the first two
terms of a Taylor expansion

c2(R, 1, R—5,2;1) = c,(R+3s, 1, R—1s, 2; ¢)
—38'Ve,(R+%s, 1, R—3s, 2; 1), (102)

the Irving-Kirkwood approximation.

For a fluid of neutral atoms the correlation term F€ (74) in the momentum
equation becomes then a divergence, because the first term at the right-hand
side of (102) gives no contribution. In fact (74) with this first term vanishes
owing to the trivial symmetry of ¢c,(R+3s, 1, R—1s, 2; ¢) with respect to an
interchange of the first and second pairs of arguments. In this way one gets

F€= —VP° (103)

with the correlation pressure given by

PC = Z (_1)m (SVS @(ln) Vg @fzm) : Vlsn _‘1‘)
nym=1 8ns

c2(R+3s, 1, R—1s,2; ))dsd1d2.  (104)

The momentum equation for a fluid of neutral atoms is obtained from (62)
with (72), (93) and (103). It reads finally

= —V-(ovv+P)+F, (105)
where the force density is
F = (VEyP+(VB)M+c™* g«(P/\B)+c"1V-(vP/\B) (106)
t

! J. H. Irving and J. G. Kirkwood, op. cit.
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(for systems of neutral atoms ¢° and J vanish) and the pressure tensor
P = P4+ PF4+P5+PC (107)

The momentum equation (105) has the form of a balance equation, not of
a conservation law. Indeed the momentum density gv does not only change
as a consequence of momentum flow gvv+P, but also as a consequence of
momentum ‘production’ F. The latter source term arises because the system
is not closed. It vanishes if the electromagnetic fields are not present. (The
expression (106) contains a time derivative and a divergence of quantities
which might be grouped with the momentum density and the momentum
flow respectively. This has not been done in order to keep together terms
which depend exclusively on the Maxwell fields E, B, the polarizations P, M
and the velocity v.)

The momentum flow of which (minus) the divergence appears in (105)
consists of a convection part (gvv) together with the pressure tensor (P).
The latter quantity contains the kinetic pressure tensor PX (63), a term P©
(73) with the magnetic field B and the potential pressure tensor PS4+ PF,
where PS (94) (with the atomic charge f” = iy = 0) contains a short
range interatomic interaction multiplied by a distribution function f, with a
long range, whereas P¢ (104) contains the long range part of the interatomic
interaction multiplied by a correlation function ¢, of short range. (The
second term in the short range pressure P® (94) has the same structure as the
correlation pressure PC (104). Their sum might, according to (7), be written
with a product of one-point distribution functions. However, the way in
which the potential pressure tensor PS5+ P€ has been written here has the
advantage, as stated above, that the short-range character, of both contribu-
tions separately, is explicitly apparent.)

Furthermore the momentum balance equation (105) contains as a source
term the force density F (106) exerted by the field (E, B) on a medium with
polarizations (P, M). It includes the Kelvin force (VE) P on an electrically
polarized medium and three force terms of magnetic origin: the first of these,
(VB)-M, is analogous to the Kelvin force while the other two describe a
coupling of the magnetic field and the electric polarization®.

The momentum equation (105) may be written in the form of a conserva-
tion law by using the identity

1 Part of these results were obtained already by H. A. Lorentz, Enc. Math. Wiss. V 2,
fasc. 1 (Teubner, Leipzig 1904)200; A. Einstein and J. Laub, Ann. Physik 26(1908)541;
W. Dillenbach, Phys. Z. 27(1926)632; P. Mazur and S. R. de Groot, Physica 22(1956)
657; A. N. Kaufman, Phys. Fluids 8(1965)935.
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(VE)P+(VB)M = V-{DE+BH - (3E* + 38~ M-B)U} —c~* 2 (D A B),
ot

(108)

which follows from the Maxwell equations (13) with (14) for systems of
neutral atoms (U is the unit tensor). Substituting this identity into (106) and
the result into (105) one obtains

d(ov+c 'EAB)
ot

= —~V-{ovv+P—~DE—BH—¢ 'vPAB+(3E*+1B*~M'B)U}. (109)

This equation forms the conservation law of total momentum for a fluid
of neutral atoms in an electromagnetic field. Both the momentum density
and the momentum flow consist of a material part and a field part.

'll“he correlation term ¥© (90), which plays a role in the energy equation, may
likewise be written in a special form for fluid systems of neutral atoms. Since
for such systems the approximation (102), which has the same structure as
(92), is valid, one may follow the same procedure as in subsection e. In this
way one obtains (cf. (101))

c

e = — Ve(oguS+ PSo 179~ 284 (110)

ot
where
wt =] 3 oy (ErivEeive L)
nm=1 87s
¢,(R+1s,1, R—1s,2; 1)dsd1d2  (111)
and
C = m ~ A \=(n) * - .
Jyg=~— Z . (—=1) I;{(Svl'vs-vl)y'(l) : V:+SF"(1n) ; V:}-P:(zm) Ve —1—:1
nm= 87'[8

c;(R+%s, 1, R—3s, 2; 1)dsd1d2  (112)

are the correlation contributions to the internal energy density and the
heat ﬂ(?W. The energy equation for a fluid of neutral atoms is obtained from
(80) with (88), (101) and (110). It reads finally:

0 Lapn2 2
E(»zgv +ou) = —V-{v(kov* + ou)+ Po+ T} + P, (113)
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where the ‘power’ density is (J = 0 for systems of neutral atoms)

¥ = oP aB (114)
ot
the specific internal energy
u = u*+ut+uS (115)
and the heat flow
J,= IS+ T+ T3+ 75 (116)

The energy equation (113) has the form of a balance equation. It shows that
the sum of the bulk kinetic energy density 2ov? and the internal energy
density gu changes as a consequence of two causes: through the divergence
of an energy flow and through a source term. The specific internal energy
(115) consists of three parts. In the first place a contribution u* (78) formed
with the help of one-point distribution functions occurs. It consists of the
energy due to atomic velocity fluctuations and the total intra-atomic energy.
It will be referred to as the kinetic part of the specific internal energy.
Furthermore two contributions ° (97) (with the atomic charge i{” = i%”
= 0) and »“ (111) with two-point distribution functions arise; these terms,
which are due to interatomic forces, will be called together the potential part
of the specific internal energy.

The energy flow in (113) contains besides convection terms with the local
velocity v, the heat flow J,, (116). The latter consists of a kinetic part Ji (81),
a part JF (89), due to the action of the fields on the electric dipoles, and two
terms JZ (= IS +J15", v. (96) and (100) with i{” = @ = 0)and J© (112),
which form togethex the potential part of the heat ﬂow. (Just as in the po-
tential pressure tensor one could have combined here part of the short range
internal energy with the correlation energy in such a way that a product of
two one-point distribution functions occurs. The same remark applies to the
potential part of the heat flow.)

The power density ¥ (114) contains iwo terms with time derivatives,
showing the same asymmetry as was present in the atomic energy equation.
This asymmetry will play a role in the first law of thermodynamics, as will
be shown in section 7. Furthermore the power density ¥ contains a diver-
gence of a vector which might be shifted to the energy flow. We have pre-
ferred to keep it together with the other terms containing the macroscopic
Maxwell fields E, B, P and M.

The balance equation (113) may be transformed into a conservation law.
In fact from Maxwell’s equations it follows for neutral and current-free
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systems that:

Q—? E—-M- f’£— = —cV(EA H)—— - w(EZ B?). (117)
%

If this is inserted in (113-114) one gets

5.0} (bov’+ou+3E*+1B%)
= —V-{v(}0v*+ ou)+Pv+J, +cEAH—vPE}, (118)

which expresses the conservation of total energy for a fluid system of neutral
atoms. Both the energy density and the energy flow consist of a material part
and a field part. The latter includes the Poynting vector.

The right-hand sides of the conservation laws (109) and (118) of momen-
tum and energy contain the total momentum flow and the total energy flow
respectively. Since only the divergences of these quantities play a role, they
are determined up to a divergence-free part. The expressions given are thus
not uniquely fixed, although they appear to be the simplest oncs'.

g. Mixtures, in particular plasmas

In the preceding the treatment was confined to one-component systems. The
extension to mixtures of several components is straightforward. In that case
one has to introduce distribution functions for each separate species. The
one-point distribution function f{(1; ) carries an exira label a which
indicates the species. Now f7(1; £)d1 is the probability, normalized to N
(the number of atoms of species @), to find an atom of species a with param-
eters in the range dl in fluxion space. Similarly the two-point distribution
function is defined in such a way that f3°(1, 2; ¢)d1d2 is the joint probability,
normalized to N°N° (if a # b) or NY(N*—1) (if a = b), to find an atom of
species ¢ in the range d1 and an atom of species 4 in the range d2. The corre-
lation function ¢§(1,2;¢) is now defined as the difference 21,250

—f{(1; 02 2; ).

A case in which the use of this kind of distribution functions is essential
is a plasma consisting of a mixture of oppositely charged ions and electrons,
of which the internal structure is supposed to play no role. For such a plasma

* Much discussion has been devoted to this point, in particular with respect to the Poynt-
ing vector: v. G. H. Livens, Phil. Mag. 34(1917)385; C. O. Hines, Canad. J. Phys. 30(1952)
123; F. Bopp, Ann. Physik 11(1963)35; E. M. Pugh and G. E. Pugh, Am. J. Phys. 35(1967)
153; L. W. Zelby, Am. J. Phys. 35(1967)1094; W. Shockley, Phys. Lett. 28A(1968)185.
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the macroscopic mass density is

o(R, £) = . m, f{(R; 1), (119)

and the local barycentric velocity is defined by
o(R, (R, t) = meavl Fi(R, vy t)doy . (120)
They satisfy the macroscopic law of mass conservation (59). The momentum

law that follows from the atomic equation (I.50) reads (cf. (62)) in the case
of the plasma

= —Ve(ouw+P)+F, (121)

where the kinetic pressure is now (cf. (63))
PK = ZJ\nlai}l f)l fla(R: 1)1; t)dvl (122)

with the velocity fluctuation given by (61). Furthermore the force density is

cf. (72)
(ot (72) F' = o°E+c¢ " AB+FS, (123)

where the macroscopic charge and current densities are (18) or alternatively
(19):
SR ) = TSR0, TR =X [ o iR 05000, (129

and the correlation force density (cf. (74))

e\ a )
F€= =3 (VSZ“ b) (R, R—s; t)ds. (125)
ab s

(The terms (73) and (75) are absent in (123) and (121) re;spectively because
the internal structure of the charged particles has been ignored here.)

Let us now consider the correlation force F€ for the special case of a Plasma
in which the correlation function vanishes rapidly if the interparticle distance
becomes of macroscopic order. This is the case for plasmas withogt spacle
charge and sufficiently near equilibrium, as a result of Debye sh?eldmg .
Then using the Irving-Kirkwood approximation (102) we may write (125)

1 A.N. Kaufman, Phys. Fluids 6(1963)1574, who givcs a treatment similar to that of this
subsection.
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as a divergence:
FC = — V€ (126)

with the correlation pressure

P — — Z (SVS ega eb) C;b(R‘*"}‘Zs: R_%s’ {)ds, (127)
a,b s

The momentum equation (121) may now be written as

oov _ —V-(ovw+P)+c"'J AB, (128)

~

ot

where the total pressure is the sum of the kinetic and the correlation pressure
P = P*4PC (129)
and where the last term of (128) is the Lorentz force in a neutral medium.
The energy law that follows for the plasma from the atomic equation (1.63)
is (cf. (80))
—? (Gov* + ou®) = —V-{o(1ov* +ou) + PSo+ TSV + W5, (130)
ot

where the kinetic part of the internal energy density is given by (cf. (78))

o = 3 [ 4m, 8 1R, vy ), (131)
and the kinetic part of the heat flow by (cf. (81))
Jf = Zfﬁf’z—ma 37 fI(R, v,; t)d, . (132)
Furthermore the power density is here (cf. (88))
Y = JE+¥° (133)

with the current density J (124) and the correlation contribution (cf. (90))

) (vl'Vs Z e”) (R, v, , R—s; f)dsdv, . (134)
a,b s

(The terms (89) and (91) are absent from (133) and (130) respectively
because the charged particles have no internal structure.) For a sufficiently
homogeneous plasma without space charge (¢° = 0) we apply the Irving—
Kirkwood approximation (102) on the correlation power density (134):
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TC == Zjvi.vs ?aeb C;b(R‘l"']Zsa v, R"‘%S; t)dsdvl
ab 47s

e, e

+V- Y | 5o,V -2 (R+3s, v, , R—1s; t)dsdo, . (135)
a.b 8ns

The first term at the righi-hand side may be transformed to the sum of a time

derivative and a divergence, since as a consequence of the conservation of

probability in fluxion space one has

_a_ €a P (R+%s, R—1s; t)ds

a,b @t 87'[5

= =V | (v;+70,) Galt PR+, v, , R—1s, vy 1)dsdv, do,

a.b 167’55
+ 3 | (9, = 0)V, S PR+ s, vy, R—1s, 051 1)ds doy do (136)
ab 8ns

(where in the last term a partial integration has been performed). Owing to
the symmetry of the correlation function the last term is equal to minus the
first term at the right-hand side in (135). This allows us 1o write (135) in the

form (cf. (110))
Ao C
gl = —V'(quC—I—PC'v+-f§)"~ cer ) (137)

ot

where now the correlation part of the internal energy density 1s

out = Zji'ﬁ ¢y (R+1s. R—1s; t)ds. (138)
a,b 87(5

and the correlation part of the heat flow

(3, — 58,7, %) ! —1s; )dsdv, . 139
JS:G’ZJ {(”1“5”1Vs)'égjcz(R“‘“zSa”uR Is; f)dsdo, (139)

The energy equation follows if (133) with (137) is substituted into (130):
u (1ov> +ou) = —V-{o(tov’ + ou)+Pv+ T} +JE, (140)
ot

where the total internal specific energy
u = u*+u° (141)

is the sum of a kinetic part, given in (131), and acorrelation part, given in

—
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(138). Furthermore the total pressure P has been given in (129) and the total
heat flow

Iy =Tg+J1g (142)

is again the sum of a kinetic part (132) and a correlation part (139). The
source term in (140) is the well-known electric power density.

One may write both the momentum Jaw (128) and the energy law (140) in
the form of conservation laws, if one uses the identities

¢"'IAB = V-{(EE+BB—L(E*+B)U}—c™' ~(EAB)  (143)
ot

and

)

JE = ~cV{(EAB)= > = (E+BY) (144)
ot

respectively, which both follow directly {from Maxwell’s equations for a
neutral unpolarized medium (¢° = 0, P = 0, M = 0). One obtains in this
way

-

;%(gvﬁLc“]E/\B) = —V-{ovv+P—EE—BB+3(E*+B*)U} (145)

for the conservation of total momentum, and

2 2

’%(JZQU +ou+LE*+1B%) = ““V‘{v(%gvz—l—QL¢)+P‘v+fq+CE/\B} (146)

for the conservation of total energy.

h. Crystalline solids

Up to subsection e the derivations were independent of the nature of the
systems, provided that these were sufficiently uniform. The latter restriction
was made in order to write the short range terms in the momentum and
energy equations in convenient form. In subsections f and g, where the
correlation terms were discussed, it was necessary to specify the system
further: we confined ourselves to fluids of neutral atoms (and amorphous or
polycrystalline solids) and to neutral plasmas, for which the correlation
function is of short range. Then the Irving-Kirkwood approximation could
be employed.

In this subsection we shall study systems with correlation functions of
arbitrary range, such as crystalline solids. Even then it is possible to trans-
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form the correlation terms to a divergence, or to a divergence and a time
derivative. This may be done with the help of the following artifice’. Let

us write the following identity for the correlation function of a one-com-

ponent system?
(R, 1, R—s,2; )—cy(R+3s,1, R—1%5,2; ]

[t] ~
= — f 8% ¢ {R+3(+1)s, 1, R+3(A—1)s, 2; t}d2. (147)
-1 4

Since the correlation function in the integrand depends on position coordi-
nates which are combinations of R+11s and 3s one may replace the operator
8/0% by 1s'V. In this way one obtains for (147):

c,(R,1,R—s,2;1)
= c)(R+1s, 1, R—15,2; ) =3V, (R+3s, 1, R—3s, 2; 1), (148)

with the “mean correlation function’:

0
¢ (R+1%s,1, R—1s,2; 1) EJ e (R+1(A+1)s, 1, R+3(A—1)s, 2; t}d2.
~-1
(149)

(If ¢, vanishes rapidly with increasing interatomic distance |s| so that a
correlation length exists, and if moreover ¢, changes slowly if both positions
are shifted over a distance of the order of the correlation Jength one may
consider the integrand in (149) as a constant. Choosing its value at A=0
the ‘mean correlation function’ ¢; reduces then to the ordinary correlation
function ¢,. In this case (148) reduces to the Irving-Kirkwood approxima-
tion (102).)

