
CHAPTER II 

Statistica! description 
of field and matter 

1 Macroscopie laws 

The electromagnetic and material quantities that occur in the atomie equa­ 
tions show rapid changes in space and time. To describe macroscopie situa­ 
tions one has to find Iaws which contain physical quantities that change much 
slower in space and time. The reason is that such quantities are measured by 
means of macroscopie devices. These instruments do not yield information 
on individual particles, but averages over large numbers of particles contained 
in domains which are small compared to the total system. 

So, if one wants to derive the macroscopie laws from the atomie equations 
some averaging procedure must be used. To that purpose one must define 
macroscopie quantities as statistica! averages over a nurnber of atoms con­ 
tained in a mass element which is large enough so that the principles of sta­ 
tistica! mechanics may be applied, but which is still small from a macroscopie 
point of view. As is implied by the definition of the macroscopie quantities 
the spatial dimensions of the mass elements should be on the one hand 
large compared to the distance betwecn neighbouring atoms and on the 
other hand small compared to macroscopie distances. The possibility to 
realize such a situation requires the system to fulfil suitable physical condi­ 
tions. Gases, liquids and solids will satisfy these conditions under wide ranges 
of physical circumstances. In gases the density should not be so small that 
the dimension of the mass cell would have to be excessive in order to fulfil 
the condition that the cell must contain many atoms. 
The macroscopie quantities are thus rid of the extremely rapid changes in 

space and time which the corresponding microscopie quantities show. In 
fact, just as in the rest of macroscopie physics, the physical quantities can 
then be considered as continuous functions of the space-time coordinates, 
except at boundaries. 
After J,iaving indicated how such macroscopie quantities may be described 

with the help of distribution functions, we shall derive in this chapter the 

?1 
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macroscopie equations that govern the behaviour of fields and matter in 
bulk: the Maxwell equations, the momentum, energy and angular momentum 
balances and the laws of thermodynamics, all in the frarnework of classical 
non-relativistic theory. 

2 Average quantities 

Formally one may represent statistica! averages with the help of distribution 
functions. In the non-relativistic approximation all dynamica! quantities 
depend only on the positions Rk; and vclocitics R1d of the particlcs ki. Thus 
the averages of a microscopie quantity a(Rk;, è.; t) can be considered as an 
average in a 'fluxion' space spanned by the positions and velocities of the 
particles: 

A(R, t) = <a) = J af do, 

a a J Jda \da) - <a) =-;:;- afd<p = fd<p = - , 
à: at dt dt 

V<a) = (Va), 

(1) 

where/ =f(Rk;, Rk1; t) depends on the particle positions Rk; and velocities 
Rki and where d<p = Tiki dRk;dRki is the fluxion space element. The pro­ 
bability to find the system in the volume element d<p is/ do. 
Now from the conservation of probability one may conclude that time 

differcntiation and avcraging of a quantity commute. This is seen in the 
following way. The probability to find the system in the fluxion space element 
d<p is given by/d<p. This measurc/dcp remains constant in time if one follows 
the region of fluxion space points in their natura! motion in fluxion space. 
Therefore one has: 

(2) 

where d/dt is the total time derivative in fluxion space o/ot+ Lki Rk(Vki 
+ Lki Rk{Vi; (where V~; = o/oRk; and where Rk;, as a consequence of the 
equations of motion, depends on all Rij and Rij and on time). Equation (2) 
shows that time differentiation and averaging commute. 

Space differentiation and averaging cornmute trivially: 

(3) 

because the fluxion space distribution function does not depend on the space 
coordinates. 
Often the quantities a are sums of functions which depend on the varia bles 

pertinent to one atom or to two atoms 011ly. In such cases one may perform 

a number of integrations in the expression (1) for the average A. For in­ 
stance, if a = Lk aiRk;, Rk;) (where Rki stands for Rk1, Rk2, ... ) or alter­ 
natively, with mass centre and internal coordinates and velocities, a = 
Lk aiRb Rk, ru- 1\;) one may write the average A in terms of a 'one-point 
distribution function' /1 (R1, R1, rii, 1\ ;; t) as 

A = J a1(R1, R.1, rli, ru)f1(R1, R.1, r)i, 1\;; t)dR1 dR1 l;I drlidrli, (4) 

or, in a shorter notation, 

A = J a1(1)f1(1; t)dl, (5) 

where /1 (I; t)dl is the probability, normalized to N (the number of atoms 
in the system ), to find an atorn with parameters in the range dR1 dR.1 TI; dr 1; 
d1\; around the point R1, R.1, ru, r.. (i = 1, 2, ... ) in fluxion space. 
Likewise, if a has the form a = Lk, I(k* I)akl (k, !), one may write 

A = J au(l, 2)fi(l, 2; t)dl d2, 
whcre/2(1,2; t)dld2 is the joint probability, normalized to N(N-1), to 
find one atom in the range dl and another in the range d2. 
It will be convenient to introduce also a two-point correlation function 

defined as 
C2(I, 2; t) =/2(1, 2; t)-/1(1; t)/1(2; t). 

(6) 

(7) 

This correlation function has the property to vanish rapidly with increasing 
atomie distances for systems without long range order, such as fluids. For 
crystals however this is not the case. 
In the preceding the treatment was confined to one-component systems. 

The extension to mixtures of several components is straightforward. In that 
case one has to introduce distribution functions for each separate species. 
The one-point distribution functionf'[(L; t) now gets an extra label a which 
indicates the species. Now f!(I; t)dl is the 'probability, normalized to Na 
(the number of atoms of species a), to find an atom of species a with param­ 
eters in the range dl in fluxion space. Similarly the two-point distribution 
function is defined in such way thatff\I, 2; t)dl d2 is the joint probability, 
normalized to NaNb (if a -/= b) or Na(Na- l) (if a = b ), to find an atom of 
species a in the range dl and an atom of species b in the range d2. The cor­ 
relation function c~b(I, 2; t) is now defined as the difference fib(I, 2; t) 
-f!(I; t)J:{2; t). 
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3 The Maxwell equations they may be written alternatively as 

The Maxwell equations may be found from the atomie field equations (I.35) 
by the statistica! procedure of the preceding section. Indeed one gets: 

V·D = (/, 

<V·e) = <Pc)-<V·p), 

-<J0e)+(VAb) = (j)/c+(J0p)+(V /\m), 
<V·b) = 0, 

<00 b)+<V /\e) = 0. 

(15) 

(8) 

-J0D+V AH= J/c, 

V·B = 0, 

o0B+VAE = 0. 

With the help of the cornmutation rules (2) and (3) one obtains from (8) 
the set of equations 

V·< e) = (pc)- V·(p ), 

-80(e)+VA<b) = (j)/c+ào<P)+VA<m), 

V·<b) = 0, 

o0<b)+VA<e) = 0. 

With the notations (1) for the macroscopie quantities, i.e. macroscopie fields 

E = <e), B = <b), 

the macroscopie charge and current densities 

(/ = <Pc), J = (j), 

and the macroscopie polarization vectors 

p = <P), 

one may write for the set (9): 

M = <m), 

V·E = (/-V·P, 

-o0E+V /\B = J/c+o0P+V AM, 

V·B = 0, 
o0B+V /\E = 0. 

(9) 

(10) 

(11) 

(12) 

(13) 

These are the Maxwell equations. With the definitions of the displacement 
vectors 

D = E+P, H = B-M, (14) 

The lat ter could also have been obtained by averaging the atomie eq uations 
(1.37). 
Maxwell's equations have thus been found from the atomie field equa­ 

tions, which in turn followed from Lorentz's microscopie field equations. 
This completes the derivation. 
The macroscopie equation of conservation of charge 

o{//ot = -V·J 

follows from the averaging of (1.38) with the help of the definitions (11) and 
the fact that averaging and differentiation commute, 
Up to order c-1 the solutions of the Maxwell equations (13) are 

E(R, t) = Ec(R, t)-vf {Q°(R', t)-V'·P(R', t)} l , dR', 
4n\R-R \ 

B(R, t) = Bc(R, t) 

+V /\ J{c-1J(R' t)+c-1 oP(R', t) +V' AM(R', t)1 l dR'. 
' àt f 4n\R-R'\ 

ec(R, t) = (pc) = < I ek è5(Rk- R)), 
k 

J(R, t) = ~ J Ca V1 ff(R, V1; t)dv1, 

(16) 

(17) 

One may verify that these are the solutions of (13) by inserting them and 
using (16) (v. problem 1 ). The first terms at the right-hand sides are the 
external fields, which are solutions of the field equations without sources. 
The macroscopie charge and current densities Qe and J are the averages 

(11) of (I.33) 

(18) 
J(R, t) = (j) = < I ekvkè5(Rk-R)), 

k 

or, in terms of one-point distribution functions, as in (4): 

ee(R, t) = I eaff(R; t), 
a (19) 
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where the summation over a is extended over the number of species in the 
system. These expressions include contributions from all charged 'atoms', 
such as ions and free conduction electrons. 
Furthermore the macroscopie electric and magnetic polarizations are 

given by the averages (12) of (1.34): 
Cl) 

P(R, t) = <P> = < I (-1)"-lvn-l: I ïït)ó(Rk-R)), 
n=l k 

00 

M(R, t) = <m> = < I (-q-lvn-l ; I (vin) +c-1ïït) /\ vk)ó(Rk-R)), 
n=l k 

or in terms of one-point distribution functions: 