Using (148) which has the same form as (102) we may find expressions
for the correlation terms in the momentum and energy laws for systems with
long range correlations. These are in form very similar to the expressions
valid for fluids. In fact for the case of long range order the momentum

balance becomes

‘15?3 — —V-(ovv+P)+g°E+c~'T AB+(VE)P+(VB)M

t

et —? (PAB)+c”'V-(vPAB) (150)
ot

t 3. H. Irving and J. G. Kirkwood, op. cit.
2 If the system is a mixture one should add indices @ and b to the distribution functions

and the atomic parameters such as the charges and the masses. Furthermore summations
over a and b are then to be added.
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W}i(th a pre}s:sure tenssor P that consists of four contributions (cf. (107)), viz
P (63), P (73), P® (94) and the correlation pressure PC given by (cf. 164)):

C .. - " —{n) - .
Po= -] 3 (v ivaeive L

n,m=0 8ns
¢y (R+1s,1, R—3s, 2; t)dsd1d2. (151)

Likewise the energy balance equation for the case of long range order gels
the form

a 2
52(%Qv +ou) = —~V-{v(kov’+ ou)+Po+J,}

oP 5
+JE+ —-—— ‘E+V'(vP-E)—M- O_I% (1 52)
gt ot

2

W}ith a spesciﬁc internal energy u that consists of three parts (cf. (115)), viz
u” (78), w” (97) and the correlation contribution u° given by (cf. (11 1))

C - m |5 () yno(m) ¢
wt=| 3 iy (EvEeve L)
nm=0 87CS

c2(R+14s, 1, R—1s, 2; t)dsd1d2. (153)

F;lrtherm(;re the heat flow consists of four parts (cf. (116)), viz J& (81)
. 3 q >
J, (89), J; (96), (100) and the correlation contribution given by (cf. (112))

C = m A () 3
To=—s 2 (=1 {(vl‘Vsu»E’:VZJrEY"gvg)r:.g">;V':i_}
= * 8xs

¢; (R+1s, 1, R—3s,2; t)dsd1d2

s o (E e v L
nm=0 87s

¢3(R+1s, 1, R—1s,2; 1)dsd1d2, (154)

Whe.re only in the first part the ‘mean correlation function’ occurs.

Finally it should be remarked that the procedure employed to write the
cor.relation terms in the form of a divergence (or a divergence and a time
derivative) is not unique. However, the statistical expressions obtained have
been p1:eferred because of their formal resemblance to the corresponding
expressions for fluid systems.
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i. Galilean invariance

In the preceding non-relativistic balance equations of momentumand ene?rgy
have been obtained. We shall investigate whether they are indeed covariant
with respect to the Galilei group. The rotational invariance of all equations
is manifest since they have been formulated in tensor notation. The trans-
formation character with respect to a pure Galilean transformation (22)

needs to be considered in some detail. .
Let us first show that the conservation law of mass (59) possesses Galilean

covariance. Indeed the mass density defined in (36) is an invariant
o'(R,7) = o(R, 1), (155)

as follows from the invariance of the one-point distribution function (cf.

e £ 1) = fi(L ), (156)

where 1 stands for the position, velocity etc. of atom 1; primes indicate the
corresponding transformed quantities. Furthcrmore it follows from (58)
with (155) and (156) that

(R, 1) = o(R, 1)+ V. (157)

Now from (23), (155) and (157) one proves immediately that (59) is a
covariant equation, i.e. also valid with primes. .

We now turn to the momentum balance (105-106) for fluid systems of

neutral atoms. With the help of the mass conservation law (59) it may be
brought into the form

. d
0L — VP (VE)P+(VByM+c ‘o (P nB), (158)
dt

where v = ¢~ ! is the specific volume and

+oV, (159)

the material time derivative. By inspection of the expression (107) with (63),
(73), (94) and (104) it follows from (27), (61) and the invariance of the
distribution function expressed by (156) and

f1, 251 = fo(1, 25 1),
ey(1,2'5 1) = (1, 25 1),

(160)
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that the pressure P is invariant with respect to pure Galilean transformations:
PR, t) =P(R, 7). (161)

Hence, according to (23), the term V-P in the momentum equation (158) is
invariant with respect to pure Galilean transformations. The other terms in
(158), viz odv/ds, (VE)P+(VB)}M and ¢~ 'o(d/ds)(wP AB) are also, se-
parately, invariant under pure Galilean transformations as follows from
(23), (26), (27), (155), (157) and (159), where terms of order ¢~2 must of
course be discarded. In this way the Galilean covariance of the momentum
balance has been proved for the case of fluids systems of neutral atoms. The
momentum balance for neutral plasmas and for systems with long range
correlations (subsections g and /) also possess Galilean covariance as fol-
lows by a similar reasoning from the transformation formulae.

Let us discuss now the Galilean covariance of the energy balance equation
(113) for fluids of neutral atoms. With the help of the mass conservation
law (59) and the material time derivative (159) it may be written as

Q§~ W tu) = —V-(Po+J,)
t

o d(:;P) E— M- %13 +o-{(VE)P+(VB)}M). (162)
1 1

If the first term is rewritten with the help of the (Galilei covariant) moment-
um equation (158) we obtain

du

0— = —VJ,—P: (Vv
dt ! (Vo)
+QC}%@-(E+c*1v/\B)—~(M+c”v/\P)'%E, (163)
t ¢

where P is the transposed of the tensor P (or P;; = P;;) and the double dot
indicates a double contraction of two tensors (A : B = YA B). With
(61), (155), (156), (157) and (160) it follows by inspection that the contribu-
tions (78), (97) and (111) to the specific internal energy u (115) are each

Galilei invariant, so that
W' (R, 1) = u(R, 1). (164)

Consequently with (23), (155) and (159) it follows that the left-hand side of
(163) is invariant. Furthermore with the help of (27), (61), (156), (157} and
(160) it is seen that the contributions (81), (89), (96), (100) and (112) to the



60 NON-RELATIVISTIC CLASSICAL STATISTICS A CH.II

heat flow J, (116) are each Galilei invariant, so that
TR, 1) = J(R, 1) (165)

Hence the invariance of the first term at the right-hand side of (163) follows
if (23) is used. The invariance of the second term at the right-hand side of
(163) follows from (23), (157) and (161). Finally if one uses (23), (26), (27),
(155) and (157) one may prove the invariance of each of the last two terms
of (163). In this way the Galilean covariance of equation (163) has been
established, and hence that of the energy equation (162). We have chosen to
give this proof via equation (163) because, in contrast with (162), all its
terms are separately invariant. For (neutral) plasmas and for systems with
long range correlations the Galilean covariance of the energy equations is
proved in an analogous way.

6 The angular momentum equations

a. The inner angular momentum balance

On a par with the momentum and energy equations derived in the preceding
section, macroscopic angular momentum laws will now be obtained by
averaging the corresponding atomic equations. The macroscopic angular
momentum density is defined as the average:

S(R, 1) = < ¥ 5.6(R~ R)>, (166)

where 5, is the inner angular momentum (1.68) of atom k. The time derivative
of S(R, 1) is found with the help of the lemma (2) and (1.76):

QD
97

l

= —V¥ 2; v, 5, 6(R.—R)> +< ; (dy +d)o(R,—R)). (167)

<

i
Introducing the velocity fluctuation #, (61) we get

o _ — V(28 + %)+ D"+ D (168)
ot

with the kinetic flow of inner angular momentum
5 = f 5.5, /iR, vy, 51 f)dvy d5, (169)

and the abbreviations D™5* = (¥, di"(R,—R)> with d;°° given by
(L.77-78).
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Let us first consider the external field part DX of D. It may be written

with the help of the polarizations (65), if one uses the vector identity
an(bacy+cycl. = 0:

Dy = PAE,+MAB +c 'vA(PAB,)
+c"1fﬁlx\(ﬁ< ABYf(R, vy, BY; t)de dEl?. (170)

. The part of the long range term in (168) that is due to the interatomic
interactions is

DL_D{:‘:J‘( Z nV /\M(n) Vn 1 (m) Vm 1 )
nm=0 47Z|R1 RZI

S(R—R)f>(R,, 1, R, 2; 1)dR, dR,d1d2, (171)

where 1 and 2 indicate all electric multipole moments. We split this expres-
sion with the help of (7). In the uncorrelated part we introduce the macro-
scopic charge and polarization densities (64) and (65), omitting (just as in
§ 5¢) higher multipole moments. In this way (171) becomes

D'-pt = —fP(R, DAV{e(R, )+ PR, t)V' } b dR’

4n|R—R’|

+f( Z HV/\}L V" lu(ffl) yom 1 ~~)
=0 47[]R——Rll

e(R, 1, R, 2; )dR'd1d2. (172)

The total long range moment density which is given by the sum of (170)
and (171) may be written with the help of (71) as

D" = PAE+MAB+c 'vA(PAB)+DF+ D, (173)

where the last two contributions are given by
Df = ¢~ fv A@ED AB)f(R, v, , BD; £)do, dE(?, (174)
D = fdc(s, 1,2)c5(R, 1, R—s, 2; t)dsd1 d2, (175)

with the abbreviation

dC(S, 1, 2) = Z ( 1)mnv AM(u) Vn 1-—(m) V"’___d' (176)
4rns

nm=0
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Finally the short range moment in (168) reads
D% = fds(s, 1,2)f5(R, I, R—s, 2; t)dsd1 d2 (177)

with the abbreviation

(s, 1,2) zf{—— S AV s, 1, 2)}
i

s47r]s+r“—r2j|

f2(R, 1, R—s,2; 1)dsd1d2. (178)

The integrand in (177) vanishes if the atoms are outside each other. Since the
two-point distribution function remains practically unchanged if both R
and R —s are shifted over a distance of the order of an atomic diameter, one
may write the short range moment (177) with the help of (92) as

D% = —V-J3+ D%, (179)

with the short range contribution to the inner angular momentum flow
3= [%sds(s, 1,2)f,(R+3s, 1, R—1s,2; t)dsd1d2, (180)
and the source term:
D’ = fds(s, 1,2)f,(R+13s, 1, R—1%s, 2; t)dsd1 d2. (181)

The correlation contribution D* will be specified for particular systems
in the next subsections.

b. Fluid systems

For fluid systems of neutral atoms (and amorphous or polycrystalline solids)
the correlation function has usually short range. In that case it may be ex-
panded as in (102). In that way the correlation contribution D* (175) gets
the form

D = —v-JS4+D° (182)

with the correlation contribution to the inner angular momentum flow:

3¢ = f 15ds, 1, 2)cp(R+4s, 1, R—13s, 2; dsdid2 (183)
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and the source term
Dt = fdc(s, 1,2)c,(R+%s,1, R—13s, 2; )dsd1d2, (184)

where d(s, 1, 2) has been given by (176) (with the atomic charges i(* =
s = 0).

The balance equation (168) of the inner angular momentum becomes, for
fluid systems of neutral atoms, upon insertion of (173) and (179):

o _ ~V(vS+J)+D,+PAE+MAB+c 'oA(PAB).  (185)

~

ot
The conduction flow of inner angular momentum consists of three parts:
Jo = I+ +35, (186)

where the various contributions have been given in (169), (180) and (183)
with (176) and (178) (with the atomic charges i\” = g5 = 0). Further-
more the source term contains a material part

D, = DF+ D%+ D, (187)

where the three contributions have been given in (174), (181) and (184)
with (176) and (178) (again with 7> = i = 0). The other source terms
are Lhe torque densities which the Maxwell fields exert on the polarization
densities in the moving fluid.

The source terms with the Maxwell fields may be written in a simpler form
if ‘rest frame quantities’ are introduced. The rest frame (denoted by primes) is
related to the observer’s frame by a pure Galilean transformation (22) with
transformation velocity ¥V = —w, such that »* = 0 (cf. (157)). Then the
Maxwell fields and polarizations transform according to (26) and (27) (up
to order ¢ *):

E' = E+c 'wAB, B' = B—c wAE,

(188)
P =P, M =M+c waAP.

With the help of these formulae we get for the source term (up to order ¢ ™)
PAE+MAB+c 'oA(PAB) = PPAE +M'AB'. (189)

In fluid systems quite often the rest frame polarizations P’ and M’ are parallel
to the rest frame fields E’ and B’ respectively. In that case the field source
terms (189) vanish.
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The equation (185) is a balance equation: the inner angular momentum is
not conserved. A conserved quantity is obtained if the orbital angular
momentum

L(R, ) = RA(ov+c 'EAB) (190)
is added to it. The time derivative of the latter quantity may be obtained
with the help of (109):

qﬁz ~V-(oL+J)+P,~DAE-BAH~—c 'vA(PAB). (191)
Gt

Here the conduction flow of orbital angular momentum is
J, = —PAR—D(RAE)~B(RAH)—c 'vRA(D AB)
+eR(AE*+3B*—M'B). (192)

Furthermore P, = € : P is the antisymmetric part of the pressure tensor P
(e is the Levi-Civita tensor with components ¢/* so that the components of
P, are P} = 7P,

If (185) and (191) are added one obtains a conservation law for the total
angular momentum densitly S+ L, since the source terms cancel, as we shall |
now show. Indeed the source terms with fields in (185) and (191) cancel

immediately if one uses the definitions D = E+ P and H = B— M. Further-

more the antisymmetric part of the pressure tensor follows from (107) with
(63), (73), (94) and (104):

P, = —c~ fv AE AB)f (R, 1; 1)d1

- j {S A Vs ( z -—-———ﬁfi—-———— Z ( 1)"1“(11) Vn p‘(zm) Vm 1 )}

i,j 87'6’S+l‘1i~—l‘211 nm=1 8ns
fo(R+1s, 1, R—1s, 2; H)dsd1d2

87s
c(R+3s, 1, R—1s, 2; )dsd1d2. (193)
The first term at the right-hand side is equal to —D* (174). The second
term may be transformed to

[z eumrpnve——to |

"8l +ry— |

nm=1

Z ( 1)mn(p‘-(n) Vn 1)/\V p‘(m) Vm?__

n,m=1 8ns
. Z (__ 1)m7n~@(1n) V”(P-(m) Vm 1) A V 1 \
nm=1 87ISJ

fo(R+1s, 1, R—1s, 2; 1)dsd1d2.  (194)

Z ( 1)m (S/\V p‘(n) VZE(’") Vm 1 ) ;
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Using the symmetry of the distribution function f, with respect to the inter-
change of 1 and 2 together with s and —s, we find that (194) is equal to ~D5
(181) with (178) and (176). In the same way one finds that the third term of
(193) is equal to — D€ (184) with (176). So finally the antisymmetric part
(193) of the pressure tensor is equal to the material source term (187) of the
inner angular momentum balance:

P, = —D,. (195)
This allows one to write (185) in the alternative form:

s _ ~V(vS+J)—Po+PAE+MAB+c 'vA(PAB).  (196)

)

If we add equations (191) and (196) we have now

5(_’%:*:5) = —V-{o(L+8)+ T+, (197)
ot

which is the conservation law of total angular momentum L8 for a fluid
system of neutral atoms.

c. Plasmas

In plasmas the internal structure of the ions is usually disregarded. Then the
inner angular momentum does not occur either. The angular momentum is
thus entirely of orbital origin

L(R,t) = RA(gv+c 'EAB). (198)
From the conservation law (145) of total momentum for plasmas follows:

Oa—’* - —VL+T), (199)
t

where we used the symmetrical character of the material pressure tensor
(129) with (122) and (127). Furthermore the flow of angular momentum is

(cf. (192)):
J, = ~PAR—E(RAE)—B(RAB)—c 'oR A(E A B)+eRGE*+1B%) (200)

(with € the Levi-Civita tensor). Hence as (199) shows the angular momentum
satisfies a local conservation law.
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d. Crystaliine solids

In the preceding two subsections we studied systems with short range correla-
tions. Now we shall turn to the general case of arbitrary range correlations —~
as occur in crystalline solids — including the effects due to charged atoms.
Then all results of subsection @ remain valid®.

Since the correlation function is no longer of short range, the Irving-
Kirkwood approximation (102) is not applicable. Nevertheless by use of an
artifice of the type (148) we may still obtain a formula (182), such that
again (195) is valid. Indeed with the belp of the identity

c(R, 1, R—5,2;1) = c;(R+3s, 1, R—1s; 1)~ 1s'VeF (R+3s, 1, R—1s: 1),
(201)
where

+1

o {(R+3(2+1)s, 1, R+3(A—1)s, 2; }dA
1

cs(R+3s, 1, R—1s,2; 1) = %f

(202)
and

cs(R+3s, 1, R—1s,2; 1)
1 +1

= 1=y {R+3(i+1)s, 1, R+3(A—1)s, 2; 1}dA, (203
2d -1 ‘
one may write (cf. (182))
D = —VJ35+DC. (204)

Here the correlation part of the inner angular momentum flow is

s

J¢ = f 1sd“(s, 1, 2)cF (R+1s, 1, R—1s, 2; 1)dsd1d2, (205)
while the source term is
D¢ = f d(s, 1, 2)c; (R+1s, 1, R—3s, 2; t)dsd1d2. (206)

In these expressions d(s, 1, 2) is given by (176).
Furthermore one may prove that just as in subsection b

D¢ = —PS, (207)

where P is the antisymmetric part of the correlation pressure (151). There-
fore also (195) is valid in the present case, and consequently (196) and (197).

* For mixtures an extra summation over the indices labelling the species should be added.
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e. Galilean invariance

The inner angular momentum equation {196) is Galilei invariant, as may be
shown if one rewrites this equation with the help of the law of mass con-
servation (59) and the relation (189) as:

d(vS
Q_(dﬁ._) — —V-J.—P,+P' AE+M AB, (208)
t
where v = g~ * is the specific volume, d/d7 is the material time derivative
(159) and the primes denote rest frame quantities (188). From inspection
of the various terms of (208) it may be proved that they are all separately
Galilei invariant.

7 The laws of thermodynamics

a. The first law

The first law of thermodynamics for fluid systems with neutral atoms (and
for amorphous or polycrystalline solids) will follow from the energy equation
(113-114) which may be written as

0L (1o su) = —V(PotT)Ho dP) g _ . 4B
dt dt dt

+v-{(VE)}P+(VB)}M}, (209)

where (59) and (159) have been used and where v = ¢~ ' is the specific
volume. At the left-hand side the sum of the specific macroscopic kinetic and
internal energies appears. A balance of internal energy alone is obtained if
the momentum law (105-106) with (59) or (158) is used in (209):
0 du ~V-J, P (Vo) +¢ d(P) (E+c 'oAB)—(M+c 'oAP) 4B )
dt dt dt
(210)

where P is the transposed pressure tensor. Each of the terms of this balance

equation is separately Galilei invariant (v. subsection 5f). In particular the

rest frame fields and polarizations (188) (up to order ¢™') appear

(v.(26-27)), so that we may write (210) as
du

0 = vy B ver o WOB) g 9B

211)
dt dr dt (
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(it should be remembered that M’ is of order ¢~ '). Traditionally one writes
the divergence of the heat flow J, in terms of the ‘supplied heat’ dg/ds per
unit mass and time:

dg
VI, = —o-1. 212
== @12)
Then (211) gets the form
dg _ du +oP : Vo— ——md(vP)E'—i—vM’* il . (213)
dr  dt dt dt

This is the first law of thermodynamics for fluids (and amorphous or poly-
crystalline solids) of neutral atoms in an electromagnetic field. If the pressure
tensor is a scalar p (times the unit tensor) the second term at the right-hand
side reads vpV-v or, if one uses (59), pdv/ds, the usual form. All quantities
of (213) are well-defined as statistical expressions in terms of atomic quanti-
ties (v. section 5f). In particular the specific internal energy u has been given
by (115) as the sum of the three contributions #* (78), #* (97) and «€ (111).
1t should be noted that the polarization terms in (213) show a special asym-
metry, which is a direct consequence of the asymmetry present already on the
atomic level (chapter I, section 5b). This asymmetry may of course be re-
moved by means of a Legendre transformation of the internal energy®. For
instance, with. the transformation

i =u+vM B, (214)
one gets instead of (213)
A - p’ d ‘M,
d9 _ 42 5.y 0P p_ dOM) g (215)
dr  dt dt ds

However the introduction of the energy i is rather artificial: the energy u,
in contrast to #, has a clear-cut physical meaning from the microscopic point
of view.

For a neutral plasma the first law of thermodynamics follows from the
energy equation (140) with (59), (128), (159), (188) and (212) as

2= 4P Vo v E, (216)

! For a discussion of various types of Legendre transformations in the first and second
laws for magnetized media see for instance H. A. Leupold, Am. J. Phys. 37(1969)1047.
Compare also the microscopic considerations of A. N. Kaufman and T. Soda, J. Chem.
Phys. 37(1962)1988.
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where J is the electric current density (purely conductive; the convective
part ¢°v is not present in a neutral plasma). The ‘supplied heat’ which figures
in the left-hand side and has been given by (212) is essentially the divergence
of the heat flow and represents therefore the heat supplied through conduc-
tion by the surroundings. The last term at the right-hand side represents the
Joule heat produced per unit mass and time.

Finally for systems with correlations of arbitrary range the first law fol-
lows from (152) with (59), (150), (159), (188) and (212):

dg _ du +oP : Vo—oJ"E' — éQP—)°E’+vM'°%, (217)
dt  dt dt dt

where J' = J —o% is the rest frame (or conduction) electric current density.

b. The second law for fluids

The microscopic basis of the second law of thermodynamics has a character
which is different from that of the laws established so far. The latter were all
statistical averages of corresponding microscopic equations, whereas the
second law contains a new quantity, the entropy, which is not the average of
a microscopic quantity. Furthermore the system for which one wants to
derive the second law has to be specified in more details as to its statistical
properties: here we shall confine ourselves to systems in equilibrium described
by a canonical ensemble.

In the present subsection we shall be concerned with the derivation of a
second law for systems of neutral atoms in which only short range correla-
tions are present. namely fluids and amorphous or polycrystalline solids.

The theory may be developed along two slightly different lines. In the
first conception one considers a system at rest enclosed in a vessel and sur-
rounded by a heat bath in a uniform and time-independent field. As a con-
sequence of the fact that the polarizations are discontinuous at the surface
it turns out then that the pressure and related thermodynamic quantities
vary over the sample. In the other conception one avoids non-uniformities
due to surface effects by dividing a large polarized system into nearly uniform
cells, still containing many atoms. These cells are then described by a
canonical (or grand) ensemble with their environments playing the role of a
heat bath. As external fields the averages of the fields arising from the sur-
roundings of the cell are employed, so that correlations between particles
inside and outside the cell are neglected. This is the reason why such an ap-
proach is only applicable to systems with short range correlations. We shall
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employ it (in this subsection) for fluids and amorphous or polycrystalline

solids.
The uniform Maxwell fields E and B in the cell are related to the fields

E.(R) and B.(R), due to the surroundings of the cell, as

14
E = E(R)+P- f VW 4R
4n|R—R’]
. (218)
B = BC(R)+M+M-f w1 __ar
AR—R|

(cf. (17)), where P and M are the uniform polarizations in the cell and where
the integrals are extended over its volume V. They are to be understood as
the sum of a principal value and an integral over a small surface around R
(v. problem 1). The equations (218) are satisfied by uniform external fields
E. and B, if the integral

12 1 s
fvvmdk (= -L) (219)

is independent of the position R. This is the case if the sample has ellipsoidal
shape (see appendix I). In that case the expressions (218) may be written as

E = E,~1-P,
B = B,+M~—LM,

(220)

where the tensor L, which is equal to (minus) the integral (219), is called the
‘depolarizing tensor’. (It depends on the shape of the boundary.)
The cell will be described with the help of the canonical ensemble

e T — Cfe'H/deqdp, (221)

where F* is the free energy’, 7 the temperature and C a constant (depending
on the number of atoms in the system), while H(g, p) is the Hamiltonian for
a dipole system (appendix II, formula (A32), with the atomic charges
e, = 0):

1 An asterisk is written at the symbol for the free energy to distinguish it from F = U~TS
with U the total internal energy. In fact we shall find that the latter will differ from the
average Hamiltonian (H >, which will be denoted by U* (= F*-TS; v. (227) and (232)).
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P; Tt ph o I pupes
H(q,p) = Y. (”li' +y Py Pily
€ \2my =1 2my; aie1 2my
S/ S/
n Z Z €ri €k T , - €1 €15
K i,i=1G=) 87|R(q)— R {q)| k,l(kz$l) i,j>:1 87|R:(q)— R, (q)]
_ 5 [z S NPT I SAN
Z Hy Ee+ (Vk +c H A ‘*) 'Be 5
| S0 ) By 22

e = :
where @) and 7" are the electric and magnetic dipole moments.
The free energy F* is a function of the external fields E, and B, the
temperature 7 and the position of the boundaries of the system. The partial

derivatives of the free energy with respect to the external fields follow from
(221) and (222):

— —(1)
= — L) = — VP,
OE, <§k:l‘k >
OF* _ (223)
(e ) - o
oD, k My,

where (65) has been used. The brackets indicate canonical ensemble averages
so that for a dynamical variable a = a(q, p) one has the average value
{a) = C[aexp {(F*~H)/kT}dgdp. Furthermore the partial derivative
with respect to the temperature gives the entropy S of the system:

OF*
oT

-S. (224)

":Fhe free energy changes also if the boundary changes. We consider in-
finitesimal variations of the position vector R (choosing the centre of the cell
as the origin of the coordinate system):

OR = Je'R, (225)

with a uniform (infinitcsimal) deformation tensor de. Then the ellipsoidal
shape of the boundaries remains ellipsoidal. (The external fields E, and B,
may be kept constant during such a deformation by adjusting the charges on
condenser plates and currents in coils around the total system in the proper
way.)

The tota] change of the free energy now follows from (223-225):

OF* = —~S6T—VP-OE,~VM-5B,+A : Je, (226)
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where the tensor A, which is contracted twice with de (i.e. A:de =
3i.; Ai;0¢;:), has still to be determined.
The f1 ee energy is connected to the average () = U* of the Hamiltonian

H by
F;E: = U*'—TS, (227)

where H is given by (222) or by (A37) (with e, = 0). The third term at t.he
right-hand side of (A37) may be expanded as a series if the atoms are outside
each other. For that reason we write (A37) in the form

S

€i €j
H = K+ e
;i,jzl(i;tj) 87| Ry — Ryl
+ Z i }L Vz-—-(rn) rln 1
KIGEED =1 © 7 8n|R,—R)|
! 1
N ekielj —(n) * Vn-(m) Vm" )
' G A
kI{E#1 (i,jz=1 87n|R;— Ryl nm=1 87|R.— Ry

~ S EDE., (228)
k

with K the kinetic energy and where the penultimate term vanishes if the
atoms are outside each other. The canonical average of (228) is the tgtal
energy of the system. Using (1.41), (1.44), (61) with » = 0 and appropnate
(time-independent) one- and two-point distribution functions it gets the

form

il

U*

i, % 5y 8nlry;

{H> =J(%mi)f+-}z M+ Y, ~—v~€——;*—i) f1(Ry, 1)dR, d1
i 2j

1
P viE v —— — f,(R;, 1, R,, 2)dR, dR,d1d2
n, mZ i ti 87[1R1 Rzl =

i
€; ej ——(n) * on ——(m) Vm )
+ e A :
f ( ZJ 87R;;— Ry, Z Ly 87|R, — R,

fZ(Rl B 1; RZ 3 2)dR1 dRz dl d2
~ [ BB AR, )R, R, (229)

where the integrals are extended over the volume of the system. Since the
system is uniform the integrals over R, in the first and last terms may be
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performed. In the second term we split £, into a correlation function of the
type (7) and a product of two one-point distribution functions. The latter
give rise to an uncorrelated part, in which we omit all multipole moments of
orders two and higher (as in subsections 5S¢, d such moments would yield
terms containing macroscopic multipole densities of higher order, which are
assumed Lo be negligible in our system). We then obtain

U* = Vou*+PP :fV v, »—L—de dR,
8n|Ry — R7l

Z (=gl ovradm V'" cZ(R+ s, 1, R—3s, 2)dRdsd1 d2

nm=1

—f—J‘(Z eij“ — ZJ ( ])m—-(n) Vn—(m) Vm 1 )

0 8Ts+ry—Fyyl  mm=1 8ms

f(R+1s, 1, R—1s, 2)dRdsd1d2—P-E,, (230)

where (65) and (78) have been used, and new integration variables R and s
have been introduced in the third and fourth terms at the right-hand side.
The limits of the integration over s depend on the value of the variable R.
However since both the correlation length and the dimension of the atoms
(which is the range of the first factor in the integrand of the fourth term) are
small compared to the dimension of the system, effectively the limits of the
integration over s depend on R only in a small region near the surface.
Neglecting these surface effects, and using the fact that the system is uniform,
we perform the integrals over R in the third and fourth term. Furthermore
the integral in the second term may be written as (see appendix I):

14

fVlV _J__ dR, dR, = —Vf vV 1 dR = VL, (231)
47|R; —R,] 47| R|

where R is the position with respect to the centre of the ellipsoid and where L

is the depolarizing tensor (which depends on the shape of the system). In

this way we obtain as the average Hamiltonian, using the internal energy u

(115) with (97) (neutral atoms have i{” = 0) and (111)

= U+ V(3PP : L—PE,), (232)

with U = Vou the total internal energy.
Finally the tensor A occurring in (226) has to be found. In appendix III
it is proved that A is the following average

A= - <Z (aHP ~R, aﬁ)> (233)

v \6P, oR,
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with R, and P, the canonical centre of mass coordinates and momenta of
atom k. We substitute into this expression the Hamiltonian (222), add and
subtract the multipole series expansion of the third term and use the appro-
priate time-independent distribution functions. This gives

== fmﬁx b, fi(Ry, v)dR; do,

]
87R, —R,|
f(R;, 1, Ry, 2)dR, dR, d1d2

e;€;
—RWV —
f{ 2V (gsnmu-—&jl

+f > {(Rl RV, B viE vy

nm=1

o 1
g VI E L vy ————————)}f R,,1,R,,2)dR, dR,d1d2
Z: . 87I|R1 Rzl 2( 1 2 1 2
+c—1fﬁl ﬁgl) A Be fl(Rl ) vl ) ﬁ(ll))de dvl d’_‘(ll)a (234)

where we used the Hamilton equation v, = R, = 0H/OP, and the expression
(61) with v = 0. Because of the uniformity of the system the space integrals
in the first and last terms may be performed. Then they become, apart from
a factor — ¥, equal to the sum of the kinetic pressure P* (63) and the field
dependent part of the pressure P¥ (73). In the second term we introduce a
correlation function with the help of (7). In the uncorrelated part we omit all
multipole moments of order 2 and higher, as in (230). In this way we obtain
for (234)

" 1
A= — V(PK+PF)+J (R, =RV, PV, PV, ——
7R, — R,

z ( l)m (SV (“'(ﬂ) : 2—(7)1) Vm 1 )

nym=1 87s

dR, dR,

c,(R+%s, 1, R—1s,2)dRdsd1d2

G e omem - om 1))
SV n - _1 mp‘(n) : Vz 6L(m) : VZI ~_~“)
J{ (218 ls+r1, ¥yl n,nzz::l( ) 2 8zs/ |
fo(R+1s, 1, R—3s, 2)dRdsd1d2, (235)

where (65) has been used and new integration variables R and s have been
introduced. Just as for the Hamiltonian, the integrations over s in the third
and fourth term are effectively to be extended over a volume small compared
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to that of the system, so that the integration over R may be performed, the
system being uniform. Furthermore the second term may be written as (see
appendix I):

1 — dR; dR,
TR, —R,|

f(Rl =RV, V, V,
1

87|R

= —VJRVVV |dR = —4VK, (236)
where R measures the position relative to the centre of the system and K is
a tensor of the fourth rank, which depends on the shape of the boundary of
the ellipsoidal system. In this way we obtain for (235), using (107) with (94)
and (104),

A= —-V(P+1K: PP), (237)

where P is the pressure tensor and the last indices of K are contracted with
those of the two factors P (the electric polarization).