P(R, t) = ~ J/-l)"-1v11
-
1
: J fï.Y'1/f(R, 1; t)dl, 

M(R, t) = ~ Jl(-l)"-1V11
-
1
: J (vY'l+ïït) /\fJ1)ff(R, 1; t)dl, 

(20) 

(21) 

where the syrnbol 1 now indicates all atomie parameters except for the posi­ 
tion i.e. fï.in) in the first line and µ~nl, vY'l and /J1 = vif c in the second line. 
Just as the multipole moments may be permanent or induced or both, the 
polarization vectors Pand Mare the total polarizations, due to permanent or 
induced effects or both. 
The quantities ( 18-21) are continuous functions of space and time 

coordinates; they contain the charge ek and the multipole moments fï.knl and 
vinl as atomie characteristics. 
A few remarks may be made on the result. In the first place it is seen to be 

valid for completely arbitrary polarizations of the material, that is to say 
polarizations due to both permanent and induced (by means of external and 
internal fields) electromagnetic moments of the atoms. The derivation leads 
to polarization vectors P and M expressed in (20) and (21) as statistical 
averages involving the e!ectromagnetic moments of the atoms. The deriva­ 
tion is therefore completely independent of the 'constitutive relations', by 
which connexions between the polarizations and the fields are given, usually 
in terms of electric and magnetic susceptibilities. In fact these connexions 
belong to the dynamics ( or staties) of the system, not to its set of field 
equations. 
ln the second place the derivation shows the secondary character of the 

displacement vectors D and H. They may be obtained from their definitions 
(14) together with (10) and (12) for the fields and polarizations. The set (15) 
is useful to forrnulate the boundary conditions which lead to the well-known 

operational definitions of the Maxwell fields E, B, D and H in certain cavi­ 
ties. But otherwise the set ( 13) is to be preferred since it shows better the 
microscopie origin of the eq uations, as is apparent from the derivation. 
The field equations (13) may be shown to be covariant under Galilei 

transformations. These form a group consisting of spatial rotations and 
pure Galilei transformations. The Jatter have the form 

R' = R+ Vt, 
t' = t, 

(22) 

where V is the transformation velocity (independent of space and time). 
The covariance of the field equations under rotations is guaranteed by the 
fact that they have been written in vector notation. The covariance under 
pure Galilean transforrnations requires some further inspection. From (22) 
we have for the transformations of the partial derivations with respect to 
space and time 

V' = V, 
ó ó - = - -V·V. àt' àt 

Furtherrnore the distribution functions are invariant: 

(23) 

Jt(l'; t') = J;(l, t), (24) 

as a consequence of their probability interpretation. Here 1' denotes the 
transforrned quantities of the atom 1, for instance R~ = R1 + Vt, v~ = 
v1 + V, µ~ = µ1 and v~ = ï\. With the help of these formulae one proves 
the transformation properties of the charge and current densities (19) and 
the electric and magnetic polarizations (21 ): 

rl'(R', t') = Q0(R, t), 
J'(R', t') = J(R, t) + V g°(R, t), 

P'(R', t') = P(R, t), 
M'(R', t') = M(R, t)-c-1V AP(R, t). 

From (23) and (25) one proves the covariance of the charge conservation 
law (16). Furthermore from (23), (25) and (26) one finds that the field 
equations are covariant if one imposes the transformation forrnulae for the 
fields 

E'(R', t') = E(R, t)- c-1 V /\ B(R, t), 
B'(R', t') = B(R, t)+c-1V AE(R, t). 

(25) 

(26) 

(27) 
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We note again that in the present non-relativistic theory only terms up to 
order c-1 are included. As a consequence the transformation formula for 
the electric field contains in fact only the external magnetic field B0, since 
the magnetic field generated by the sources is itself of order c- 1, as follows 
from the solution ( 17). 

In a fashion analogous to the definition of the macroscopie charge density, 
which was the average of the atomie charge density, one can define macro­ 
scopie electric and magnetic multipole densities as: 

!Jji(n) = ( L fit'\'i(Rk- R)) = Lf fiY''.ft(R, 1; t)dl = L gi~n), 
k a a 

vt7(n) = < I vf'\5(Rk-R)> = If vY')ft(R, 1; t)dl = I vt7~"l, 
k a a 

vk = v+vk. 

(28) 

where n indicates the multipole order: n = 1 dipole, n = 2 quadrupole, etc. 
These macroscopie multipele densities are functions of space and time 
coordinates R and t. 
The expression (20) or (21) for the electric polarization vector P can be 

written in terms of the electric multipole densities (28) 
Cl) 

P = I ( - i)"-1v11-1 : iJJiC") = iJJi(1) - v,iJJi(2) + vv : iJJi(3) - . . . . (29) 
n=1 

The right-hand side is a series expansion involving all multipole densities, 
In the Maxwell equations (13) appear, besides rl and P, also the current 

density J and the magnetization vector M. The latter quantity, which is 
givcn in (20) or (21 ), cannot be expressed in terms of the multipole densities 
(28) alone, just as the current density cannot be expressed in terms of the 
charge density. In both cases the reason is that the atomie velocities vk appear 
in a particular way as the expressions (18-19) and (20-21) for J and M 
show. It is convenient for the physical discussion to resolve the atomie 
velocity vk = /he into a local mean velocity v = pc and a velocity fluctuation 
vk = pkc: 

(30) 

(The local mean velocity is in general still a function of space and time 
coordinates Randt.) Then with the expression in (19) for the charge density 
one can write the current density of (19) as 

In this way J has been resolved into a 'convection' current c/v and a 'con­ 
duction' current I. The fact that the former produces a magnetic field as 
well has been demonstrated experimentally by Rowland 1• 

Similarly (30) can be used in the expression (21) for the magnetization 
vector M. Then, using the definitions of the multipole densities (28), one 
can write 

M =,.t(-1)"-1v"-1: {.,H(n)+iJJi<n) AP+ ~ J îii") APift(R, 1; t)dl}' (32) 
because differentiation and averaging commute. 
Alternatively, with the help of expression (29) for the polarization vector, 

the magnetization vector reads 

J = g0v+ ~ J ea î\ f!(R, v1; t)dv1 = Q°v+I. (31) 

Cl) 

M = I (-1)"-lvn-1: .,H(n)+PAP 
n::;;1 

+ J/- l)11
-
1vn-l : ~ J fit)/\ P1 Jt(R, 1; t)dl. (33) 

The physical significance of special cases of these forms will be discussed 
in the next section, where practical examples are treated. But it may be 
remarked already here that M shows three contributions, 1st: a sum which 
contains all magnetic multipole densities, analogous in structure to the series 
in the electric polarization (29), 2nd: a convection term due to the convection 
motion v = pc of the total polarization vector P, and 3rd: a fluctuation 
term, which contains the atomie electric multipole moments "fik") and the 
velocity fluctuations fjkc. The last term plays a role if the carriers of electric 
multipole moments "fik") do not all have the same velocity (i.e. if fjk cf 0). 
Mazur and Nijboer2 gave the first example of such a term. Expression (32) 
shows explicitly that M cannot be expressed in terms of the multipole 
densities (28) alone: the first and the second terms are functions of these 
multipole densities, but not the third. 
Let us summarize the genera! results obtained so far. The Maxwell equa­ 

tions were found in the form of the set (13). It contains the macroscopie 
fields E and B, and moreover the four macroscopie quantities Q°, J, Pand M, 
for which expressions were found: 
( a) The charge density e•, given as the average of the atomie charge density 
in formula (18) or (19). 
1 H. A. Rowland, Am. J. Sci. 15(1878)30. 
2 P. Mazur and B. R. A. Nijboer, Physica 19(1953)971; cf. reviews by P. Mazur, Adv. 
Chem. Phys, 1(1958)309 and S. R. de Groot, The Maxwell equations (North-Holland 
Pub!. Co., Amsterdam 1969). 
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(b) The current density J, given as the sum (31) of a convcction current, due 
to the bulk motion of the charge density, and a conduction current, due to 
the fluctuations in the velocities of the atomie charges. 
(c) The electric polarization vector P, expressed as a series expansion (29) 
in the macroscopie electric multipole densities defined in (28). 
( d) The magnetic polarization vector M, given by (33). It contains in the 
first place a series in the macroscopie magnetic multipole densities of (28). 
Furthermore two terms describing the effects of moving electric multipoles 
occur: a convection term, due to the bulk motion of the electric polarization, 
and a fluctuation ( or conduction) term, due to the fiuctuations in the veloc­ 
ities of the atomie electric multipole moments. 

4 Applications 

a. The polarizations up to dipole moments 

To simplify the discussion of the various physical systems let us give some 
explicit formulae, containing lowest order multipoles. In fact in not too 
dense systems one can limit oneself to the consideration of atomie charges 
and dipole moments only. Thon the polarizations (21) becorne 

p = ~ J ,N1/i°(R, l; t)dJ' 

M = ~ J Cv11) + 11\1) A /J1)ff(R, 1; r)d1. 

In these expressions occur the macroscopie elcctric dipole density &><1l 
and the macroscopie magnetic dipole density .,if(ll, defined in (28). With 
the usc of these quantities, and the splitting of the atomie velocity in a 
local mean velocity /Je and a deviation fike from it, one can write the polari­ 
zations as 

p = ijfiCll, 

M = .,47(1) + gi(l) A fJ + ~ J µ~1) A P1 ff(R, 1; t)dl. 