This result could have been found along different lines, namely by starting
from the expression (A48) of appendix III according to which

s
5, F* = —f P, 0eRdS, (238)

where P, is the pressure exerted by a wall (supposed to be unpolarizable)
which separates the cell from its surroundings and # is the normal to the
wall. This pressure is not equal to the pressure P, just inside the boundary.
The reason for this difference is that the electromagnetic fields are discon-
tinuous across the boundary. In fact it follows from momentum conservation
in the form (109), applied to a thin volume element with surfaces on either
side of the boundary between the separation wall and the cell, that for a
system in equilibrium and at rest one has

n(P—P,,) = n'{DE+BH—(1E*+1B*—-M-B)U
L
—n{EE+BB—(3E*+1B?) Ulow- (239)

The fields just inside the cell and inside the separation wall are connected by
relations which are consequences of the Maxwell equations:

D =nkE,, E—nnE =E,,,—nnE,,,
(240)
B = B, H—nnH = B,,,—nnB,,.
Insertion of these formulae into (239) leads to

n(P—P,) = —in(Pn), (241)
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up to order ¢!, (Terms quadratic in the magnetization are of order c?
and hence not considered in the non-relativistic theory.) The right-hand side
of equation (241) is usually called the Liénard pressure’. (Incidentally this
formula shows how one could measure the pressure P just inside a polar-
izable system: P, may be measured by means of a manometer made of un-
polarizable material, while a value of the polarization P may be obtained in-
dependently.) If one introduces (241) into (238) and uses the assumed uni-
formity of P and de one finds

N
5, F* = —VP :de—1 f n-deR(Pn)*dS. (242)

This expression is indeed equal to A : e with A given by (237) as follows
with the help of the identity valid for the tensor K (defined in (236)) of a
volume of ellipsoidal shape (v. problem 5)

S
K = »Il;f RnnndS. (243)

Collecting the results (223), (224) and (237) and substituting them into
(226) with (227), we have found now for the change of the entropy

T6S = 6U*+ V(P+3K : PP): 6+ VP-SE,+VM-0B,.  (244)

If one inserts moreover (232) one obtains, dividing the result by the total
(constant) mass M of the system:

Tés = 6(u+10PP : L)+ o(P+3K : PP) : e—E 6(vP)+vM'3B,, (245)

where s = S/M is the specific entropy and v = V/M the specific volume. In
this relation the external fields occur, not the Maxwell fields. We may intro-
duce the latter instead of the former, by using (220) and also the relation
(proved in appendix I) that gives the change of the depolarizing tensor if the
shape of the boundary is changed:

(v 'L) = —v " 'de : K. (246)

We then obtain, up to order ¢~ * (noting that M is of order ¢ * already) the

entropy law
Tés = Su-+vP : e—E6(vP)+vM-3B. (247)

This law will be further studied, first for fluids, then for amorphous or poly-
crystalline substances.

1 A. Liénard, Ann. Physique 20(1923)249.
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A fluid system at rest is isotropic in the absence of polarizations and fields.
Then the entropy depends only on the internal energy » and the specific
volume v, not on the shape of the boundary. Therefore in this case only the
scalar part of the tensor de should contribute to the second term and hence P
reduces to a scalar p (times the unit tensor U). In this way, since vU : de is
the change of volume dv, the entropy law (247) becomes then

Tds = du+pdy, (248)

where we have written differentials, because now s is a function of v and v.

If fields and polarizations are present, it is not immediately clear that
again P is diagonal, since now the isotropy of the system is perturbed. How-
ever, if the polarization vectors P, M are assumed to depend only on the
specific volume v, the specific entropy s (or temperature) and the fields, i.e.

P =P(v,s, E,B), M = M(v, s, E, B), (249)
the entropy law (247) may be integrated at constant € and s with the result
u = uy+4du, (250)

where u, is the specific energy at zero polarizations and fields, which depends
only on v and s. Furthermore A« is a function of v, 5, E and B or (with (249))
of v, 5, vP and B. Therefore u depends on these variables so that du contains
only the trace of e which is equal to v~ "év. Hence from (247) it follows that
in equilibrium the tensor P reduces to a scalar pressure pU for the fluid
systems studied. So finally the non-relativistic second law (or ‘Gibbs rela-
tion”) becomes for a (one-component) fluid of neutral atoms

Tds = du+pdv—E-d(vP)+vM-dB. (251)

(It should be kept in mind that all quantities have been defined for a system
at rest. In particular the fields arid polarizations are therefore the same as the
primed quantities of the preceding subsection.) The field terms in the second
law (251) show the same asymmetry as has been discussed in connexion
with those appearing in the first law (213).

For amorphous or polycrystalline substances it is not possible to reduce
the entropy law (247) to the simple form (251): the pressure tensor does not
reduce to a multiple of the unit tensor. In order to obtain a Gibbs relation
from (247) we start by expressing the infinitesimal deformation de in terms
of state variables; de itself is not a stable variable as its definition (225)
shows, because R is the position of a point in the deformed state. Let us
introduce, as state variables characterizing the position R of a point of the
substance in terms of its position R° in a fixed reference state (denoted by
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the symbol °), a tensor ¥ by means of the relation
R = #'R°. (252)

Here 7 is independent of R since only uniform deformations of the (uniform)
cell are considered. Comparison of (252) with (225) shows that one has for
oe:

de = it (253)

In this way Je is expressed in variations of the state variable .

It is convenient to write the deformation tensor 9 as a product of a sym-
metric ‘dilatation’ tensor 0 (= #, the transposed tensor). and an orthog-
onal ‘rotation’ tensor 7, (so that fj, = 5 ')

= N (254)

If the sample is only slightly deformable the tensor v is nearly equal to the
unit tensor U. Furthermore the tensor 1, might be parametrized in terms of
three angles, for instance the Eulerian angles. Introducing (254) into (253)
we get for the variation

de = (Na N+ Mat 2 SN+ 40N, (253)

where in the second expression ¥ could be replaced by the unit tensor. The
first term in the last member of (255) is antisymmetric as follows from
NaAa = U, while the second term is symmetric, since dv is symmetric and
1, orthogonal, With the help of (255) we obtain as the second law for an
amorphous or polycrystalline solid:

Tds = dutov(nyPm,) i dn+oP : (dnafis)— E-d(vP)+oM-dB, (256)

which is written with differentials since now all quantities are state variables.
In the second term at the right-hand side only the symmetrical part Py
= «’2—(P+I~’) of the pressure contributes, since dy is symmetric andﬂA is
orthogonal. In the third term only the antisymmetrical part L(P—P) re-
mains, because the bracket expression is antisymmetric. From the angular
momentum balance equation (196) it follows by employing the uniformity
of the cell that

P, =PAE+MAB, (257)
or alternatively,

L(P—P) = L(PE—EP+MB—BM). (258)
Then the second law (256) bzcomes

Tds = du+v(nsPsna) : dn+v(PE+MB) : (A, 0, )—E-d(vP)+vM-dB.
(259)
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This form shows that the entropy changes not only through a change of the
internal energy and through symmetric deformations, but also due to effects
of the electromagnetic fields as is apparent from the last three terms. The
first of the latter in particular shows the effect of rotation of the ellipsoidal
cell as a whole in the external field. (If desired so, the tensor v, may be ex-
pressed in terms of the thres Euler angles with respect to a fixed reference
state.)

Often the polarizations are parallel to the fields for amorphous and poly-
crystalline solids. Then (257), (258) and the third term at the right-hand side
of (259) vanish, so that we are left with the second law

Tds = du+v(¥s,"Psn,) : dn—E-d(vP)+uvM-dB. (260)

In this way the Gibbs relations for uniform fluids and amorphous or
polycrystalline solids have bsen found as the laws (251) and (260). The only
differeace between these two cases consists in the occurrence of a pressure
tensor in (260) and a scalar pressure in (251).

C. The second law for plasmas

The method used to derive a second law for fluids will be employed in this
subsection to find that for plasmas.

Let us consider a uniform cell as a subsystem of a neutral plasma at rest
in a uniform and constant field. The plasma is a mixture of charged particles
of which the internal structure is disregarded. In such a system the uniform
Maxwell fields are connected to the fields E (R) and B,(R) from outside the
cell as (v. (17))

E=E®R—¢V|—L dr
: 47]R—R’|

(261)

B - BC(R)-—C_IJ/\VJ b ar,
47R—R/|

where ¢° and J are the uniform charge and current densities. Hence the ex-
ternal fields are uniform only if the macroscopic charge and current densities
¢° and J vanish. For that reason we only consider neutral plasmas without
currents. Then the Maxwell fields are equal to the external fields.

The Hamiltonian for the plasma is (cf. (A26) or (A32) of appendix IT)

ooy P bk R)—c Teamy)l. (262
=2 Y 1 Y e oR) e AR . (262)
T 2my; k2D 8n|R,—R,| % my f
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The potentials describe a constant and uniform external field and may thus

be chosen as
(pe(Rk) = "Rk'Ee»

(263)
Ae(Rk) = %‘Be AN Rk‘

(If a different gauge would have been used, the resulting Hamiltonian might
be transformed to (262) with (263) by means of a canonical transformation.)

The free energy! F is again a function of the external fields E., B., the
temperature T’ and the position of the boundary of the system. The partial
derivatives with respect to the external fields and the temperature are up to

order ¢™1:

ok f Ro“(R)IR = 0,
OF
o= (264)
JdF . -3 J
—= RAJ(R)IR = 0,
0B, ®
with the charge and current densities (124), and
oF _ _s. (265)
aT
In this way we get for the change of the free energy
OF = —SO0T+A : Je, (266)

where A has still to be determined. .
The free energy F = (H)—TS follows from the average of the Hamil-
tonian (cf. (A37)) for the plasma

H =K+ Y e 0o (Ry). (267)
k,z(kzw) 87|R,— Ry ; ’ §

The average of this expression is

1> = 1m0,

i €,€p ab,
+ — — R,,R,)dR,dR,, (268)
aZ’Jb $7IR, —R,| 2 ( 1 2) 1 Gy

where (263) and the vanishing of the charge density have been taken into
account. In the first term the integration over Ry may be performed as a

t Here the free energy is denoted by a symbol K without asterisk, since it will turn out that
the average Hamiltonian (H ) is equal to the total internal energy (v. (270)).
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consequence of the uniformity of the system. In the second term we write
/55 a5 the sum of a correlation function ¢35 and the product f7f7. The latter,
uncorrelated part gives no contribution, since the charge density vanishes,
so that we obtain now, using also (131)

(HY = Vou'+ Y %ab ¢ (R+1s, R—1s)dR ds. (269)

a,b 8rs

For neutral plasmas in equilibrium the correlation function has short
range. Then the integral over R may be performed, since the system is uni-
form. In this way we get with (138) and (141)

(HY = Vou. (270)
The tensor A, which occurs in (266), follows from (A55) of appendix IIT
with (262):
A= - meafh b; fi(Ry, v)dR dv,— ) eale E, fi(R,)dR,
+3c7! Zjea{ﬁl(Rl AB)—R, (3, AB)} f{(Ry, v,)dR, dv,
e(l € a
+ ZJ(& —R)V; — “2— "R, , R,)dR, dR,, @m1)
a,b 87I|R1 "“Rzl

where we have used the Hamilton equation d H/OP, = R, = v,. In the first
term the integration over R, may be performed. In the second and third
terms one recognizes the charge and current densities (124), which vanish
in the plasma studied. In the fourth term we split f5° into ¢ and f7f}.
Again the latter part gives no contribution because the charge density is zero.
In this way (271) becomes, with the help of (122),

A= —VP*+ Y | sV, féfé ¢P(R+1s, R—3s)dR ds. (272)
a,b s

The integration over R may be performed owing to the short range character
of the correlation function. Then we get with (127) and (129):

A= —VP. (273)

So finally we obtain from (266), with (264), (265), (270) and (273), dividing
by the total mass M,
Tos = du+vP : o€, (274)

where s = S/M and v = V/M are the specific entropy and volume. From
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(274) it follows that the specific energy at constant s and e does not change if
fields are switched on:
u =y, (275)

where 1, is the specific energy at zero fields, which depends only on u and s,
since the plasma is isotropic in the absence of fields. So in (274) only the
trace of Se (which is equal to v *6v) may occur. Therefore the second law
for a neutral and current-free plasma becomes

Tds = du+pdo, (276)

showing that the pressure tensor in a plasma reduces 1o a scalar at equi-
librium.

d. The second law for crystalline solids

For the systems with short range correlations treated so far we derived the
szcond law of thermodynamics by considering a uniform cell as a sub-
system of a larger system, which played the role of a heat bath. For the case
of systems with long rangs correlations — as crystalline solids ~such a division
of the system into cells is no longer feasible. One has to consider in that case
the system as a whole. As a consequence one can no longer suppose that the
system is uniform: non-uniformities will enter the system through boundary
effects (even if simple shapes are chosen for this boundary).

We use again the canonical ensemble to describe the system in uniform
external fields in a heat bath, limiting ourselves to systems without space
charge. Then the existence of a thermodynamic limit has been proved®. At
equilibrium the electric current density in the system at rest will vanish (since
then both the conduction and convection currents are zero). The Hamil-
tonian is given by (A32) with the potentials (263) for the uniform external
fields. The partial derivatives of the free energy with respect to the external

fields are, up to order ¢~ 1,

CF* -

—— = = Y (e R+ )y = ‘JP(R)dR’

cE, k
o _ <Z (%c—lekRk/\ Pi L5004 50 A E’—‘)> = —fM(R)d&
¢B, % my iy,

(277)

where the expressions (64-65) have been used and the fact that the charge
and current densities vanish. Furthermore the partial derivative of the free

1 J. L. Lebowitz and E. H. Lieb, Phys. Rev. Lett. 22(1969)631.
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energy with respect to the temperature is

oF*
= —8. 278
orT @78)
The total change of the free energy is now
SF* = —S8T—VP-6E,— VM5B, +06,F*, (279)

where we have introduced the notation X for space averages of a quantity
X(R):

- 1 .
X=_ fX(R)dR, (280)

and where 6, F* is the change of the free energy through deformations. The
canonical average (/) = U* of the Hamiltonian (A37) with (263) is (cf.
(232))

% 1 5
U* = U—JP(RI)P(RZ):VI‘Vl e R R —VPE,, (281)

Ry =Ry
where (115) with (78), (97) and (153) have been used and where U is the
total internal energy ¥gu of the system.

The change of the free energy §,F* under deformations follows from
(AS3) of appendix III, with the Hamiltonian (A32). The term with the de-
formation gradient tensor de in (A53) gives

- f {P(R)+PT(R)} : Se(R)dR, (282)

as follows from the explicit forms (63) and (73) of the kinetic and “field’ part

of the pressure tensor. The term with de in (A53) becomes upon introduction
of (A32)

. . e €

2. 2 ARGER,) — R 0E(R)}V, — U (283)
kIE=D i) 87| Ry — Ryl

If this expression is split into a long range and a short range part by making

a multipole expansion and if appropriate two-point distribution and cor-

relation functions are introduced, one finds

- J{R1'5é(R1)“Rz'éé(Rz)}P(RJP(Rz) ViV Y, é*“]‘*l-— dR, dR,

1 RZ[
+ [ (R ispoe(R+ 19~ R-35y58(R- 1517, 3. (— 150
n,m=0

. no{m) - m 1
ST O v g—-} ¢,(R+1s, 1, R—3s, 2)dRdsd1 d2
7S



84 NON-RELATIVISTIC CLASSICAL STATISTICS A CH.II

- f {{(R+%s)-5é(R+%s)—(R—%s)-aé(R-%s)}-vs (}j __Cufy

i,j 87tls+l'1i-r2j

4 et B o—{m} * mn 1
- 3 (o iviEr v )|

n,m=0 8rs

fo(R+3s, 1, R—1s, 2)dRdsd1d2, (284)

where in the second and third term we introduced the variables R and s, con-
nected with R, and R, by R, = R+ s and R, = R—1s. In the last term the
integration over s is extended over small values of s only, so that one may
expand the factors (R+3s)0€(R+ 1s) around R-5€(R) and break off after
the second term. Then the last term of (284) becomes

- fPS(R) : 5e(R)dR, (285)

where we introduced the short range pressure tensor (94) and the tensor
e (A51). The second term in (284) may be written in the form

- f P(R) : Se(R)dR, (286)

as we shall now prove. To that end we introduce the correlation pressure
(151) into (286); owing to the symmetry of the integrand of (151) one may
employ ¢5 (202) instead of ¢; (149). Then one gets

- f PY(R) : Se(R)dR = f jld/lfiodR’ J :ds f dLd2 Y (—1y"

nm=90

fs%Sé’(R’—%).s)'Vs RBRTIC I e —1——} c(R'+1%s, 1, R' —1s,2), (287)
\ 16ns

where we introduced the integration variables R" = R+%4As. Effectively the
integrations over R’ and s just as those over R and s are extended over those
values for which the arguments of the correlation function are inside the
volume of the system. Since the correlation function vanishes if these argu-
ments indicate positions outside the volume, we may for convenience write
—o0 and oo as integration limits. The first factor in the integrand in (287)
may be written in an alternative form

sO(R —1As)Vy = —2 5‘1 (R —11s)06R —Lis)}'V,,  (289)
A

if we use the definition (A51) of de. If this expression is inserted into (287)
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the integration over A may be performed. Then one recovers indeed the
second term of (284).
We have found now for the change of the free energy under deformations

5, F* = — J P(R) : Se(R)dR

- [ (R oe(R) ~ Rse R PR PR 1V, VY, L
8n|R; —R,}

dR;dR,. (289)

This form for the change of the free energy seems to be dependent on the
deformation tensor ée (or de (A51)) throughout the volume. We may how-
ever obtain an alternative form of 6, F* which shows explicitly that only the
deformation at the surface comes into play. Such an expression follows if

one employs (A48) of the third appendix. Together with (241) one then
finds

S S
5, F* = —f nP-seRAS—1 f n-e-R(P-n)*ds. (290)

(For uniform pressure and deformation tensors this formula reduces to
(242).) One may prove the equivalence of (289) and (290) by performing
a partial integration in the first term of (289), using the definition (AS1) of
oe, and employing the identity

S
f (V-P)-ée-RdR—i—%f n-5eR(P-n)*dS

N
87|R, —R,|
dR,dR,, (291)

= [[(Rpsem,) - Reoe(R) PR )P(R) 9,9, ¥,

which holds for a polarized system in equilibrium. The proof of this relation
(v. problem 5) makes use of the equation of motion (150), which for the
present system in equilibrium and at rest reads

V-P = (VE)-P+(VB)-M. (292)

In the second term at the right-hand side only the external magnetic field
appears (v. (71)). This field is uniform, so that (292) reduces to

VP = (VE)-P. (293)

(For uniform pressure, deformation tensor and polarization the relation
(291) reduces to (243), as follows by employing (236).)
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The change of entropy is found now if one substitutes (227) and (289) or
(290) into (279). In the latter case, i.e. with (290), we get the entropy law

S S " .
T6S = U™+ f n~P-5e~RdS+%f n-Se:R(P-n)*dS+ VP-SE.+VM-5B,,

(294)
while in the first case, i.e. with (289), the result is

T3S = 6U* + f P(R) : Se(R)dR+ f {R,-6&R,)— R,*5&(R,)}P(R,)P(R,)

1 dR,dR, + VP-SE.+ VM- 5B,. (295)

V.V, V
DY ¥y 18an1—R21

The form (294) shows that the change of entropy depends only on the de-
formation tensor at the boundary, while (295) has a form that reduces for
uniform pressure, deformation and polarizations to (244) of subsection b.
If one inserts moreover (281) the relation (295) becomes

T3S = §U+ fP(R) : 6e(R)dR — E+5(V P)

i r |
"5 {fP(Rl)P(RZ) . Vl V1 m de dRZj
. 1
+ J{R1'5€(R1)“‘Rz'5é(R2)}P(R1)P(R2) ViV ¥, m"l
1 2

dR, dR,+VM-B,. (296)

We may cast this law in a form which contains the Maxwell fields instead
of the external fields. Let us consider the fourth term of the right-hand side
separately. As a consequence of the variation the polarization changes and
also the boundary of the integral, so that it may be written as

- J[{éo P(R,)}P(R;)+P(R,)3, P(R,)] : V, V, - dR, dR,
87|R; — R,
1
8n|R; — Ry|
1
" 8n|R, —R,|’

14 S

—f ds, f dR, SR, nP(R)P(R,) : V, V,
S 14

—J ds, f dR, 5R,'nP(R)P(R,) : V. V (297)

where in the first term 8, P(R;) is the ‘syntopic’ variation (i.e. P'(R;)—P(R,))
of the polarization. In the second term the integration with respect to R; is

it e ——————
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extended over the surface S of the sample with surface element d.S; and nor-
mal n, while the integration with respect to R, is performed over the volume
V. Furthermore R, is the variation de(R,)R,. Similar remarks apply to
the third term. If the last two terms are transformed with Gauss’s theorem
we obtain for (297):

- [ ToP@IP(R) + PR)SP(R) -V, V,

+{R,"0&(R,)— R, 0&(R,)}P(R,)P(R;) : V, V, V,

1
+{Tr 6e(R,)+Tr 5e(R,)}P(R,)P(R,) : V, V] -~ dR, dR,,
8n|R; —R,|
(298)

where the ‘asyntopic’ variations of the polarizations (i = 1, 2) are
The third term at the right-hand side of (296) may likewise be written in
terms of the asyntopic variation (299) since

S(VP) = ¢ f P(R)dR = f SP(R)R+ f {Tr 5e(R)}P(R)AR.  (300)

Substituting (298) and (300) into (296), we obtain with the expressions (71)
for the Maxwell fields (with vanishing charge density) the non-relativistic
entropy law

TS = 5U+ f[P(R) : 5e(R)— E(R)-6P(R)

— {Tr Se(R)}P(R)-E(R)+ M(R)-B]dR, (301)

or with the bar notation for volume averages

T5S = U+ VP : de— VE-SP — V (It 6e)P-E + VM-3B. (302)

This form of the entropy law is closely analogous to (247) if the latter is
multiplied by the total (constant) mass M of the system (so that s, u and v
are replaced by S, U and V). The difference between these formulae is that
(302) contains the tensor de instead of Se and volume averages instead of
uniform quantities.

The entropy law (301) or (302) contains the tensor de(R), which charac-
terizes the deformation throughout the volume. However, one may show by
a transformation of the right-hand side of (301) that effectively only values
of the deformation tensor at the surface come in, just as in (289-290).
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With the help of (A51), (299) and partial integrations one may write (301) as
S

T0S = 6U+ J n(P-§e:R—Se'RP'E)dS
- f{(V-P)-ée-R+E-<SO P—R-0&(VE)P—M-3,B}dR, (303)

where n is the outward normal to the surface element dS. We now substitute
the equation of motion (293), with the result

S
TSS = 6U+ f n-(P-eR— e RP-E)dS — J(E-éOP—-—M-(SO B)dR,  (304)

which may also be obtained directly from (294). This formula shows that
the change of entropy depends only on the value at the surface of the de-
formation tensor de. It depends moreover on the variation of the total energy,
of the polarization and of the magnetic field throughout the system.

It should be noted that the infinitesimal deis defined by (225)and s thus not
the variation of a state variable. Just as in subsection b let us introduce as
state variables characterizing the deformation of the boundary a tensor ¥,
which gives the transformation of the position R of the boundary from a
fixed position R° in a reference state denoted by the symbol © to a deformed

state
R = ﬁ(Ro)'R°. (305)

(In contrast to the case of subsection b the tensor #) is now a function of
R°.) For an infinitesimal deformation we have then

SR = SH(R°)R° = 57(R°)H ™ (R°)R, (306)
so that the variation de(R) is
5e(R) = 6H(R")H'(R"). (307)

We want to write the tensor #(R°) as the product of an orthogonal tensor
1, (independent of R°) and a tensor n(R°). To fix 0, we factorize the surface
integral

So
f A(R°)R°n°dS°® (308)

(where n° is the normal to the surface element dS° of the surface S° in the
reference state) into a product of the orthogonal tensor 1, and a symmetric
tensor. This condition fixes the tensor 1), . With the help of 4 we now define
7(R°) by means of the relation

A(R°) = nyn(R%). (309)
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In view of (308) the tensor n(R°) has the property that

50
f 7n(R°)R°n°dS”® (310)
is symmetric.

The reason for factorizing the tensor ¥ in the particular way described
above is that a rotation of the body as a whole without deformations is
described by a change of 1, leaving n(R°) invariant. (From (310) it is ap-
parent that if n(R°) is uniform over the surface, then this tensor » is itself
symmetric. )

If the sample is only slightly deformable the tensor n(R°) is nearly equal
to the unit tensor U. Introducing (309) into (307) we get for the variation de:

S€(R) = {oman(R*)+ xR} ™ (R) ML = 60y Fis + N4 0N(Fa R)¥in s
(311)

where in the second expression %(R°) could be replaced by the unit tensor and
on(R°) by én(#i,°R) as a consequence of the fact that the deformations are
small. The first term in the last member of (311) is antisymmetric as follows
from the orthogonality of 0, . With the help of (304) we obtain for the change
of entropy

S
TSS = SU+ f n(P —P-EU)on,7,-RAS
s
+f n(P—P-EU)n, 0n(fis R) 7, RAS — f (E:5o P—M-3,B)dR,  (312)

where the quantities P, E, B, P and M all depend on the space coordinates
R. With the use of Gauss’s theorem and (293) the first integral at the right-
hand side may be transformed, so that one gets

T6S = oU + fP (0N Tia)dR
A
+ f n'(P—P-EU) 4 0n(fisR)fis-RAS — f(E-éA P—-M-5,B)dR, (313)
where we used the fact that the trace of dv,-7], vanishes, and the notation

5A = 5O+R.nA.5ﬁA.V‘ (314)

In the second term at the right-hand side of (313) only the antisymmetrical
part 3(P—P) of the pressure tensor contributes, because the other factor is
antisymmetric. It follows from the angular balance equation (196) (cf. sub-
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section 6d) by integration over the volume that
JPAdR =f(P/\E+MAB)dR (315)

as a consequence of the fact that the system is in equilibrium and at rest.
Alternatively one may write

J%(P—f’)dR = J%(PE—EP%—MB—BM)CIR. (316)
Substituting this relation into (313) we get the entropy law
T6S = oU+ fsn'(P —P-EUyn, n(fia'R) M4 "RAS
- J {E:5, P—~M5,B—(PE+MB) : (9n,"7,)}dR, (317)

which gives the entropy in its dependence on the change of the total internal
energy, of the electric polarization, the magnetic field and the state variables
n, and n(f4°R) at the surface.

In the case that the solid is not rotated but only deformed, the entropy law
(317) reduces to

N
T6S =6U+ J n(P—P-EU)6n(R)'RdS — j(E-(SO P—M:+5,B)dR, (318)
since then n, = U.

In certain cases the polarizations in a system with long range correlations ina
uniform external field are approximately uniform if the sample has ellipsoi-
dal shape. This is indeed only an approximation, since not all physical quan-
tities are uniform (the pressure tensor, for instance, will in general vary over
the sample, cf. section 8b). In that case the entropy law (317) becomes

S ~
TdS = dU+ J nP(R)N,dn(fiyR)faRAS + V(PE+MB) : (dnsfia)
s
- P-Ef 1N, dn(fs'R) s RAS—VE-dP + VM-dB, (319)
which has been written with differentials since now all quantities are state
variables. The fourth term at the right-hand side is equal to —P-EdV as

follows from (225), (311), Gauss’s theorem and the fact that dn, i, is trace-
less. Therefore (319) becomes
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S
TdS = dU + f nP(R)n,dn(f, )%, RS
+V(PE+MB) : (dn,'#i,)— E-d(VP)+ VM-dB. (320)

In the case that no rotations of the solid are considered this relation reduces
to

S
TdS = dU + f n'P(R)-dn(R)-RdS —E-d(VP)+VM-dB,  (321)

since then n, = U (it also follows from (318) as a special case)’. The set of
integrability conditions includes the relations between polarizations and

fields (7,7 = 1, 2, 3)
P, _oP; 8P, _oM; M, oM,
0E; OE, 8B, OE, 0B, 0B,

J

(322)

where the polarizations have been considered as functions of E, B, T or S,
and 1. (These relations are trivially valid for isotropic substances.)

The Gibbs relation (320-321), which is an approximation to the entropy
law (317-318), is the final result for crystalline solids. It shows how the
total entropy is a function of the total energy, the polarization, the magnetic
field and the deformation tensor at the boundary. The law is the counterpart
of the Gibbs relations (251) for fluids and (260) for amorphous or poly-
crystalline solids. In contrast to these local laws the result just found has the
form of a global law: it makes no sense to subdivide a crystalline solid (in
which long range correlations are present) into nearly uniform cells for which
local laws may be derived.

e. The entropy balance equation

For fluid systems of neutral atoms we found a first law of the form (211) and
a second law of the form (251). The latter equation has been derived for a
system at rest so that the fields and polarizations are measured in the rest

! In (321) the complete pressure tensor P appears. If the tensor dn(R) is uniform over the
surface, it follows from (310) that it is symmetzic. With the help of Gauss’s theorem,
(293) and the uniformity of the electric field E one may write then the second term at the
right-hand side of (321) as (J P(R)AR) : dn. Since now dn is symmetric only the symmetric
part of the pressure tensor comes into play. The same statement may be made for another
special case, namely that of a pressure tensor which is uniform over the surface. In that
case it follows directly from (310) that the second term at the right-hand side of (321)
contains only the symmetric part of this uniform pressure tensor. Similar remarks apply
to the corresponding terms in (320).



92 NON-RELATIVISTIC CLASSICAL STATISTICS A CH. I
frame. They are therefore the same as those occurring in (211). The second
law, which we may write as
d d d(vP’ dB’

Q‘EZQ v ﬁ_g_E/.L)+_1,M'._~, (323)
dt T dt T dt T dt T dt
is supposed to be valid also for fluid systems which are not too far from
equilibrium. If we substitute the first law (211) into this equation we obtain
the balance of entropy

ds (J) J 1 =
S vy le) — ey Z(P—pU): Vy, 324
d¢ T T? T( rv) (324

Q

where we used mass conservation in the form gdv/ds = V-v, as follows from
(59) and (159). This balance equation shows that the entropy changes as the
result of the divergence of an entropy (conduction) flow J /T and an entropy
source strength arising from heat conduction and viscous phenomena. In
equilibrium the source term vanishes since the temperature and velocity
fields are then uniform. (Moreover simultaneously the heat flow J, and the
viscous pressure P—pU also vanish then.) Outside equilibrium the entropy
source strength is positive, as may be shown if the distribution function is
known to satisfy particular equations, like Boltzmann’s.

In the preceding we assumed that the quantities E" and M’ in (21 1) were
equal to the equilibrium values E., and M, of these quantities occurring in
(323), so that in the entropy source strength no electromagnetic contribu-
tions appear. If however E' and M’ are supposed different from their equi-
librium values we obtain instead of (324) as the balance of entropy:

ds J J 1 5
0 = —Vo __@)__‘l_-VT-—m P-—-pU): Vo
(T T° T( rY)

d@wp’) 1 dB’
— —(M'-M_)—. (325
TR W (32

0
+ 2 (B —EL)
¢ ?)

The last two terms show which contributions to the entropy production arise
from electromagnetic phenomena. They represent the entropy source
strength due to electric and magnetic relaxation.

For amorphous and polycrystalline solids the first law (211) may be written
in a slightly different form if one uses the relation
Vo=V (d_e 'R) = de , (326)
dt det

as follows from the definition (225) of the uniform deformation tensor Je.
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Inserting this expression we then find:

du d ! !
¢— = —-VJ —P: ce +0 dvP ‘E'—M' 515
dt de dt d¢
If this relation is combined with the entropy law (260) (which will be
assumed to be valid in the neighbourhood of equilibrium) written as

d d 7 !
ds _ ¢ u+1 ~d€_~Q_E’-_d_QQD+lM'-dB
d

dd Td&t T “"at 7T d T (328)

(327)

with a symmetric equilibrium pressure, one gets an entropy balance which
has the same form as (325) but for the third term at the right-hand side,
which reads now

i de
~—(P-P) i — .
S(B-p,): (329)

For a neutral plasma the first law of thermodynamics has been given in
(216) and the second law in (276). For a plasma not too far from equilibrium
one obtains the entropy balance equation

ds J J i 1
L= =Y - LY Z(P—p ) : E'
e (T) T T(P pU) : Vo+ TJE, (330)

where the last term represents the entropy source due to Joule heat produced
in the plasma.