(34) 

(35) 

The electric polarization vector P could be expressed in terms of the macro­ 
scopie electric dipole density alone. The magnetic polarization vector M con­ 
tains the magnetic dipole density. Furthermore terms due to moving electric 
dipoles are present. First a convection term, due to the bulk velocity v = /Je 

of the electric dipole density, is present. Its curl, which occurs in the Maxwell 
equations, is called the Röntgen current. It has been observed experimental- 
1y1. But M contains also terms due to the fluctuations Pk c in the velocity of 
the carriers of the electric dipole moments. 
Only if the carriers of the electric dipole moments all have the same 

velocity /Jk = fJ do the fluctuation terms vanish. The polarizations then 
reduce to 

p = g>(l), M = ,_,ff(l) + giCl) A /J. (36) 

These expressions are the same as Lorentz's original results2• Lorentz's 
model did not include the possibility of the appearancc of the fluctuation 
terms. It should be noted that in contrast wiih the genera! formulae the 
special expressions (36) are functions of the macroscopie dipole densities 
alonc. 
If the system is completely at rest, i.e. if all atoms have velocities /Jk = 0, 

then (36) further reduces to 
p = giUl, M = .ë». (37) 

b. The polarizations up to quadrupole moments 

In the dipole plus quadrupole approximation one retains the terms with 
n = l and 2 in (21): 

P = ~ J µ111/f(R, 1; t)dl- ~ V· J fi.?1/f(R, 1; t)dl, 

M = ~ J (v\1l + Jii1l A /J1)ff(R, 1; t)dl 

- ~ v· J (v12) + ïi?J A P1)ff (R, 1; r)dl. 

(38) 

Introducing the macroscopie dipole and quadrupole densities (28) with 
n = I and 2, and resolving the atomie velocity /Jke into a local mean velocity 
/Je and a velocity fluctuation Pke one can write (38) as 
p = g>(l) _ ;;;.ffe(2), 

M = .,4-;j(l)_;;;.jj(2)+(&>(1)_;;;.gi(2))A/J+ ~ J µll) AÎJ1 ff(R, 1; t)dl (39) 

- ~ v-J fii2l A ÎJ 1 ff(R, 1; t)dl. 

1 W. C. Röntgen, Ann. Phys, Chem. 35(1888)264, 40(1890)93; A. Eichenwald, Ann. 
Phys, Chem, 11(1903)1, 421. 
2 H.A. Lorentz, Proc. Roy. Acad. Amsterdam (1902)254; Ene. Math. Wiss. V 2, fase. 1 
(Teubner, Leipzig 1904) 200. 
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The electric polarization vector P is equal to the macroscopie electric 
dipole density minus the divergence of the electric quadrupole density. The 
magnetization contains three dipole contributions; the first is the macro­ 
scopie magnetic dipole density, the second is a convection term due to the 
bulk motion of the macroscopie electric dipole density iJ>(l), and the third is 
a fluctuation term, due to the fluctuations in the velocities of the individual 
atomie dipole moments µkl)· This last term plays a role in systems in which 
the electric dipoles do not all have the same velocity. (In the following sec­ 
tions some practical examples will be given.) In all terms the negative diver­ 
gence of a quadrupole term is added to the corresponding dipole terms. In 
uniform systems the quadrupole terms will thus not play a role, but for 
insta nee boundaries will give quadrupole ( and perhaps even higher multipole 
order) contributions. 
lf all electric multipoles have the same velocity (/h /J, the fluctuation 

terms disappear from the expressions for the magnetization vector M. 
Formulae (39) then simplify to 

p = g,c1J _ V·IJ5(2), 

Maxwell equations, namely the charge and current densities rl and J, and the 
electric and magnetic polarization vectors P and M, will depend on the 
characteristics of the particular physical model studied. 

M = ,,ijCl) - V•.iiC2l + ( iffe(ll - V·ffe°C2J) A /J. 
These expressions were originally found by Frenkel 1. They include quadru­ 
polar effects, but otherwise their validity is limited in the same way as 
Lorentz's, since the fluctuation terms of (39) are missing. Earlier Fokker? 
found these formulae, but without the magnetic quadrupole term. 
For the still more special case of no motion at all (/Jk = 0), the expressions 

further reduce to 

(40) 

p = g,c1J_ V·ffe°(2), M = A7C1J-v.ji<2l. (41) 

Full symmetry between electric and magnetic terms is present only in this 
last statie case. Rosenfeld" obtained these expressions but without the 
magnetic quadrupole term. 

c. Examples 

In this subsection the Maxwell equations for specific physical systems will 
be discussed. The expressions for the material quantities which occur in the 

1 J. Frenkel, Lehrbuch der Elektrodynamik II (Springer, Berlin 1928), p. 26. 
2 A.D. Fokker, Phil. Mag. 39(1920)404; Vers!. Kon. Acad. Wet. Amsterdam 28(1920) 
1040; Relativiteitstheorie (Noordhoff, Groningen 1929). 
3 L. Rosenfeld, Theory of electrons (North-Holland Publ. Co., Amsterdam 1951); cf. 
J. Voisin, Physica 25(1959)195. 

(i) Metals. A metal is supposed to consist of free electrons moving in a 
rigid lattice formed by positively charged ions. The 'stable groups' of point 
particles of the present theory are then those free electrons and ions. They 
will be Iabelled by an index a = I and a = II respectively. The model is 
then specified by assigning charges to the electrons, and charges and electric 
and magnetic dipole moments to the ions. Furtherrnore in the model one 
supposes that the metal can only move as a whole, with a velocity v = {Je. 
This means that all ions move with this velocity. The free electrons however 
have vel oei ties fJ 1 e = {Je+ ÎJ 1 e. On the basis of these properties of the model 
we can naw give the expressions for the material quantities r/, J, Pand M, 
which occur in the Maxwell equations. The charge density (19) becomes 

1/ = e1 JI(R, t) + eu Jt(R, t). ( 42) 
The current density (31) is 

J = Q
0v+I, JA i I = e, /J1 ef1 (R, 1; t)dl. (43) 

The convection current QeV contains contributions ( 42) from the free elec­ 
t rans and the ions. The conduction current I contains only contributions 
from the free electrons, since the ions have no velocity fluctuations. The po­ 
larization vectors P and M follow from the formulae (36) for the dipole 
case, with the macroscopie dipole densities (28), as 

P = ffe"Ul, M = .iill)+iffiil) A/J. (44) 

Only the ions contribute. Since the ions have no velocity fluctuations no 
fluctuation contribution arises in M. The free electrons do not give rise to 
such a contribution either, because, although they do have velocity fluctua­ 
tiens, they possess no dipole moments. This is the reason why the expres­ 
sions (44) turn out to be of the particular type (36). The latter were also 
Lorentz's results. So for the model of the metal - and Lorentz apparently 
had this model in mind - these results are justified from the genera! theory. 
A possible influence of multipole moments of higher than dipole order 

might have been taken into consideration. However in a system in which the 
total charges of 'stable groups' play a role, their effects usually overshadow 
those due to the dipole moments. The corrections obtained by taking into 
account also quadrupole effects are then negligibly small. 
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(ii) Insulators. If the stable groups in insulators are positively and nega­ 
tively charged ions of the kind I and II, then the model can be specified as 
follows. The ions possess charges as well as electric and magnetic multipole 
moments of order n = I, 2, .... The system is a rigid lattice moving with the 
velocity v = pc as a whole. This means that the ions have this velocity, so 
that all velocity fluctuations vanish. Often the charges of the two kinds of 
ions just cancel so that the system as a whole is electrically neutra!. Then we 
have the charge density (/ = 0, just as for an atomie or molecular lattice. 
The current density J (31) also vanishes because both the convection current 
o» and the conduction current I are zero: the first because Qe = 0, and the 
second because all velocity fluctuations vanish, Since the ion lattice is usually 
fairly closely packed, one may need to include terms of higher than dipole 
order into the polarizations. Because no fluctuation motion is present, the 
expressions (29) and (32) become 

ro 
P = I (-1)"-1v11-1: ~c"i, 

n=l 
ro 

M = I (-1)"-1v11-1 : (uiic"i + ~(11) /\ P), 
n=l 

,m(n) _ ,m(n) + a,(11) .r - -r-1 -r-u , Jj(11) = Jij")+ Ji};l • 

(45) 

with the complete multipole series. One has here for the macroscopie multi­ 
pole densitics: 

(46) 
The number of space differentiations in ( 45) increases with the multipole 
order. The effects of the higher order multipele densities show up especially 
at boundaries between different media. 