Since for systems with long range correlations only a global entropy law
has been derived, it is not possible to find a local entropy balance equation
in the same way as above. The global entropy production law will follow
by combining the first and second laws, both in their global forms. The
global form of the first law is a direct consequence of (217) with (212). In
fact, integrating (217) over the mass of the system, one finds

dg dU

_ , a(vP") dB’
hat_ Rl P:Vo—TE - " g im-
dt  dt f{ ’ ey ETM dt}dR (331)

with the amount of heat added to the system per unit of time

g
< =~ ] dands. (332)

Now one has for a non-uniform solid system (cf. (326)):

de dé
Vv=V(—~-R) =
dz dt (333)
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as follows from (225) and (A51). With this relation (331) becomes

P’ dB’
dg _du +J{P :q(3 —-J"E’-Qd—(vP—)'E’+M" #} dR. (334)
dt dt dt dt dt

This form of the first law is to be compared with the entropy law (301). In
the latter we divide by 7. Then it becomes

as _du +“p e p AP (Tr df) PE'+M" d—li} dR.  (335)
dt dt dt dt dr dt

At the right-hand side we added primes to indicate that the quantities are
taken in the rest frame (the second law has been derived for a system at rest).
Using the fact that, as a consequence of (333) Tr (de/dz) is equal to V-v
or to odv/dt with v = ¢~ ! the specific volume (as follows from the conser-
vation of mass), one may write (335) in the form:

795 _dU +“p (de d0P) g e 515} dR. (336
dt dt dt dt dt

Again we assume that this law remains valid if the system is near equi-

librium. Then one finds, by combining (334) and (336), for the global en-

tropy balance equation
ds _dQ

T == P-P.):
di dt {( o)

de  d(vP") , C g dB’}
= —g——rt(E'—E,)+(M —M_) — dR,
ar Q a7 ( q) ( AP

(337)

where we added some indicss eq to distinguish the equilibrium values, oc-
curring in the second law, from the non-equilibrium values occurring in the
first law. Note that the temperature has been supposed to be uniform, so
that no term with the gradient of the temperature appears in (337), in con-
trast with what was the case in (325). At the right-hand side of (337) appears,
apart from a term with the supplied heat, a volume integral which contains
elastic, electric and magnetic relaxation terms.

A particular case, which arises for ferromagnetic materials, is that of a
system in which magnetic hystcresis occurs. If one considers a cyclic process,
in which no elastic after-effects occur, we have, if no heat is added,

TAS = — fcﬁ (M'—M_,rdB’'dR (338)

for the entropy production A4S per cycle.
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8 Helmholtz and Kelvin forces

a. Fluids

Let us consider a fluid of neutral atoms in which constitutive relations exist

between the polarizations and fields:
P =«(v, T)E',
(339)
M’ = y(v, T)B'.

Primes have been added to indicate that the quantities are counted in the
rest frame. The electric and magnetic susceptibilities x and y depend on the
specific volume v and the temperature T. The second law for such a fluid in
local equilibrium has been given in (251) and may be written in the form

df = —pdv—sdT+E"-d(vP")—vM’"-dB’ (340)
with the specific free energy
f=u~Ts. (341)

The differential expression (340) may be integrated at constant specific
volume and temperature. Then one finds for the difference of the specific
free energy in the presence and that in the absence of fields:

1y = vf(E“dP’~M’-dB’). (342)
With (339) this relation becomes
f—fo = $v(P"“E'—M'"-B'). (343)

The scalar equilibrium pressure follows from the specific free energy by
differentiation with respect to the specific volume at constant temperature,
specific polarization vP’ and magnetic field B’, as (340) shows. Hence the
pressure p = —0f/0v is connected to the pressure p, = —&f,/0v for the
same values of v and 7, but with switched-off fields by a relation* which
follows from (343):

-

PR— (P"E’+M'-B’+v g2y o B'Z) ) (344)
2 ov av

The specific entropy follows from the specific free energy by differentiation
with respect to temperature T at constant v, vP’ and B'. From (343) one has

§—8y = — ! (v 9x E?40 B’2> , (345)
2\ 0T or

! P. Mazur and I. Prigogine, Mém. Acad. Roy. Belg. (Cl. Sc.) 28(1953)fasc. 1; cf. W. F.
Brown jr., Am. J. Phys. 19(1951)290, 333.
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so that the difference of the specific energies is
9K o, Y p
U—1uy = 30 (P"E’—~M"B'+T—-’—C~E2+T~£Bz), (346)
oT oT

as follows from (343) with (341).

The relation (344) shows how the pressure changes if the fields are switched
on. The pressure p is the equilibrium value of the pressure P used so far.
We shall call it the Kelvin pressure, to distinguish it from the pressure py,
defined at equilibrium and with switched-off fields. The latter will be called
the Helmholtz pressure at that specific volume and temperature.

In the equation of motion for a fluid of neutral atoms, which has been
given in (105) with (106) or in (158), we introduce the Helmholtz pressure
instead of the Kelvin pressure by using (344). Then we obtain

le’ = —Vpo— VII+(VE)P+(VB)-M
t

0% o
+c g 4 (vP AB)—%V (P"E’+M’~B’+v o E?+v :Z B 2) , (347)
dt v ov
where the viscous pressure tensor
II=P-pU (348)

has been introduced. Alternatively, introducing rest frame quantities with
the help of (26) and (27), we have for the equation of motion, using also
(339)
Qg-‘_’ — Vp,—VII+Z, (349)
t

where the ‘Helmholtz’ force density is:

F = — 1 {E'ZVK+B'2VX+V (v I g2y o B'2>} +c” (Vo) (P'AB")
2 v ov
telo Ci}(vp' B+ (VE (P’ —PL)+ (VB'y (M’ ~ML,). (350)
t

Here P,, and M, represent the equilibrium values (339) in the rest frame.
The Helmholtz force & has a simpler form in the important special case
of fluids in equilibrium and at rest in time-independent fields. Then the
expression (350) reduces to
F— -1 {E’zV;c+B’2VX+V (v Orc gra 4 O B'z)\ . (351)
2 Ov év J
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The equation of motion reduces under these circumstances to

The expression (351) contains the Helmholtz terms found on the basis of
energy considerations!. The expression for static electric dipole systems
has been derived already in a statistical treatment?. Earlier the connexion
between Kelvin and Helmholtz forces and pressures had been found from
thermodynamics®.

Often one employs a magnetic susceptibility 7 defined by

M’ = (v, T)H' (353)

instead of the second line of (339). The connexion between the two suscep-
tibilities is then

f=-t (354)
I—yx

With the help of this relation one may eliminate y in favour of 7 in the rela-
tions (344-346) and in (347), (350) and (351). The latter becomes in
particular

n

7= -1 {E'ZVK+H'2V)Z+V (v i LR Hz)} . (355)
2 v v

For practical applications one may alternatively use the equation of mo-
tion (105-106), which contains the Kelvin pressure and the Kelvin force,
or the equation of motion (349-350), which has been written in terms of
the Helmholtz pressure and the Helmholtz force. However the latter has a
more limited validity, since it may only be employed if the system is char-
racterized by linear constitutive relations. In its form (351-352) it may
be applied only to equilibrium situations.

From the equation of motion (352) with (351) for a fluid in equilibrium and
at rest, one may obtain the density distribution that arises if a static electro-
magnetic field is switched on. In fact since the Helmholtz pressure p, is a
function of the density ¢ = v~ * and the temperature 7, one may write (352)

1 D. J. Korteweg, Ann. Phys. Chem. 9(1880)48; H. von Helmholtz, Ann. Phys. Chem.
13(1881)385.

2 P. Mazur and S. R. de Groot, Physica 22(1956)657.

3 P. Mazur and L. Prigogine, op. cit. For a review and applications see S. R.de Groot and
P. Mazur, Non—equilibrium thermodynamics (North-Holland Publ. Co., Amsterdam 1962);
A. Sanfeld, Introduction to the thermodynamics of charged and polarized layers (Wiley,
London 1968).
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with (351) as
Vpo = 1oV (é’f E*+ o B'Z) (356)
dg deo

for constant T. If one defines now a function ¢ as

po
olpo, ) = | 0™ 6o, T)i50, G57)
pPo

which follows from the equation of state ¢ = ¢(p,, 7') (the lower limit is an
arbitrary, but fixed constant), one may write (356) as

Lopn 10tgn const., (358)

:T'—'—
o(po, T) 2 20 2 3o

i.e. independent of the position in the fluid.
For an incompressible liquid at uniform temperature the function
o(p,y, T)isequal to v(py—p,) with constant (7). Then one finds from (358)

Po(R) = po(Ro)+10 {~ E(R)+ ‘i" B%R)} , (359)

o

4

where R, denotes a position in the liquid where the fields vanish. Combining
this result with the relation (344) between the Kelvin and Helmboliz pres-
sures, one finds for the Kelvin pressure in an incompressible liquid at con-
stant temperature

P(R) = po(Ro)+HP'(R)E'(R) + M'(R)B'(R)}. (360)

An alternative way to derive this formula starts from the equation of motion
(105-106), which may be written for the present case of a fluid in equi-
librium and at rest

Vp = 1V(P"“E'+ M"B')+c™* E(P’/\B')——%(E’2V1c+B'2VX). (361)
at

For an incompressible liquid at constant temperature the last terms vanish,
so that one recovers for the static case (360).

If the dependence of the susceptibilities on the density is given by the
Clausius-Mossotti laws
(362)

v
— ——l e A

B
K+3 32y

o
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one has for the partial derivatives

0 oK _ L
do
. (363)
9x 2.2
0= = =31
do :
If one inserts these relations into (359) onc obtains
Po(R) = po(Ro) +H{P'(R)E(R)+M'(R) BL(R)} (364)
with the Lorentz cavity fields
E, = E'+1P, B, =B —2M" (365)

For the electric case the relation (364) has been checked experimentally by
measuring the index of refraction of a liquid placed between the plates of a
condensor, which gives the pressures po(R) and p,(R,) .

For an ideal gas the equation of state has the Boyle-Gay-Lussac form

0 = mpofkT (366)

with m the mass of the molecules and k Boltzmann’s constant. Then the
function ¢ becomes

kT
o(po» T) = ~—log£2. (367)

m pO

Inserting this into (358) one finds
AR _ poR) = ex [m (QLC E*+ O B’z)} ; (368)
oR) po(Ro) kT oo do

where at the right-hand side the quantities depend on R. With (363) and
(365) this relation reduces to

oA’ exp{ n (P'-E'L+M'-Bg)}. (369)
o(Ro) 20kT
This formula shows that the quantity —(m/20)(P*E{+M'B;) may be
looked upon as the energy of a particle with an electric and a magnetic
dipole moment in a field.

A useful application of the expression (360) arises if one considers a
solid body at rest immersed in an incompressible liquid at uniform tempera-

1'S. S. Hakim and J. B. Higham, Proc. Phys. Soc. 80(1962)190.
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ture. In equilibrium the equation of motion (150) with (108) gives upon
integration over a volume with a boundary that lies just outside the solid:

e

o “f{pU“E'D’—H'B’+(%E’2+%B’2-—M"B')U}'ndS, (370)
dt

where M is the total mass of the solid. If one employs now (360) one obtains
the equation

M3 f (E'D'+H'B'—YE"D' + B"H')U}nds, (371)
di

where (14) bas been used. The right-hand side contains the field pressure
tensor of Maxwell and Heaviside. The derivation shows that it corresponds
to a material pressure which is the pressure po(R,) at a point R, in the
liquid where the electromagnetic fields are zero. It will depend on the ex-
perimental situation whether such a pressure is accessible to measurement.

A second application of the expression (360) for the Kelvin pressure in an
incompressible liquid consists in the evaluation of the radiation pressure on
a metallic surface immersed in a liquid. Consider a plane electromagnetic

wave
E; = E, cos (wt—k'R),

B, = n(nAE,) cos (wt—k*R),

1

(372)

with o the circular frequency, k the wave vector, n the refractive index and
n = k/k the direction of propagation, hitting a plane metallic surface
perpendicularly. The wave is assumed to be totally reflected, so that its
reflected part has the form
E. = —E, cos (wt+kR), (373)
B, = n(n AE,) cos (wt + k*R)

(the metallic surface passes through the origin of coordinates). If one aver-
ages the law (150) or (109) over a period 2rw ™!, one finds, taking the fluid
to be at rest, that

V-{P—DE—BH+(E*+1B*~MB)U} = 0, (374)
where the bars indicate time averages. Applying this formula to a cylinder

with unit cross-section and its axis parallel to », lying half in the fluid and
half in the metal, one obtains upon using Gauss’s theorem

n.—ﬁfluid—n.ﬁmetal +(%E+%E_M.B)n = O (375)
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If the fluid is assumed to be in equilibrium, its time averaged pressure is
diagonal and follows from (360). (The time derivative ¢~ 1(0/0t)(P A B)
which is present in (361) drops out if one employs it for time averaged
quantities.) Then one finds:

n'l—)metal = Deruia, o Ro)n -+ %{D(R)E(R) + B(R)'H(R)}”: (376)

where R is a position in the light beam and R a position outside of it. The
average values occurring in the second term at the right-hand side follow
from (372-373). One gets 2¢Ejn, because the refractive index 7 is equal
to (eu)*. Therefore one obtains as the radiation pressure, which is the dif-
ference of the left-hand side and the first term at the right-hand side of (376)

Praa = 26E(§ . (377)

Introducing the amplitude of the absolute value of the Poynting vector § =
¢E AH of the incident wave, which is

S| = c]/f EZ, (378)
u
one finds for the radiation pressure

Praa = 2¢7'n1|S]. (379)

For the case of vacuum (n = 1) this result has been found experimentally?.
If one compares radiation pressures in different media, keeping [S] constant,
one finds from (379) that the radiation pressures are proportional to the
refractive index, a second result which has been checked experimentally?.
The derivation shows that due to the time averaging the terms with time
derivatives in the momentum law drop out: in other words neither the ma-
terial nor the field momentum density play a role in the discussion of radia-
tion pressure. '

b. Crystalline solids

Amorphous and polycrystalline solids may be discussed along similar lines
as above. In contrast with these, crystalline solid systems cannot be described
by thermodynamics in local formulation: only global laws could be derived
in the preceding section. Yet it is possible, at least in principle, to find the

1 P. Lebedew, Ann. Physik 6(1901)433; E. F. Nichols and G. F. Hull, Phys. Rev. 13(1901)
307, 17(1903)26.
2 R. V. Jones, Nature 167(1951)439; R. V. Jones and J. C. S. Richards, Proc. Roy. Soc.
221A(1954)480.
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deformation of a solid system from thermodynamical considerations. To
that end one may start from the entropy law (294). The infinitesimal defor-
mation tensor de may be expressed in terms of state variables by means of
relation (311). If the solid does not rotate, (i.e. if n, = 1) and if only
small deformations are considered, one finds from (294) for the change of
free energy F* = U*—TS for a solid at rest in a uniform external field:

S
dF* = —SdT — J n-P(R)-dn(R)'RdS

S — p—
—%f n-dn(R)R{P(R)n}*dS — VP-dE.— VM-dB.. (380)

(In contrast to the preceding subsection no primes were added although
again rest frame quantities are meant.) From this relation one may ﬁns the
difference of the frec energics in the presence (F*) and absence (Fg) of
external fields, at constant surface deformation n(R) and temperature T:

Fi_Fr = —y j (PdE, + M-dB.). (381)

If in particular the polarizations are proportional to the fields one finds
simply _ o ,
F*~Fy = —L3V(PE.+M'B,). (382)

The relation (380) then shows that the difference of the pressure tensor at
the surface (contracted with the normal on the surface) in the presence and
in the absence of external fields follows by taking a functional derivative of
(381) (or (382)) with respect to n(R), the deformation tensor at the surface.
Since the (normal component of the) pressure tensor in the presence .Of
external fields follows directly from the Liénard expression (241). we find in
this way the normal pressure at the surface in the absence of external fields,
but with the same values of the temperature and of the deformation tensor.
Hence the problem to find the deformation n(R) at the surface under the
influence of external fields has been reduced now to a problem of ordinary
(field-free) clasticity theory. '

The programme as skeiched above is not feasible in general smc.e tl.le
determination of the functional derivative of (381) presents difficulties in
practical cases. One of these is the way in which the shape of the sample
enters through the occurrence of the external fields instead of the Maxwell
fields. A way to avoid this difficulty is to start from a second law which con-
tains the Maxwell fields rather than the external fields, namely relation (321)

§8 HELMHOLTZ AND KELVIN FORCES 103

(valid for an ellipsoidal sample), which cntails a free energy change
S
dF = —SdT—f wP(R)ydn(RyRdAS+E-d(VP)—VM-dB.  (383)

Again we assumed that the solid does not rotate and that only small defor-
mations occur. The sample has been chosen ellipsoidal, so that the polariza-
tions and fields are approximately uniform. The difference F— F, of the free
energy in the presence and the absence of external fields, but with the same
surface deformation n(R) and temperature 7' may now be found. We assume
that the polarizations depend on the Maxwell fields through linear relations
of the form

P =%y, TYE,

384
M = x(n, T)B, ey

with symmetrical susceptibility tensors x and % (v. (322)). In these relations
v stands for the whole set of deformation tensors everywhere at the surface.
Therefore one may write for small deformations the following expressions

®7 ', T) = % '(T)+ %/fs"fl(R, T){n(R)-U}RdS,
s (385)
X T) = xo(T)+ ;j %:(R, Ty {n(R)— U}RdS,

for the inverse electric and the magnetic susceptibilities. (g ' and ¥, are
tensors of the second rank, while %; ' and x, have three indices.) From (383)
with (384) it follows that one has

F—F, = 1V(P-E—M-B). (386)

By differentiating this relation functionally with respect to n(R) at constant
temperature 7, total electric polarization VP and magnetic field B, one finds,
according to (383), the normal component of the difference between the
pressure tensors at the surface in the presence and in the absence of fields:

n{P(R)—Py(R)} = —1PP : % (R, T)+1BB : x(R. T)+1(PE+M-B)n.
(387)

Here we used the fact that the volume change that accompanies an infinites-
imal change of a deformation  is given by

av = fn-dn(R)-R ds, (388)

o
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as follows from the definition of #. (For a fluid it follows from the isotropy
of the system and the fact that the susceptibilities depend only on the total
volume of the system, that

%o (T) = U™ (T),
ok (v, T) (389)

ov

»; (T) = Unv

and similarly for the magnetic susceptibilities’. Indeed one finds back now
(344) from (387).)