(iii) Plasmas. A plasma is a gas in which a sensible proportion of the atoms 
or molecules is ionized, so that virtually the properties of the system are 
cornpletely deterrnined by the effects of the charges of the ions and free elec­ 
trons. In fact in practice one neglects completely the multipole mornents 
of the atoms, molecules and ions. In such a model the charges of the ions 
and free electrons determine the value of the charge-current densities Qe 
and J, which are given by (18). If all multipole moments are neglected, the 
polarization vectors Pand M vanish, The Maxwell equations (13) read then 

These equations form indeed the starting point which is generally adopted 
in plasma theory. In this connexion it should be noted that sometirnes 
electric polarization vectors are introduced that are not defined as the 
average over the microscopie electric multipole mornents. As a matter of 
fact various 'effective polarization vectors' can be found in literature. One 
of these is the 'effective polarization vector' P*, which is related to the 
charge density Qe as 

Qc -V·P*. (48) 

Then one introduces also an 'effective displacement vector' D*, defined as 

D* = E+P*. (49) 

Another forma! 'effective displacement vector' which is sometimes used 
is the quantity D**, which satisfies 

è0D** = ó0E+c-1J. (50) 

Thcn one can accordingly also introduce 'effective dielectric constants', The 
dielcctric constants E are normally dcfined as the proportionality constants 
between the fields D and E. The 'effective constants' 8* or 3** are defined as 
the proportionality constants betwecn the fields D* or D** and E. Some of 
these 'effective' quantities may be useful abbreviations in certain cases, but 
one should not confuse them with the ordinary polarization and displace­ 
ment vectors, which are directly connected to the multipole moments of the 
particles in the system. 
In particular the model of a plasma is such that the refractivc index 11 is 

different from unity, whereas i = 1, since D = E. In fact fora plasma 112 
is therefore not equal to 8. Again one can of course introduce an 'effcctive 
dielectric constant' equal to the square of the refractive index, but one 
should not confuse it with the ordinary dielectric constant 8. 

V·E = r/, 
-o0E+V AB= c-1J, 

V·B = 0, 
ó0B+V /\E = 0. 

(47) 

(iv) Fluids. ln a fluid which consists of neutral molecules the charge density 
Qe and current density J both vanish. The polarizations P and M contain 
contributions from the various molecular multipele moments. 
In a gas it is usual to limit oneself to the dipole contributions al one. The 

velocity Pk c of the molecules will again be written as the sum of a local mean 
velocity pc (which depends on space and time coordinates R and t) and a 
velocity fluctuation fi" c. Then the dipole approximation (35) for the polar­ 
ization vectors applies. The electric polarization vector is simply equal to 
the electric dipole density ffeCll. The magnetic polarization vector contains 
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three contributions. The first is the magnetic dipole density; the second is a 
'convection term' and the third has a :fluctuation character: even for a gas 
at rest this term will not disappear. 
Ina liquid, because of its high density, one may need to take into account 

the effects of higher multipole moments, for instance the quadrupole mo­ 
ments. In the Jatter case the polarizations are given by (39). 

(v) Electrolytes. In an electrolyte one has positively and negatively charged 
ions, and usually also a neutra! component. ln this respect it is similar to a 
plasma. However the density of an electrolyte is much higher than the density 
of a plasma. The effects of dipoles ( or even higher order multipoles) should 
therefore be taken into account. The model adopted here is a mixture of 
three components labelled by the indices I, II and III of which I and II are 
ions, with charges e1 and en, and III neutra! molecules; all three components 
are supposed to carry electric and magnetic dipole mornents. 
The charge density (19) gets the form 

Il 

rl = I eaff(R; t). 
a=I 

(51) 

The vel oei ties of the ions and molecules can be written as the sum of a local 
mean velocity of all ions and molecules and :fluctuation velocities. Then the 
current density (31) is 

J = Q"v+I, 
where QeV is the convection current and I the conduction current: 

Il J I = J
1 

e, v1 f:(R, v1; t)dv1• 

With the macroscopie electric and magnetic dipole densities (21) for the ions 
and the molecules i!i>i1l and uii~1l (a = I, II, III) one can write the polariza­ 
tion vectors (35) as 

(53) 

III 
p = ~ f}Ul L, a , 

a=I 

M = ail {A't~1)+i!Ji~l) A/J+ J µ~!) /\Piff(R, 1; t)dl}. 

(52) 

(54) 

The polarization vector P contains the three e!ectric dipole densities. The 
magnetization vector M consists of three kinds of terms. First the magnetic 
dipole densities due to the ions and molecules appear. Then the convection 

of the e!ectric dipole densities with the bulk velocity v = /Je gives a contri­ 
bution. Finally the electric dipoles also have :fluctuations in their velocities 
around the bulk motion. These effects give rise to the last term. They do not 
occur in solids, but they can play a role in :fluid systems, in which freely 
moving electric multipoles exist. 

5 The momentum and energy equations 

a. Introduction 

The motion of matter in bulk is described by the balance equations of mo­ 
mentum, energy and angular momentum. The derivation of the former two 
from the corresponding atomie laws by means of a statistica! averaging 
procedure will be the subject of this section, while the Jatter will be discussed 
separately in the following section. As a result we shall :find macroscopie 
laws that contain quantities, such as the pressure, the internal energy and the 
heat flow, which are given as statistica! averages of atomie quantities. 
In contrast to the field equations the material equations mentioned con­ 

tain quantities that are two-point functions on the atomie level, so that they 
contain two-point distribution functions ( or correlation functions) on the 
macroscopie level. As a consequence one will have to distinguish in the course 
of the treatment between physical systems for which these correlation func­ 
tions show marked differences: systems in which the correlations have short 
range - such as gases, liquids, plasmas and amorphous or polycrystalline 
solids - and systems such as crystalline solids with correlation functions of 
long range character. 

b. The mass conservation law 

In the course of the derivation of the momentum and energy laws, we shall 
need the macroscopie mass conservation law, which is an immediate con­ 
sequence of the atomie conservation Iaw. In fact, the atomie mass density is 

p(R, t) = I mkb(Rk-R), 
k 

(55) 

where mk is the mass of the (identical) atoms fora one-component system". 

1 For forma! convenience we treat in the following subsections one-component systems. 
The generalization to mixtures is obvious (cf. subsection g). 
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Then the macroscopie mass density becomes: 

a(R, t) = < L mkö(Rk-R)) = mf1(R; t), 
k 
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(56) 

where /1 (R; t) is a one-point distribution function, which depends only on 
the position R1 ( = R) and the time. The time derivative of the macroscopie 
mass density (56) is according to (2) 

0(2 ) - = ( L m; v,/Vkö(Rk-R ), ot k 
(57) 

since in this case d/dt = vk·'\ (with vk the atomie velocity Rk). Introducing 
the local barycentric velocity v(R, t) by 

a(R, t)v(R, t) = ( ~ m" v"c5(Rk-R)) = J mvif1(R, v1; t)dv1, 

we may write (57) in the form 

0(2 
Ót 

-V·(av), 

which is the macroscopie law of mass conservation. 

is written with the help of an appropriate one-point distribution function. 
Furthermore we introduced the abbreviations FL = ( I.dkLc5(Rk-R)) and 
Fs = ( I.d"5ö(Rk-R)) for the long and short range terms. 
The long range term contains f"\ which has been specified in (I.54). We 

shall first treat the part with the external fields (E0, B0) (it wil! be called F~). 
It can be expressed in terms of the macroscopie charge and current densities 
(v. (18)): 

ae(R, t) = ( L e"ö(R"-R)), 
k 

J(R, t) = ( L ekvkc5(Rk-R)), 
k 

(58) 

(where e" = e is the charge of the (identical) atoms) and the macroscopie 
polarization and magnetization densities which read, if only dipoles con­ 
tribute for the system under consideration (v. (20))1 

P(R, t) = < L ïW)ö(Rk-R)), 
k 

M(R, t) = < L (vi1)+ ïti1) A v"/c)c5(R"-R)). 
k 

(64) 

(65) 

(59) (N ote that according to (I.30) the magnetization is of the order c-1, while 
the other three densities are of the order c0.) In this way we get the expression 

F~ = aeEe+c-11 ABe+(VEe)·P+(VB0)·M 

c. The momentum balance 

The momentum law is obtained by taking the time derivative of (58). With 
(2) and the equation of motion (I.50) one gets 

~G!1 = -V·<Imkvkvkc5(Rk-R)>+<I.Ur+J;)c5(Rk-R)). (60) 
et " " 

Introducing the velocity fluctuation v" as 
viR, t) = v"- v(R, t), (61) 

we obtain from (60) with (56) and (58) the momentum balance equation 

ógv = - V·(avv + pK) + FL + Fs, 
ót 

where the kinetic pressure 

pK = J mv1 i\ f1(R, v1; t)dv1 

(62) 

+c-1( L ~ {ïï?) /\ Be(R", t)}i5(Rk-R)). 
k dt 

+c-1V·Jv -µ<1)/\B f (R v -µUl. t)dv d-µOl 1 l C l ' J, l , 1 l • 

(66) 

The last term becomes with (2) 

c-1.; ( L. µf1) ABei5(Rk-R))+c-1V·( L, VkÏÏk1) /\Bcc5(Rk-R)). (67) 
et " k 

If ( 61) and ( 65) are used in this expression and the result is substituted into 
(66), one gets 

F~ = {/Ee+c-1J AB0+(VE0)-P+(VB0)·M 

+c-1 i (P /\ Be)+c-1V·(vP /\ Be) 
ót 

(68) 

(63) 

1 Higher multipoles could be included at this point, v. problem 3 for the case of quadru­ 
poles. As a result it turns out that the macrosopic force density which for the dipole case 
will be given in (] 06) can no Jonger be expressed in terms of the Maxwell fields and the 
total polarizations alone. (Cf. also H. A. Haus, Ann. Physics 45(1967)314.) 
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The remaining part of the long range term of (62), which is due to the 
interatomic interactions (v. (I.54)) may be written with the help of a two­ 
point distribution function: 