With the help of the Liénard expression (241) we obtain now for the
normal component of the pressure tensor in the absence of fields, but with
the same deformation at the surface and the same temperature:

nPy(R) = nPy(R)—in(P-n)*+31PP : % '(R, T)
_31BB : y,(R, T)—1(PE+M-B)n, (390)

with P, the pressure outside the system (in the presence of fields). The ex-
pression (390) may be looked upon as a boundary condition for an ordinary
(field-free) elasticity problem. It shows that the boundary value n'P, con-
sists of two parts, 1st: two terms that represent the effect of the outward and
Liénard pressures (the corresponding deformation is called the electro-
strictive form effect), and 2nd: three terms which contain the constants that
characterize the material and which form a generalization to solids of (minus)
the right-hand side of (344) (the corresponding deformation is called the
electro- and magnetostriction effect sensu stricto).

For a uniform scalar outward pressure — as the atmospheric pressure —
one may evaluate, with the usual methods of elasticity, the deformation at the
surface of the sample due to the form effect, at least for spherical shapes cut
from substances with simple crystal symmetries (as for instance the cubic
symmetries)>. One finds in this way a non-uniform deformation at the
surface. Comparison with the experimental data showed that the total de-
formation at the surface has the same non-uniform character in the sense
that there is a uniform difference. This means that the proper electro-magne-
tostriction gives rise to a uniform deformation over the surface. One may

1 Note that the specific volume v enters as a parameter at the right-hand side. T his cor-
responds to the parametric dependence in (384) of the quantities « and x on the reference
state with respect to which 7 is defined.

2 R. Gersdorf, Physica 26(1960)553 for the magnetostrictive case; v. also R. R. Birss and
S. R. Adamson, Brit. J. Appl. Phys. 1(1968)631, R. R. Rirss and B. C. Hegarty, Brit. J.
Appl. Phys. 1(1968)789 for the calculation of the form effect for prolate spheroids.
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conclude from this fact that the tensors %; ! and ¥, , which occur in (390),
have the following dependence on the position R

{MII(R, T)}ijk — nl{ﬁl_l(T)}iﬂk,
(R, T)}ijk = nz'{)z1(T)}ijlk,

where the fourth-rank symbols (symmetric in i and j) are independent of the
position at the surface, the only dependence on R being represented by the
outward normal unit vector n (which occurs also in the left-hand side of
(390)). The theory of the proper electro-magnetostriction is concerned now
with the study of the quantities #; ' (7") and % (7). (A microscopic theory
of electro-magnetostriction will be given for a simple model of a magnetic
material in chapter X, § 6.) Phenomenologically one may employ the crystal
symmetry to reduce the number of independent electro-magnetostriction
f:onstants, which occur in the two tensors of the fourth rank in (391). For
instance for an isotropic or polycrystalline solid the number of independent
electrostriction components st ' (7") reduces from 54 to 2 since one has then

() = a4 b(5"5+ 575"), (392)

(391)

because the Kronecker deltas are the only invariant quantities with respect
to rotations. (For fluid systems it follows from (389) that b vanishes while a

is equal to vdx™!/ov.) Similar remarks apply to the magnetostriction con-
stants.



APPENDIX I

On the depolarizing tensor

In section 7b occurs the integral (219), which in general depends on the
position R. We want to prove first that for an ellipsoidal volume the integral
is in fact independent of R (if R is inside the volume) so that we then have

14 1 v l
f VV ———dR’ ==f vV’ dR’ = —L, (A1)

47|R—R'| 47|R’|

where the centre of the ellipsoid has been chosen as the origin of the coor-
dinate system. The quantity L is called the ‘depolarizing tensor’.

The second integral in (A1) depends only on the shape of the ellipsoidal
volume and not on its scale, so that we may replace it by an integral over a
small volume around the origin and of the same shape as the ellipsoid. This
means that it is sufficient to prove instead of (Al) the vanishing of the in-
tegral

4 1
P f V'V - dR, (A2)

where the principal value sign indicates that an infinitesimal ellipsoid of the
same shape as the large one with centre R has to be excluded from the in-
tegration over R’. By a conveniently chosen linear transformation of coor-

dinates
R = AR, (A3)

it is possible to transform the ellipsoid to a sphere. Then it becomesAsufﬁciAent
to prove the vanishing of the integral (omitting the circumflexes of R and R'):

1

—e i (det A)"YdR, A4
47IIA”1.(R—R')[( °tA) (A9

Vo
,@OJ V-AV"-A
where the integration is now extended over a spherical volume V', and where
the principal value sign indicates the exclusion of an infinitesimal sphere
around R from the integration over R’. The denominator may be written as
4rn|(R—R')+ (A1 —U)(R—R’)|. Then, if the reciprocal of this expression
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is Taylor expanded, it follows that it is sufficient to prove that for all integer
n = 0 the integral

1

Vo
gﬁf VV(R-R)YV"——
0 ( ) 47|R—R/|

dRr’ (A5)

vaunishes.

Let us first consider these integrals for R = 0. With Gauss’s theorem, (A5)
becomes for this case, apart from a factor (—1)",

So 1 50 1
f VR e dS’——J n'VR"V" —— 45/, (A6)
47|R| 4x[R’|

where S is the surface of the large sphere, and s, of the infinitesimal one;
n’ is the unit vector normal to the integration surfaces. Each of the integrals is
independent of the scale of the sphere so that they are equal. Hence the ex-
pression (A6) vanishes.

Since now the vanishing of (A5) is proved for the case R = 0, it is suffi-
cient to prove that (AS) is independent of R in order to ensure its vanishing
everywhere. The derivative of (A5) with respect to R is

So 1
- f #'VV(R-R)YV"—————ds’, (A7)
4n|R—R'|
To prove the vanishing of this derivative we expand the integrand with
respect to R. We find then that it is sufficient to prove the vanishing of the

expression
So 1
f n/V/m+2 (R/nvln ) dS/ (AS)
47|R’|

for all m, n > 0, or alternatively the vanishing of

So : 1
f WRVTTRYE (S (A9)
47|R’|

This integral is an invariant tensor of rank 2n+m+ 3, which is symmetric
m the second up to and including the (n+ )th Cartesian index, and sym-
metric in the last #-+m+2 indices. Moreover the traces taken with a pair of
indices from the last #+m -+ 2 vanish, since A’(1/4x|R’|) is zero for R’ # 0.
Therefore (A9) is an element of the direct product space of tensors of rank
I, symmetric tensors of rank n and symmetric, traceless tensors of rank
n+m+2. Symmetric tensors of rank # form a reducible representation of the
rotation group which contains irreducible representations of dimension
2n+1 and lower, whereas symmetric, traceless tensors of rank n+m-+2
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form an irreducible representation of dimension 2n+42m+5. The direct
product of tensors of these two types contains only irreducible representa-
tions of a dimensionality 2m-+ 5 and higher, so that the direct product space
mentioned above, of which (A9) is an element, contains irreducible repre-
sentations of dimensionality higher than 1. Since (A9) is an invariant tensor
in this direct product space it must vanish identically. Thus, retracing the
chain of reasoning, it is now proved that the first member of (Al) is indeed
independent of R, and hence equal to minus the depolarizing tensor L.
As a corollary of (Al) one finds by integrating over R:
14 1 ) -
” VV —> dRAR = —VL, (A10)
47|R—R’|
a formula which has been used in (231).
In a way analogous to the proof given above one may show that the in-
tegral
1 I3
dR

14
J‘ (R“‘R')V'V’Vl ‘__._.__-_,.
87|[R—R/|

(A11)
is independent of R, so that we may write

v 1
f (R-R)V'V'V'

.
— 4R’ :f (R—R/)V’V"V’——}“/- dR' = —1K,
n|R—R'| 8n|R’|

(A12)
where K is a tensor with four Cartesian indices. As a corollary it follows that
4 1
ff (R—R)WVVYV ————dRd
8n|R—R’|
Finally we want to prove the identity

SL = (Tr 6€)L—de : K, (A14)

R = —1VK. (A13)

which gives the variation of the tensor L when the boundary of the ellipsoi-
dal volume is deformed according to

SR = je'R, (A15)

where e is the (uniform) deformation tensor and where the centre of the
ellipsoid is the origin of the coordinate system. From the definition (A1) of
L one has

1

Al6
47|R| as, (AL6)

s
oL = ——j n'dRVY
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where the integration is extended over the surface of the ellipsoid with
normal n. With Gauss’s theorem and (A15) this becomes

14
SL = -f V- (5e~RVV 1 )dR. (A17)

47|R|
Performing the differentiation one gets

1
47|R|

Vv Vv
5L = —(Tr 5e)f vV dR——j Se :RVVY ——dR, (A15)
4rn|R|
which in view of the definitions of L and K is indeed (A14).
A corollary is obtained by noting that Tr de is V™16V with V the volume
of the ellipsoid:
S(V'L) = -V~ 15e: K. (A19)

It has been employed in subsection 7b (246).
As an example let us derive the tensors L and K for a sphere. From (A1) it follows for a

sphere that L is an invariant tensor with two indices and hence a multiple of the unit tensor.
The factor is determined by calculating the trace of L:

rV
TrLz—J 4t dr =1, (A20)
47|R|
so that for the sphere
L =1U. (A21)

Furthermore it follows from (A12) for a sphere that K is an invariant tensor with four
indices and hence of the form

Kijui = 00,3650+ 036,14+ 76,6 4. (A22)

From the symmetry of K in its last three indices (see the definition (A12)) it follows that
«, # and y are equal. Furthermore through contraction of the last pair of indices one has:

K:U=— JRV(S(R)dR =U (A23)
as follows from partial integration. In this way we have obtained for a sphere:
Kijy = $(0:;61+ 08+ 6,10 ) (A24)
The identity (Al14) becomes for small deformations of the sphere
6L = 2(Tr 5€)U—1oe—15¢, (A25)

where the results (A21) and (A24) have been utilized.
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The Hamiltonian for a system of
composite particles in an external field

The Hamiltonian of a system of particles ki (grouped in atoms or other
stable entities numbered by k, while the constituent particles are labelled by
i=1,2,...,f) with charges e, positions R,; and momenta P;, which
move in an external field with scalar and vector potentials ¢, and 4., reads
up to order ¢! (v. (L.16)):

Pi; Crirj

H R is P i t) = D
R P 1) §2mki & 0,7 ) 8m|Ry;— Ryl

ey €1
+ 3 T U 5o o R, 0-e T ARy, )] (A26)
kiE T 8nlRy— Ryl ki Py

Let us now introduce new canonical coordinates ¢;; and momenta p;,
such that the q,, are the centre of mass of atom k and (independent) relative
coordinates of the constituent particles with respect to this centre:

91 = Ru—R, = Ry— Z (miglm)Re;, (i =1,....f=1),

j=1

ey = R, = Z (mkj/rnk)Rkjs (A27)
Pui = Py (mm/mkf)Pkfa (l =1, .0, [ 1)3

S
Brr = ‘Z,lka

This is a canonical transformation, as may be checked by evaluating the
Poisson brackets. Inversion of (A27) gives

fe1
Ry = q;;+(1—0i7)qu—0i5 '21 (Ml M)
=

F-1
Py = (my/m)prs+(1—0;p) Pri— (mpfmy) 21 Brj-
=

(A28)

We substitute these relations into the Hamiltonian (A26) and expand the
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potentials around the centres of mass R,, retaining only terms up to first
derivatives of the potentials:

A2 -1 2. =1 a .
H(%ﬁ,t):Z(_PLf +y P _ Y M)
BA2my =1 2my L= 2my

f S

ki €xj €ri €15

;‘J IZ(:Wﬁ 8”[sz(‘1) RkJ(Q)f kl(%ﬁl) i’JZ=11 8n]Rki(q)"le(q)’

+Za ok 0-c B, 9|
k

ny

+ ; iie"i [:{Rki(Q)_qkf}'Vk {%(Rka )—c! 1;1:1 AR, l)}

k
et Pull) _

My Py

} ‘AR, 1)

= Rula) g1} Ve Ry, o) [P0 Berf] (429)
Hly; my,
where Ry;(q) and Py;(p) stand for the right-hand sides of (A28). This ex-
pression may be transformed by means of a second canonical transformation
in order to cast the last three terms in gauge invariant form. This transfor-
mation is given by the generating function:

F(qapat)_szPk_"ZZ qklpkl

k i=1

S
¢ t ;Z € Ae(Rk > t).{Rki(q) - qkf}

P

depending on the old coordinates q,;, 4. = R, the new momenta p,;,
Piy = P, and time. With the help of the transformation formulae

M\“‘

i R (0) — i} Vi ARy, 1) {Res(q) — dir}s (A30)

it

i=1

oF . OF
qki = ap (" = 1:» -..;.f—“l), Rk - ,\UP )
i g
61: 6Fk (A31)
P = — (i =1, --:»f_l)a pkf =

04y . aRk

it follows that the coordinates do not change. Furthermore the new Hamil-
tonian gets an extra term 9F/dz. If we substitute (A31) with (A30) into (A29),
neglecting again second derivatives of the potentials, and using the vector
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identity (a Ab)(cAd) = (asc)(b'd)—(a-d)(b-c), we get as the new Hamil-
tonian (up to ¢~ '):

P% f;l %i JS—1 P
H(q,p,t)=;(~¢+}d Py &-&’-)

2m,  i=1 2my; iLj=1 2my
S f
ki €k j N €ri€rj

+
Z"L, ;wﬁj) 87|R.(q) — Ry (9)l kz(g';&z) 1124:1 87|R(q)— R, (q)]

+ Y {%(Rk, D—ct Broyg (Rk,t)}

my,

Z{ OE(R,, 1)+ (v,il)+c“1ﬁ,§1>/\ ﬂ) -Be(Rk,t)}, (A32)
1y,

with the abbreviations

=(1 4

Hy )(‘1) E‘_Eleki{Rki(q)_'qkf}a

—(1) -1 2 Pri ks pkjl

Vi (g, p) = 3¢ Y ewlRid@) — s} A {(1"—5if) == _J . (A33)

i=1 mki J=1 n’Ik

These quantities are the electric and magnetic dipole moments, written in
terms of the canonical coordinates and momenta. For the electric dipole
moment this is obvious since ¢,, = Ry, the position of the centre of mass.
For the magnetic dipole moment it follows because the Hamilton equations
yield up to ¢°:

oy Pe Y B g A34
(1 5if) Z = Ry(q)— Gus- ( )

Wlki j=1 }’lk

(We note in passing that the Hamiltonian equations for the coordinates
R, and momenta P, lead indeed to the equations of motion (L.50).)
We shall need also an expression for the kinetic energy of the system:

) .
K(g. 4, 1) (= ;_Zl%rnkilei)
. My, m .
= ;%mkR,f—{— Z (Z 5y qkl+ z k “ k; qkj) s (A35)

i,j=1 27nkf

where (A28) has been used. We may expressitin terms of the coordinates
and momenta, by using the Hamilton equations §,; = 0H/ép,; with (A32~
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33). Then we get up to ¢~ *

Py

- P
K p ) =X % —ee b a e )= (10 2 om0
k \2my Wy "y |
2

r= .
+ Z { s P Zl PeiPis 50 (R,, z)} : (A36)
i=1 kal Li=1 2my

Therefore the Hamiltonian (A32) may be written in the form

f
H(g, p,1) = K(g, p, )+ Y. Y Gig
k Lj=1(i#]) STCIsz(Q) Rkj(q)l
f
I
+ Z ki ©1j + e eR,t" —(1).ER_1.
AL i,jz'—-l 87[Ry(q) — Ry (q)] ; c0e(Re: ) ;”k o(Re. 1)

(A37)

It should be noted that the terms with the vector potential and the magnetic
field appear explicitly in (A32) but are hidden in the kinetic energy in (A37).
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Deformations and free energy

In this appendix we want to study the change of the free energy F* with the
change of the boundaries of the system.