FL-F;; = - J ~ (-(n) : V" -(m) : V"' V 1 ) L., µ1 . 1 µ2 . 2 1 
11,m=0 4nlR1 -R2I 

c5(R-R1)f2(R1, 1, R2, 2; t)dR1 dl dR2 d2, (69) 

where 1 (and 2) denote the whole set of electric multipole rnoments îiY') (and 
µ~")) with n, 111 = 0, 1, .... Let us split the right-hand side into two parts 
with the help of (7). In the 'uncorrelated' part, which contains the product of 
one-point distribution functions, we add a factor è5(R' -R2) and an integra­ 
tion over R'. Furthermore we introduce the macroscopie charge and polar­ 
ization densities ( 64-65), omitting here all rnultipole moments of order two 
and higher. The Jatter moments would give rise to terms containing the 
macroscopie multipele densities of order two and higher, which are assumed 
to be negligible in our system. In the 'correlated' part (which contains the 
correlation function) the integration over R1 may be performed. In this way 
we obtain: 

FL-F;; = -1· {Q°(R, t)+P(R, t)'V}{Q°(R', t)+P(R', t)-V'}V l , dR' 
4nlR-R 1 

-J I (ï,t): V"µ~n) : V11"V __ ] __ ;-) Cz(R, 1, R', 2; t)dR' dl d2. 
n,m=O 4nlR-R 1 

(70) 

The total long range force density is now given by the sum of (68) and (70). 
Introducing the macroscopie electric and magnetic fields (17), which read 
up to order c-1 and c0 respectively: 

E(R, t) = Ec(R, t)-J{Q°(R', t)+P(R', t)-V'}V l , dR', (7l) 4nJR-R 1 

B(R, t) = Be(R, t), 

(v. problem 1) we obtain thus up to order c-1 

pL = rlE+c-11 AB+(VE)'P+(VB)-M 

+c-1 .!3_ (PA B)+c-1V·(vP AB)-V·PF +Fc, (72) 
àt 

with 

PF _ -lJA -(!) B'f (R -(1). )d d-(1) = -C vlµl J\ :Jl ,V1,µ1 ,t V1 µI' (73) 

a contribution to the pressure tensor due to the action of the field B on the 
electric dipoles. Furtherrnore Fc is the 'correlation contribution' given by 
the last term in (70). It reads written with s for the interatomic separation 
R-R': 

pc= J ~ f(-1)"'-<") : v11-(ml: V"'V _1 } 
L., 1 µ1 . s µ2 . s s 4 

n,m=O l tts 

ci(R, l,R-s,2; t)dsdld2. (74) 

The short range term Fs = < LJ;è5(Rk-R)) at the right-hand side of (62) 
contains the force J; given in (I.52). We rnay write it with the help of an 
appropriatc two-point distribution function. Again performing the integra­ 
tion over R1 and introducing the integration variable s = R- R2 wc get 
with r"; = Rki-Rk: 

pS = 1· {- '\' V eiej + ~ (-l)m-(11): vn-(111): V"'V _1 \ 
L, s L, µ1 . sµ2 . s s j 
i,j 4nls+r1;-r2) n,m=O 4ns 

f2(R, 1, R-s, 2; t)dsdl d2, (75) 

where ei and e j are the charges of the constituent parti cl es i and j of the 
(identical) atoms. 
The equation (62) with (63) and (72-75) constitutes the macroscopie 

balance of momentum. It will be studied further for specific systems in sub­ 
sections f, g and h. 

d. The energy balance 

The macroscopie energy law wil! be derived from the atomie energy equa­ 
tion (I.63). Let us first consider the macroscopie quantity 

( 
'\' ( 2 2 eki ek · ) ) L, ½mkvk +½ I mki1:ki+. r . 1

• è5(Rk-R) (76) 
k , ,,1(ict1) 8njrki-1k) 

( vk is the atomie velocity Rk)- Introducing the appropriate distribution func­ 
tions, the notations 111 for the mass 111k of the (identical) atoms, and m, and 
e; for the mass 111k; and charge eki of their constituent particles i, one gets 
for this expression, with the help of (56), (58) and (61): 

½QV2+QUK 

with an internal energy density 

K J(· A2 1 '\' •2 '\' eiej )J(R 1· tJdl~ QU = -tmv1+21..,; m;r11+ 1..,; ---- 1 , , , 
; i,j(i*j) 8njr1;-rljl 

(77) 

(78) 



42 NON-RELATIVISTIC CLASSICAL STATISTICS A CH. JI § 5 MOMENTUM AND ENERGY EQUATIONS 43 

due to the velocity fluctuations and the intra-atomie kinetic and potential 
energies. 
The energy balance equation is obtained by taking the time derivative of 

(77) in its form (76) and by using (2) and (I.63): 

0 (l 2 K) ·;- 2QV + çu 
et 

-v· (I vk (½mkvt+½ I mk,,'t,+ I ekiekj_) Zi(Rk-R)) 
k , i,j(i*j) 8nlrki-rk) 

+< L (if1f+ij;~)Zi(Rk-R)). (79) 
k 

Splitting the atomie velocities according to (61) one obtains with the help 
of appropriate distribution functions the energy balance equation: 

a - (1.ov2 + ouK) = - V·f v(1.ov2 + ouK) ..L pK.v + JK} + pL + P5 (80) .... 2~ ,.;. l 2,.;. 1::, 1 lJ , 
ot 

with pK the kinetic pressure given in (63) and 

J~ =JV1 (½mvf+½Im,rf,+ __ I. e;ej. )11(R,l;t)dl, (81) 
, ,,1(,*1) 8nlrli-1 Jjl 

a contribution to the heat flow. (In fact it is due to the transport, with the 
velocity fluctuation, of the atomie quantity occurring in (78).) Furthermore 
the last two terms of (80) represent long and short range contributions de­ 
fined as pL,s = ( Lk l/lf·sZi(R"-R)), with ij;f·5 as specified in (I.66) and 
(I.65). They will now be investigated in detail. 
The long range part contains a contribution due to the external fields 

(Ee, Be) which may be written in the form 

éJB • P";; = J·E
0
-M· ----:,~ +( L (vk•(V1cE0)-µPl+µ}/l·Ee}ö(Rk-R)), (82) 

ot " 

where (64) and (65) have been used. With the help of (2) one may write 

( I ÎikllZi(R"-R)) = ~ ( I ÏÏk1lZi(Rk-R)) + V·( I vk µ[lJZi(Rk-R)). (83) 
k ot k k 

Using this identity and (65) we get for (82): 

L aP aB -(l) P = J·E + - ·E -M• _e +V•f( LV µ Zi(R -R))·E} 
e e àt e Ot l k k k k e • 

(84) 

Introducing velocity fluctuations (61) and the appropriate distribution 
functions, and using again (65), we obtain finally 

aP aB pL = J·E + - ·E +V·(vP·E )-M· -0 

e c àt e e àt 

The interatomic contribution to pL (v. the first term of (I.66)) reads, 
written with distribution functions, 

pL_ IJl";; 

with 

u [{JA -(llj (R -(l) d d-(1)} E] + Y • V1 µ1 1 , V1, µ1 ; t, V1 µ1 ' e • 

L aP ) ee F F c P = J·E+ -·E+V·(vP·E -M·- -V·(P ·v+JJ+P, 
àt àt 1 

1: = - {J î\ ÏÏi13/1(R, v1, ÏÏi1l; t)dv1 dµ11l} ·(E+c-1vAB), 

(85) 

-J { I ( I ïiY'): V'{ V1·V1 + I µ:r): V'Dµ~"): v;' 1 } 
m=O n=O n=l 4njR1 -R2I 

c'5(R- Ri)Jz(R1 , 1, R2, 2; t)dR1 dl dR2 d2. (86) 

With the help of (7) the right-hand side may be split into two parts. In the 
uncorrelated part we introduce the macroscopie charge and polarization 
densities (64-65) taking only dipole moments into account and using (61) 
and (83). Then we get: 

g,L_p";; = -J{J(R, t)+ éJP\R, t)} ·V{Q°(R', t)+P(R', t)'V'} l , dR' 
ot 4nlR-R 1 

-v·Jv(R, t)P(R, t)-V(Q°(R', t)+P(R', t)-V'} , l dR' 
4n1R-R'I 

-vJ v1 [µ11l·V{Q°(R', t)+P(R', t)·V'} 
4
n!Rl-R'I] 

f (R -ClJ )dR' d d-(ll 1 , V1, µ1 ; t V1 µl 

-J ~ {( ~ ,iCnJ : V" v ·V + ~ -'-(nl : V")ïi(ml : V"' 1 } L, ) L, rl , 1 1 1 L, !J-1 • 1 r2 • 2 
m=O\n=O 11=1 4nlR1-R2I 

c'5(R - R1)ci(R1 , 1, R2, 2; t )dR1 dl dR2 d2. (87) 

The total long range contribution is the sum of (85) and (87). It reads written 
with the Maxwell fields (71) and the pressure pF (73) 

(88) 

(89) 
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a contribution to the heat flow due to the interaction of the :fields (E, B) 
and the electric dipoles. Furthermore the correlation contribution pc given 
by the last term of (87) may be written as 

pC = -I I (-1)"' {c I µ\n): V~v1·Vs+ I µY') : v:)µ~"): v:' _ _!_) 
m=O n=O n=l 4nsf 

cz(R, 1, R-s, 2; t)ds dl d2, (90) 

where the integration over R1 has been performed and the variable s = 
R - R2 introduced. 
The short range term y_,s = < Lk i/J~ö(Rk-R)), where Vi~ is given in (I.65), 

may be written in terms of a two-point distribution function: 

s J{'v e.e, P =- L,(v1+1\;)-'\\ '1 
i,j 4nls+ru-r2) 

w w w 1 } - '\' (-1)"' ( '\' ïi:(II) : V" V ·V ..L '\' J(n) : V")-(m) : vm - L, L, rl • s 1 s I L, rl • s !'-2 . s 
m=O n=O n=l 4ns 

J2(R, 1, R-s, 2; t)dsdld2. (91) 

The equation (80) with (78), (81 ), (88-91) is the balance equation of energy. 
The correlation and short range contributions (90) and (91) wil! be studied 
for special systems in the following subsections. 

e. The short range terms in the momentum and energy laws 

We shall consider in this subsection the terms Fs and ps occurring in the 
momentum and energy equations (62) and (80), and given explicitly in (75) 
and (91 ). Their short range character will allow us to write them in a con­ 
venient form. 