The system considered consists of atoms, carrying charges and dipole
moments, in a uniform and time-independent external field E,, B,. It is then
described by the Hamiltonian (A32) of appendix IL. At equilibrium it is
represented by the canonical ensemble:

14
o FIT — f e dq dp, (A38)

where V is the volume and T the temperature. (The constant C depends only
on the particle number.) The free energy is thus a function of T, E,, B, and
the boundary of the volume V. The integrations over the coordinates ¢ may
be extended to infinity if a wall potential (which is infinite if one of the par-
ticles of the system is outside the volume V') is included in the Hamiltonian.
We take as the wall potential

UY =Y U{(R) (A39)

with the functions U, zero for R, inside the volume and infinite for R, outside
the volume. Here R, is the centre of mass of the atom k. In the first instance
one might be inclined to write as the wall potential Y, ; UY (Ry;), where the
sum is extended over all constituent particles. However, since the dimensions
of the stable atoms are small compared to the volume the use of (A39) in-
stead of this expression is justified if surface effects are neglected. Thus we
write instead of (A38)

R f e~ HHUMTG 4 4p. (A40)

Let us change the positions R™ of the walls by means of an infinitesimal trans-

formation
RV = RV +6RY = {U+5e(RY)}-RY (A41)
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with an infinitesimal tensor de that depends on the position of the wall RV,
(The unit tensor is denoted by U.) Then the wall potential U is trans-
formed to UV = Y U (R,), such that U is infinite if the position R, is
outside the new boundary, and zero inside. Alternatively one may say that
U is infinite if {U~Je(R,)}*R, is outside the old boundary; in other words

vV = ; U T{U—3€e(R)}"R.]- (A42)

From (A40) we find now the chenge 6, F* of F* with de at constant T,
E. and B,:

5, F* = CeF*/"'Tf 5Uwe"(H+UW)/”dq dp, (A43)

where SUY = UV —UY. With (A42) this becomes, up to terms linear in
oe(R,)
S F* = —¢ ; R 5€(R) 'V, UL (R, (A44)

where the brackets denote the canonical ensemble average and where € is
the transposed matrix of de. The right-hand side contains the force
-V, U (Ry) exerted by the wall on atom k. This expression is only different
from zero if R, is situated at the wall so that one may write it as a sum of
contributions due to the various surface elements d.S of the wall:

Ny
VL UMRY = | £ (RYSR,~ RS, (A43)
Inserting this expression into (A44), one finds

5. F* = f SR-éé(R)-fW(R)dS, (A46)

where

fYR) = (LSS(R~R)> (A47)

is the average force per unit surface exerted by the wall. The latter is conven-
tionally written as —nP_,,(R), where n is the outward normal to the bound-
ary and P, (R) the pressure tensor in the wall. Therefore (A46) has the
form

S
S, F* = —f P, deRdS. (A48)

An alternative expression for §, F* is obtained if one uses the virial theo-
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rem in the form
d
(§(xpemyny) o (a49)

which follows from the fact that for a stationary ensemble the average of a
total time derivative of a dynamicel quantity vanishes. In (A49) the total
time derivative has to be read as the Poisson bracket with the total Hamil-
tonian H+ UY, which includes the wall potential. Hence (A49) may be
wrilten as
w - -

<Z {aU Se(R) Ret 1 -6e(R,) Ry — Py-de(Ry) 2

R R OP

k 5k ak

}> =0, (A50)

k

where we introduced the infinitesimal deformation gradient tensor de which
is defined by a relation involving the partial derivatives of de:

5&(R) = 5% {5e(R)R}. (AS)

In particular if de represents a homogeneous deformation, i.e. is indepen-

dent of R, we have
de = Je. (A52)

With the help of the identity (AS50), we find for (A44)

5, F* = — <Z {Pk'ﬁe(Rk)' iH - ;a"l‘{“"se(Rk)'Rk}> . (A53)
I OPk (o \ ¥9

In particular if ée is independent of the position, one finds for the change of

the free energy
5, F* = A : e (A54)

with the tensor A defined as

A= - <z (.‘?ff P,—R, ﬁﬂ)> (AS5)

7 \oP, OR,
The results (A53) and (A54-55) are used in the main text.

PROBLEMS

1. Show that the solution of the first Maxwell equation V°E = o°~V-P for
the electrostatic case has the form given in the first line of (17). Check this by
noting that one may replace the integral in the solution mentioned by one in
which a small volume around R is excluded from the integration over R’:

—9 SR’ Y~V P(R’ 1 ’
Jf{g (R, )~ V"P(R, 1)}V R_R] dr’,
since the integral is convergent. The advantage of the latter way of writing
the integral becomes apparent if one takes the divergence: the divergence of
the integrand does not give a contribution now.
If in the expression given above a partial integration is performed in the
second term, one finds for the electrostatic field an expression with con-
vergent integrals:

E(R, 1) = E(R, t)—@f{ge(R’, 1)+P(R, t)V'}V b dr’
47|R—R'|
- f W-P(R', )V — ds’,
47|R —R'|

where s’ is the surface of the small volume that is excluded from the inte-
gration in the first integral, while »’ is the normal pointing in the direction
away from R. The latter expression for E(R, f) is conventionally written in
the form of the first line of (71), which contains a semi-convergent integral.

An alternative form for the electric field may be obtained by starting again
from (17), leaving the nabla operator outside the integral and performing
a partial integration. Check that one obtains then

E(R,t) = E(R, t)—Vf{Qe(R', 1)+ P(R’, )V} M—L—dR’,
4n|R—R’|

which contains again convergent integrals. Going still one step further one
may write all nabla operators before the integral

E(R, 1) = E(R, 1)
—Vfge(R’, {)

(with convergent integrals).

. dR’

47|R—R/|

N dR’+VV-fP(R’, 1)
4n]R—R’|

117
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The second expression of this problem may also be obtained directly from
the last formula.

2. Show by choosing for the excluded volume a small sphere with centre
R, that one may write the electric field as

1

E(R, ) = E(R, 1)~ P, f {°(R', t)+P(R', 1)V'}V m

dR' —1P(R, 7).

(The combination E+4P is called the Lorentz cavity field.) Comparing this
result with (71) one may write symbolically

1 1

V.V, — = .@Sph V.V, — —%Ué(s)
4rs 4rs

with U the unit three-tensor. Taking the trace one finds

1
Adg— = —(s).
47s )

Prove along similar lines the symbolic relation

s'ViVE ngi = P s VIVE V’s% + 385" + 667 + 6757)5(s)
s s

(cf. (A24)). Contracting the indices 7 and j, one finds

sV, V.V, 1 P 5 VsV Vg L +Us(s).
4ms

s
Comparing with the second relation of this problem, one obtains the identity

sV VYV, —1— = —3V,V, —1~ .
d7s 4rs

(The identity is trivial for s # 0, since then it follows immediately by differ-
entiation.)

3. Show by employing the equation of motion (found in problem 2 of
chapter I) for a particle with dipoles and quadrupoles that the equation of
motion for a fluid of neutral atoms with dipoles and quadrupoles has the

AR b
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form (105) with the force density
= (VE)P+(VByM+c~! é‘ﬁ (P AB)+c™'V-(vP A B)+4F,
t

where P and M are the complete polarizations (39), including dipoles and
quadrupoles. Furthermore the components of AF read

AF' = V; (VE)PDH (VB M D 4 ™ PPy,
7 {(VEy
o1kl % (PP, B+ MY, (" PP, Bz)}

(e is the Levi-Civita tensor).
The “field” part PF of the material pressure, occurring in the equation of
motion (105), reads in the present case instead of (73)

P = e [ (0 M R VB B VBT AR 13 L

The expression for F shows that the inclusion of quadrupoles has the effect
that the force density can no longer be expressed in terms of the Maxwell
fields and the complete polarizations: extra terms with the quadrupole
densities 2 and 4@ occur in AF.

4. Consider the double integral

va‘A(Rl)-V1 Ve (f BR,) ——— 47:]R1 X Rz) dR,. (P1)

In particular we want to study the limit of this expression for ¥, and ¥, both
tending to a volume V, always keeping ¥V, smaller than V,. Note that the
integral may be written also as

f " ARV, {gb f "BV, !

e dRz} dR,,
47|R; —Ry|

where the principal value excludes a small volume around R; from the
integration over R,. Show that this may be transformed to

Vi V2
Y f f A(R)B(R,) : V, Vlz—kl—dedRz

7[R — R,
i

L dSz} dR,,
4n|R; — R,|

- fvx {fSZA(Rl) V, n,B(R,)
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where 5, is the surface of the small volume excluded in the first integral over
R,. Prove by means of a partial integration and Gauss’s theorem that one
may write this as

- f " { f ARV, B(R,)

1
47|R; — R,

f f [A(RJV{VZ B(R,)} - anl ~ dRZ] 0R, |

where S, is the surface of V,. Show by another partial integration and ap-
plication of Gauss’s theorem that this expression is equal to:

S1 *S2
f J ni AR )ny B(Rz) R ds,ds,
2

dSz} dR,

1
IR —Ry|

n f f (VAR )y BERs) dR, dS,

------ —dS, dR,

S1J‘Vz
f nA(R){V,*B(R,)}
47|R 1—Rz]

Va
1
—f f {V,*A(R))}{V,'B(R,)} ZT——W—I dR,dR,, (P2)
1
where (as in all preceding formulae of this problem) the surface and volume
of the first integration are smaller than those of the second.
If we had started from the double integral

Va 1

J' B(R,)'V,V, (f AR, )4n]R1 R de) dR, (P3)
with ¥ greater than V,, we would have found the same result, but with
sutface and volume of the first integration greater than those of the second.
Prove now that in the limit of ¥y and ¥, both tending to ¥ the limit prescrip-
tions — V' greater than or smaller than ¥, — give the same result. Hence it is
proved now that the limit of the integrals (P1) with V; < ¥, and (P3) with
Vi > V, are equal. For that reason this limit is conventionally written as

” A(R)B(R,) : V, V14 L 4R, dR,.

—R;|

The same situation occurs in connexion with integrals of the type

”V*B(Rl)-vlvlv, : U {A(R))~ A(Rz)}c(R)dezJ

S(R,—R})dR, dR),

e e i
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with ¥V < V, and
J'f ZC(Rz) V.V, ¥, [f {A(R;)— A(Rz)}B(R1) _R,)| Rl}
2

5(1:2 —R})dR, dR)

with ¥, > V, (the reason for the occurrence of the delta function and the
exira integration variable being that the functions 4 are not to be differen-
tiated). These two integrals are equal in the limit ¥;, ¥V, — V and are con-
ventionally written as

[ awy-ampsmicm vy, v, !

R — d dR2 5
47|R; — R,

as may be proved along similar lines.

In the main text examples of integrals like the two mentioned here occur
frequently. They are always written in the conventional symbolic way, but
they must be understood in the sense described above.

However integrals may be considered where the order of integration does
matter. An example is given in the next problem.

5. Consider the integral

f AR ( f B(R,) ——

4n|R; — Ryl

dRz) dR, (P4)

with ¥V, < V,. Prove along the same liges as in the preceding problem that
this integral may be written as

Vi Va 1
f ALV, (ﬂf ByV, Vi )de
4z|R 1_R2’

Vi ( {‘52 X 1
- A iV n,"B,V;
1i vy J 22 47‘[]R1-R2]

dSZ) dR,,

where the vector notation could no longer be maintained completely because
of the order of the differentiations. The symbols 4 and B, are abbreviations
for A(R,) and B(R,). Furthermore S, is the surface of the small volume
around R, . Partial integration and Gauss’s theorem lead to a form

Vi S 1
—f f A,V n,-B,V, ——dR, dS,
47|

R, —R,|

+fV1A " " V,B,)V: TR T
i ( f ‘B,)V; R ) .
1 1 ( 282771 4 lRI——RZ[ 2 1
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Show that by taking once more the same steps in the second integral, one
arrives at

I'r 1
- ni4d;n,B,V, ———d5,dS
1Ay by 147IIR1‘R2] 1d93

Vi rS2 1
+J J Vi4)n,'B,V, ————dR, dS
( 1 1) 2M2 71 4an1—RZI 1 2

Vi Sz 1
— V., Bn, 4,V - dR, dS
J‘ ( 2 2) 2441 V1 47[]R1 -—R2! 1 2

Vi (V2 1
+ J. {V,(Vy'B,)}4,°V, -~ R,dR, (P5)

S
4n|R; — R,|

with ¥V, and S, smaller than ¥, and S,.
Check that the integral

- f " B(R,)V, Y, Ve ( f " AR E{m de) dR,  (P6)

with ¥ > ¥V, may likewise be written in a form similar to that given in (P5)

but with the replacements
Ry <> =Ny, Vie =V, 4, < B,.

Show, by performing repeated partial integrations and employing Gauss’s

theorem, that one has for the difference of the two integrals (P4) and (P6)

in the limit V,, V, - ¥

Vi(<V2) V2 1
lim { f ARV, V, V- (f B(Rz)mm——dxz) dR,

Vi,V2V 47C[R1 “RZI
Va(<V1) Vi 1
+J BR'VVV'(J A(R -~—-————dR)dR}
( 2) 2v27%2 ( 1) 47‘CIR1 ——-RZI 1 2

S1<S2 8§:1>82

. 1
= — lim (ff—Jf)nA n,B,V, ——u——d§,dsS,. P7
51500 1741 B0, 14an1__R2[ 109, (P7)

Show that the right-hand side of this relation is equal to
S
—f nmAnBrdS (P8)

by proving first that one has for the integral over an infinite plane S

§ 1
f V" dS = —1n,
4n|R—R’|
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where R’ is a point outside the plane and n is the normal to the plane pointing
in the direction away from R’.

With (P7) and (P8) one may prove now (291) of the main text. Employ
to that end in the first term of the left-hand side of (291) the relation (293)
together with the expression for the Maxwell field given at the end of
problem 1.

Prove finally (243), valid for an ellipsoidal volume, as a particular case
of (291). (The pressure P, the polarization P and the deformation de are
all uniform in this case and may be taken outside the integrals.)

6. Show from the integrability relations

0P _ 2Py

i, =1,2,3
0E,; @E, ] )

(v. (380)) and the connexion (220) between the external and Maxwell fields
E, =E+LP
with the symmetrical depolarizing tensor L (219) that one has
OB, _ OF;
J0E; OE,;
(v. (383)).
7. Show by introduction of the new integration variables R = fia'R and the
introduction of the abbreviations:
P(R) = fixPR),
E(R) = 4 E(R),
B(R) = s P(R)Ma,

that the entropy law (317) may be written in the form:

M(R) = fla"M(R)
B(R) = #isB(R)

T8S = 56U+ J (P — P-EUY5n(R)RdS — f (E-5, P—M-6,B)dR

(where R has been written instead of R and also 0, instead of 50 , since they
are merely integration variables). This entropy law has the same form as
(318) as is to be expected from (305) with (309).

8. In Quincke’s experimental arrangement a U-shaped tube with one of
its legs inside a condenser is filled with an incompressible, electrically polar-
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izable liquid. Show with the help of the formulae (360) and (241) that the
difference 4/ in height between the two liquid columns is given by

0gdh = 1xE?

with ¢ the density, g the acceleration of gravity, x the electric susceptibility
and E the electric field at the surface of the liquid. The liquid inside the con-
denser has a level higher than on the other side.

9. Prove that the volume average of the pressure tensor in a uniformly
polarized solid of ellipsoidal shape is given by

P =P, —1K:PP,

if the outward pressure tensor is uniform. In order to prove this, write the
components P of the left-hand side as

i _ L[ ki
P E; PYVER'dR

and apply then a partial integration, Gauss’s theorem and the equation of
motion VP = 0 (v. (293)). The use of the relations (241) and (243) leads
then to the right-hand side.

(The form effect of electrostriction described by the first two terms of
(390) leads to a non-uniform deformation. The so-called ‘uniform form
effect’ is obtained if one calculates instead the deformation corresponding
to the average normal pressure n-P given above. This calculation is much
simpler than that of the non-uniform effect, in particular for more compli-
cated geometries. It gives an estimate of the order of magnitude only.)
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