Since the bracket expression in (7 5) vanishes if the atoms are outside each 
other the integral needs to be extended over small values of s only. In 
sufficiently homogeneous systems the two-point distribution function 
f2(R, I, R-s, 2; t) in (75) varies slowly as a function of R, i.e. appreciably 
only over macroscopie distances whereas it varies rapidly as a function of 
the interatomic distance s. Hence one may limit oneselfin the integral to the 
first two terms in a Taylor expansion of /2 as a function of R 

1
: 

Jz(R, 1, R-s, 2; t) 
= J2(R+½s, 1, R-½s, 2; t)-½s·Vfz(R+½s, 1, R-½s, 2; t), (92) 

1 Cf. J. H. Irving and J. G. Kirkwood, J. Chem. Phys. 18(1950)817. 

(with V = 8/óR). In this way (75) becomes 

Fs = -V·P8 

with the abbreviation 

45 

pS = -J{svs ( ~- e;ej - f (-l)"'µY'): V~µg"): V~"-1 )} 
,,1 8nls+ru-r2) n,m=O 8ns 

J2(R+½,s, 1, R-½,s, 2; t)dsdl d2. (94) 

The latter quantity will turn out to be a contribution to the pressure tensor. 
Owing to the (trivial) symmetry of /2 with respect to an interchange of the 
first pair of variables with the second pair, the first term of the right-hand 
side of (92) does not give rise to a term in (93). 
Let us now turn to the discussion of the short range term P8 (91) of the 

energy equation. The expression between brackets in (91) vanishes if the 
atoms are outside each other. With the use of the expansion (92) we obtain 
now 

ps = ps*-V·(Ps·v+J~'). 

(93) 

(95) 

The first term P5* reads Iike (91) but with/2(R+½s, 1, R-½s, 2; t) instead 
off2(R, 1, R-s, 2; t), while the second contains, apart from a term with the 
local velocity v, a divergence of the vector 

Js· J f 'v(A . )V e;ej q=- s1L,V1+r1;'s 
\ i,j 8nls+ru-r2) 

w w 
00 1 } - L ( - ito:: µ:y•) : v: Îi1 ·Vs + L p;y•) : v:)p:gn) : v;· - 

m=O n=O n=l 8ns 

f2(R+½s, 1, R-½s, 2; t)dsdl d2. (96) 

The contribution P5* to (95) may be written in a simpler form. For that 
purpose we shaII consider the time derivative of the quantity 

QUs=J(I. e;.ej - I (-l)"'Jïti:v;µg"l:v:·-1-) 
,,1 8n/s+1 li-r2) n,m=O 8ns 

J2(R+½s, 1, R-½s, 2; t)dsdl d2, (97) 

which wiII turn out to be a contribution to the internal energy density. With 
the identity 
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èjz(R+½s, ru, R-½s, r2j; t) = -J {~ +v2 ·V +(v1 -vz)·Vs 
èt 2 

+ 1\;·Vr
11 
+ Y2/Vr2i} Jz(R +½s, V1, rli, r«, R-½s, Vz, r2j, Yzj; t) 

du, dv2 n drud1:2j, (98) 
i, j 

which follows from the conservation of the number of particles ( or the pro­ 
bability in fluxion space ), wc get for the time derivative of (97) after partial 
integration and the use of the (trivia!) symmetry f2(R+½s, 1, R-½s, 
2; t)=f2(R-½s, 2, R+½s, l; t): 

OQUS 

èt 
-V·(vQus+J~'')- lJ:'s• 

with the abbreviation 

(99) 

JS" -JcA J A) ("" eiej ~ ( l)m-(n) . vn-(m). vm l ) q= V1TVz f...., -L, - !1-1:Ys!:'-2:ys- 
i,j 16n:ls+ru-r2) n,m=O 16n:s 

f2(R+½s, 1, R-½s, 2; t)dsdl d2. (100) 

The divergence in (99) contains a convective part vous and the conductive 
part (100). 
With lf.18' Irom (99) wc get for (95): 

" s 
S ( S S s) OQU P = -V· VQU +P ·v+J - ----. 

q àt (101) 

Since lJ:'s occurred in the energy equation (80), it appears that QU5 (97) is a 
contribution to the internal energy density, and that J~, which is the sum 
of J!' (96) and 1r (100), is a contribution to the heat flow. 
In this way, the short range quantities Fs and lJ:'s, which occur in the mo­ 

mentum and energy equations, have been found, in formulae (93) and (101 ), 
for sufficiently homogeneous systems. It may be noted that if the 'atoms' 
carry charges, but no multipole moments ( as in plasmas, for instance ), the 
quantities Fs and lJ:'s simply vanish. 

f. The momentum and energy equations for fluids 

In this subsection we want to consider the momentum and energy equations 
for systems in which the correlation function has short range i.e. 

c2(R, 1, R-s, 2; t) vanishes rapidly as the interatomic distance s increases. 
This is usually the case for one-component fluid systems, at least if the con­ 
stituent atoms are electrically neutra!. (Amorphous and polycrystalline 
solids of neutral atoms are other examples of systems with short-range cor­ 
relation functions, to which the treatment of this subsection applies.) For 
such systems we shall cast the correlation terms Fc (74) and pc (90) in the 
momentum and energy equations in a convenient form. 
In normal fluids the correlation function becomes negligible for s greater 

than the so-called 'correlation length'. This correlation length is much smal­ 
ler than the distances over which the macroscopie quantities change appre­ 
ciably. Then the correlation function may be approximated by the first two 
terms of a Taylor expansion 

c2(R, 1, R-s, 2; t) = c2(R+½s, I, R-½s, 2; t) 
-½s·Vcz(R+½s, 1, R--}s, 2; t), (102) 

the Irving-Kirkwood approximation 1. 
Fora fluid of neutra! atoms the correlation term Fc (74) in the momentum 

equation becomes then a divergence, because the first term at the right-hand 
side of (102) gives no contribution. In fact (74) with this first term vanishes 
owing to the trivia] symmetry of c2(R+½s, 1, R-½s, 2; t) withrespect to an 
interchange of the first and second pairs of arguments, In this way one gets 

Fc = -V·Pc 

with the correlation pressure given by 

pc= -J Î (-1)'" (sv. vt): v;µ:~n): v;· J_) 
n,m= 1 8n:s 

(103) 

c2(R+½s, I, R-½s, 2; t)dsdl d2. (104) 

The momentum equation fora fluid of neutra! atoms is obtained from (62) 
with (72), (93) and (103). lt reads finally 

~g!l_ = -V·(ovv+P)+F ~ ~ ' Of 

where the force density is 

F = (VE)·P+(VB)·M +c-1 -~(PA B)+ c-1V·(vP AB) 
èt 

(105) 

(106) 

1 J. H. Irving and J. G. Kirkwood, op. cit. 
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(for systems of neutra! atoms {/ and J vanish) and the pressure tensor 

p = pK+pF +Ps+Pc. (107) 

The momentum equation (105) has the form of a balance equation, not of 
a conservation law. Indeed the momentum density gv does not only change 
as a consequence of momentum flow gvv+P, but also as a consequence of 
momentum 'production' F. The latter source term arises because the system 
is not closed. It vanishes if the electromagnetic fields are not present. (The 
expression (106) contains a time derivative and a divergence of quantities 
which might be grouped with the momentum density and the momentum 
flow respectively. This has not been done in order to keep together terms 
which depend exclusively on the Maxwell fields E, B, the polarizations P, M 
and the velocity v.) 
The momentum flow of which (minus) the divergence appears in (105) 

consists of a convection part (gvv) together with the pressure tensor (P). 
The latter quantity contains the kinetic pressure tensor pK (63), a term pF 
(73) with the magnetic field B and the potential pressure tensor P5 + Pc, 
where P5 (94) (with the atomie charge filo) = µ~0) = 0) contains a short 
range interatornic interaction multiplied by a distribution function j', with a 
long range, whereas pc (104) contains the long range part of the interatomic 
interaction multiplied by a correlation function c2 of short range. (The 
second term in the short range pressure P5 (94) has the same structure as the 
correlation pressure pc (104). Their sum might, according to (7), be written 
with a product of one-point distribution functions. However, the way in 
which the potential pressure tensor P5 + pc has been written here has the 
advantage, as stated above, that the short-range character, of both contribu­ 
tions separately, is explicitly apparent.) 
Furthermore the momentum balance equation (105) contains as a source 

term the force density F (106) exerted by the field (E, B) on a medium with 
polarizations (P, M). It includes the Kelvin force (VE)·P on an electrically 
polarized medium and three force terms of magnetic origin: the first of these, 
(VB)·M, is analogous to the Kelvin force while the other two describe a 
coupling of the magnetic field and the electric polarization1• 
The momentum equation (105) may be written in the form of a conseroa­ 

tion law by using the identity 

1 Part of these results were obtained already by H. A. Lorentz, Ene. Math. Wiss, V 2, 
fase. 1 (Teubner, Leipzig 1904)200; A. Einstein and J. Laub, Ann. Physik 26(1908)541; 
W. Dällenbach, Phys, Z. 27(1926)632; P. Mazur and S. R. de Groot, Physica 22(1956) 
657; A. N. Kaufman, Phys, Fluids 8(1965)935. 

(VE)'P+(VB)'M = V·{DE+BH-(½E2+½B2-M·B)U}-c-1 j_ (DAB), 
àt 

(108) 

which follows from the Maxwell equations (13) with (14) for systems of 
neutra! atoms (U is the unit tensor). Substituting this identity into (106) and 
the result into (105) one obtains 

à(gv+c-1EAB) 

êt 

= -V·{gvv+P-DE-BH-c-1 vP /\ B+(½E2+½B2-M·B)U}. (109) 

This equation farms the conservation law of total momentum for a fluid 
of neutra! atoms in an electromagnetic field. Both the momentum density 
and the momentum flow consist of a material part and a field part. 

The correlation term pc (90), which plays a role in the energy equation, may 
likewise be written in a special form for fluid systems of neutral atoms. Since 
for such systems the approximation (102), which has the same structure as 
(92), is valid, one may follow the same procedure as in subsection e. In this 
way one obtains (cf. (101)) 

JJ = 

C "' C T = -V·(vgé+Pc·v+JJ)- ~, at (110) 

where 

QUC =J f (-lt (µt): v:µ:~n): v;'-1-) 
n,m=1 Sns 

and 
c2(R+½s, 1, R-½s, 2; t)dsdld2 (111) 

-J ~ (-1)"' [f(sv ·V -îJ )ïï:(n): v»+sïi(»l: V"}ïï:lm): V"'-1-J L, l 1 s 1 rl . s rl . s r2 . s 
8 11,m=l ns 

c2(R+½s, 1, R-½s, 2; t)dsdl d2 (112) 

are the correlation contributions to the internal energy density and the 
heat flow. The energy equation for a fluid of neutra! atoms is obtained frorn 
(80) with (88), (101) and (110). It reads finally: 

à -(½gv2+gu) = -V·{v(½gv2+gu)+P·v+Jq}+T, (113) at 
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where the 'power' density is (J = 0 for systems of neutra! atoms) 

aP aB P = - ·E+V·(vP·E)-M•-, at at 
the speci:fic internal energy 

u = uK+us+uc, 
and the heat flow 

r, = Jf+J: +1!+1i· 

A CH. II 

(114) 
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systems that: 

óP oB 1 ó -·E-M·- = -cV·(EAH)- -(E2+B2
). at at 2 at 

If this is inserted in (113-114) one gets 
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(117) 

(115) 

(116) 

The energy equation (113) has the form of a balance equation. It shows that 
the sum of the bulk kinetic energy density ½gv2 and the internal energy 
density çu changes as a consequence of two causes: through the divergence 
of an energy flow and through a source term. The speci:fic internal energy 
(115) consists of three parts. In the first place a contribution uK (78) formed 
with the help of one-point distribution functions occurs. lt consists of the 
energy due to atomie velocity fluctuations and the total intra-atomie energy. 
It will be referred to as the kinetic part of the speci:fic internal energy. 
Furtherrnore two contributions us (97) (with the atomie charge ilio) = ilio) 
= 0) and é (111) with two-point distribution functions arise; these terms, 
which are due to interatomic forces, will be called together the potential part 
of the speci:fic internal energy. 
The energy flow in ( 113) contains besides convection terms with the local 

velocity 1:, the heat flow Jq (116). The Jatter consists of a kinetic part J~ (81 ), 
apart 1; (89), due to the action of the fields on the electric dipoles, and two 
terms J~ ( = J!' +Jr, V. (96) and (100) with µ~O) = iliO) = 0) and JC (112), 
which form together the potential part of the heat flow. (Just as in the po­ 
tential pressure tensor one could have combined here part of the short range 
internal energy with the correlation energy in such a way that a product of 
two one-point distribution functions occurs. The same remark applies to the 
potential part of the heat flow.) 
The power density IJl (114) contains two terms with time derivatives, 

showing the same asymmetry as was present in the atomie energy equation. 
This asymmetry will play a role in the first law of thermodynamics, as will 
be shown in section 7. Furtherrnore the power density P contains a diver­ 
gence of a vector which might be shifted to the energy flow. We have pre­ 
ferred to keep it together with the other terms containing the macroscopie 
Maxwell fields E, B, P and M. 
The balance equation (I 13) may be transformed into a conservation law. 

In fact from Maxwell's equations it fellows for neutra! and current-free 

a 
:::- (-½gv2 + çu + -½E2 +-½B2

) 
ot 

= -V·{v(-½gv2+Qu)+P·v+J,1+cEAH-vP·E}, (118) 

which expresses the conservation of total energy for a fluid system of neutra! 
atoms. Both the energy density and the energy flow consist of a material part 
and a field part. The Jatter includes the Poynting vector. 
The right-hand sides of the conservation laws (109) and (118) of momen­ 

tum and energy contain the total momentum flow and the total cnergy flow 
respectively. Since only the divergences of these quantities play a role, they 
are dctermined up to a divergence-free part. The expressions given are thus 
not uniquely fixed, although they appear to be the simplest oncs 1. 

g. Mixtures, in particular plasmas 

In the preceding the treatment was confined to one-component systems. The 
extension to mixtures of several components is straightforward, In that case 
one has to introduce distribution functions for each separate species. The 
one-point distribution function ft(I; t) carries an extra label a which 
indicates the species. Now ff(I; t)dl is the probability, norrnalizcd to Na 
(the number of atoms of species a), to find an atom of species a with param­ 
eters in the range dl in fluxion space. Similarly the two-point distribution 
function is defined in such a way thatff\l, 2; t)dl d2 is the joint probability, 
normalized to Na Nb (if a =I= b) or Na(Na- I) (if a = b ), to find an atom of 
species a in the range dl and an atom of species b in the range d2. The corre­ 
lation function c~\l, 2; t) is now defined as the difference ffb(I, 2; t) 
-ff(I; t)ff(2; t). 
A case in which the use of this kind of distribution functions i~ essential 

is a plasma consisting of a mixture of oppositcly charged ions and electrons, 
of which the internal structure is supposed to play no role. Por such a plasma 
1 Much discussion has been devoted to this point, in particular with respect to the Poynt­ 
ing vector: v. G. H. Livcns, Phil. Mag. 34(1917)385; C. 0. Hines, Canad. J. Phys, 30(1952) 
123; F. Bopp, Ann. Physik 11(1963)35; E. M. Pugh and G. E. Pugh, Am. J. Phys. 35(1967) 
153; L. W. Zelby, Am. J. Phys. 35(1967)1094; W. Shockley, Phys. Lett. 28A(1968)185. 
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the macroscopie mass density is 

g(R, t) = I maff(R; t), 
a 

and the local barycentric velocity is defined by 

g(R, t)v(R, t) = ~ f ma v1 ff(R, V1; t)dv1. 

ègv 
èt 

-V·(gvv+PK)+FL, 

where the kinetic pressure is now ( cf. ( 63)) 

pK = ~ J ma i\ V1 f{'(R, V1; t)dv1 

A CH. II 

(119) 

(120) 

They satisfy the macroscopie law of mass conservation ( 59 ). The momentum 
law that follows from the atomie equation (I.50) reads (cf. (62)) in the case 
of the plasma 
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as a divergence: 
Fc = -V·Pc 

with the correlation pressure 

pc= - IJ(svs eaeb) c~\R+½s, R-½s; t)ds. 
a,b 8ns 

The momentum equation (121) may now be written as 

ào» ( ) - 1 _."'__ = -V· gvv+P +c J AB, 
ót 
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(126) 

(î27) 

(128) 

(121) where the total pressure is the sum of the kinetic and the correlation pressure 

p = pK+pC (129) 

(122) 

with the velocity fluctuation given by (61). Furthermore the force density is 
(cf. (72)) 

pL = geE+c-11 AB+Fc, (123) 

and where the last term of (128) is the Lorentz force in a neutra! medium. 
The energy law that follows for the plasma from the atomie equation (J.63) 

is (cf. (80)) 

_q__ (½gv2 + guK) = -V·[v(h?v2 +guK)+PK·v+JqK} + 'PL, (130) 
ót 

where the macroscopie charge and current densities are (18) or alternatively 
(19): 

l(R, t) = I eaff(R, t), 
a 

J(R, t) = ~ J e, v1 Jf(R, v1; t)dv1 (124) 

and the correlation force density (cf. (74)) 

Fc = - IJ [v, eaeb) c~\R, R-s; t)ds. 
a,b 4ns 

(125) 

(The terms (73) and (75) are absent in (123) and (121) respectively because 
the internal structure of the charged particles has been ignored here.) 
Let us now consider the correlation force Fc for the special case of a plasma 

in which the correlation function vanishes rapidly if the interparticle distance 
becomes of macroscopie order. This is the case for plasmas without space 
charge and sufficiently near equilibrium, as a result of Debye shielding1. 
Then using the Irving-Kirkwood approximation (102) we may write (125) 

1 A. N. Kaufman, Phys. Fluids 6(1963)1574, who givcs a treatment similar to that of this 
subsection. 

where the kinetic part of the intemal energy density is given by ( cf. (78)) 

QUK = ~ J ½ma Vi jf(R, V1; t)dv1, 

and the kinetic part of the heat flow by (cf. (81)) 

1; = ~ J V1 +», v; f{'(R, V1; t)dv1. 
Furthermore the power density is here ( cf. ( 88)) 

pL = J·E+'Pc 

(131) 

(132) 

(133) 

with the current density J (124) and the correlation contribution (cf. (90)) 

'Pc= - IJ (v1·Vs eaeb) c~\R, v1, R-s; t)dsdv1. (134) 
a,b 4ns 

(The terms (89) and (91) are absent from (133) and (130) respectively 
because the charged particles have no internal structure.) For a sufficiently 
homogeneous plasma without space charge (ge = 0) we apply the Irving­ 
Kirkwood approximation (102) on the correlation power density (134): 
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pc= - If v1-,7s ~aeb c;\R+·½s, v1, R-½s; t)dsdv1 
a,b 4ns 

+ V· I f sv/V. eaeb c;b(R+½s, v1, R-½s; t)dsdv1• (135) 
a.b 8ns 

The first term at the right-hand side may be transformed to the sum of a time 
derivative and a divergence, since as a consequence of the conservation of 
probability in fluxion spacc one has 

' a f e; e1, ab(R 1 R i . )d L, - -· C2 +2s, -2S, t !i 
a,b at 8rrs 

= -V· Ij(v1 +v2) ·'!!,!__1,_ c;\R-Hs, v1, R-}s, v2; t)dsdv1 dv2 
a.b 16rrs ,J( )·V eaeb ,ab(R 1. i . )d d d + L, V1 -Vz s ~ Cz +·2S, V1, R-zS, V2, t S V1 Vz 

a.b 8ns 

(where in the last term a partial integration has been performed). Owing to 
the syrnmctry of the correlation function the last term is equal to minus the 
first term at the right-hand side in (135). This allows us to write ( 135) in the 
form (cf. (110)) 

c c ~ c éJouc 
'Jf = -V·(vou +P-·v+J ) -"'- "" q ,... ot 

where now the corrclation part of the internal energy density is 

c _ ,Jeaeb ab(R 1 R .1 . )d QU - L, -- Cz +zS, - zS, t s, a,b 8ns 

where the total internal specific energy 

u = uK+uc 

(136) 

(137) 

(138) 

and the correlation part of the heat flow 

Je - "J~f(, ,' ·V)eaeb\ (R 1 R 1. )d d q-L, lV1-SV1 s-·-fCz +2S,V1, -7s,t SV1- 
a~ 8ns 

The energy equation follows if (133) with (137) is substitutcd into (130): 

(139) 

i(½cv2+gu) = -V·{v(½cv2+cu)+P·v+Jq}+J·E, (140) at 

(141) 

is the sum of a kinetic part, given in ( 131 ), and a correlation part, given in 

(138). Furthermore the total pressure P bas been given in (129) and the total 
heat flow 

r, = J~+J; 
is again the sum of a kinetic part (132) and a correlation part (139). The 
source term in (140) is the well-known electric power density. 
One may write both the momentum law (128) and the energy law (140) in 

the form of conservation laws, if one uses the identities 

c-11/\B = V·{EE+BB-½(E2+B2)U}-c-1 ~(EAB) (143) 
()t 

and 
l ., 

J·E - cV·(E /\ B)- - :?_ (E2 + B2) 
2 àt 

(142) 

(144) 

respectively, which both follow directly Irom Maxwell's equations for a 
neutra] unpolarized medium (ge = 0, P = 0, M = 0). One obtains in this 
way 

è 
- (gv+c-1 E /\ B) = -V·{Qvv+P-EE-BB+½(E2+B2)U} 
èt 

for the conservation of total momentum, and 

~ (½gv2+ gu+{E2+½B2
) = V·[v(½cv2+ cu)+P·v+Jq+cE /\ B} 

()t 

(145) 

(146) 

for the conservation of total energy. 

h. Crystalline solids 

Up to subsection e the derivations were independent of the nature of the 
systems, provided that these were sufficiently uniform. The Iatter restriction 
was made in order to write the short range terms in the momentum and 
energy equations in convenient form. In subsections f and g, where the 
correlation terms were discussed, it was necessary to specify the systcm 
further: we confined ourselves to fluids of neutra! atoms ( and amorphous or 
polycrystalline solids) and to neutra! plasmas, for which the correlation 
function is of short range. Then the Irving-Kirkwood approximation could 
be employed. 
In this subsection we shall study systems with correlation functions of 

arbitrary range, such as crystalline solids. Even then it is possible to trans- 
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form the correlation terms to a divergence, or to a divergence and a time 
derivative. This may be done with the help of the following artifice1• Let 
us write the following identity for the correlation function of a one-com- 
ponent systern2 

cz(R, 1, R-s, 2; t)-ci(R+½s, 1, R-½s, 2; t) 

J
o ~ 

= - _()_; c2{R+½(}.+1)s, 1, R+½(À-l)s, 2; t}dÀ. (147) 
-1 0/, 

Since the correlation function in the integrand depends on position coordi­ 
nates which are combinations of R + ½}es and ½s one may replace the operator 
ójó}, by -}s·V. In this way one obtains for (147): 

cz(R, 1, R-s, 2; t) 
= c2(R+½s, l, R-½s, 2; t)-½s·Vc1(R+½s, 1, R-½s, 2; t), (148) 

with the 'mean correlation function': 

cJ(R+½s, 1, R-½s, 2; t) = J0 

c2{R+½(Jc+1)s, 1, R+½(l-l)s, 2; t}dl. 
-1 

(149) 

(If c
2 
vanishes rapidly with increasing interatomic distance [s] so that a 

correlation length exists, and if moreover c2 changes slowly if both positions 
are shifted over a distance of the order of the correlation length one may 
consider the integrand in (149) as a constant. Choosing its value at Je = 0 
the 'rnean correlation function' Ci reduces then to the ordinary correlation 
function c2• In this case (148) reduces to the Irving-Kirkwood approxima- 
tion (102).) 
Using (148) which has the same form as (102) we may find expressions 

for the correlation terms in the momentum and energy laws for systems with 
long range correlations. These are in form very similar to the expressions 
valid for fluids. In fact Ior the case of long range order the momentum 
balance becomes 

~Q~ - -V·(Qvv+P)+Q0E+c-1J /\B+(VE)·P+(VB)·M 
ót 

+c-1 ~ (P /\B)+c-1V·(vP /\B) (150) 
(jf 

1 J. H. Irving and J. G. Kirkwood, op. cit. 
2 If the systern is a mixture one should add indices a and b to the distribution functions 
and the atomie parameters such as the charges and the masses. Furthermore summations 
over a and b are then to be added. 
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with a pressure tensor P that consists of four contributions (cf. (107)), viz 
pK (63), pF (73), pS (94) and the correlation pressure pc given by (cf. 104)): 

pc= -J f c-1r (sv.µt·) = v:µg") = v:-!_) 
n,m=O 8ns 

cJ(R+½s, 1, R-½s, 2; t)dsdl d2. (151) 

Likewise the energy balance equation for the case of long range order gets 
the form 

ó 
- (½Qv2 + QU) = - V·{ v(½Qv2 + QU) + P·v + Jq} 
ót 

óP óB +J·E+-~-·E+V·(vP·E)-M·--, (152) 
(j[ Ót 

with a specific internal energy u that consists of three parts ( cf. ( I 15) ), viz 
uK (78), us (97) and the correlation contribution é given by ( cf. (111 )) 

QUC = J I, ( -1)"' (Pt): v:µ:gn): v;-1-) 
11,m=O 8ns 

c2(R+½s, 1, R-½s, 2; t)dsdld2. (153) 

Furthermore the heat flow consists of four parts ( cf. ( 116) ), viz J~ (8 l ), 1: (89), J~ (96), (100) and the correlation contribution given by ( cf. (112)) 

Je= -Js ~ (-1)"' {(v ·V -µC"l: V"+fi-Cnl: V")-µ<ml: V'"··1-} q L- 1 s 1 . s _l . s 2 . s 8 
n,m:::::O 7rS 

c{(R+½s, 1, R-½s, 2; t)dsdl d2 

+ J Î!1 f (-1)"' (lli"): v:p:gn): v~· J__) 
11,m=O 8ns 

c2(R+½s, 1, R-½s, 2; t)dsdl d2, (154) 

where only in the first part the 'mean correlation function' occurs. 
Finally it should be remarked that the procedure employed to write the 

correlation terms in the form of a divergence ( or a divergence and a time 
derivative) is not unique. However, the statistica! expressions obtained have 
been preferred because of their forma! resemblance to the corresponding 
expressions for fluid systems. 
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i. Galilean inoariance 

In the preceding non-relativistic balance equations of momentum and energy 
have been obtained. We shall investigate whether they are indeed covariant 
with respect to the Galilei group. The rotational invariance of all equations 
is manifest since they have been formulated in tensor notation. The trans­ 
formation character with respect to a pure Galilean transformation (22) 
needs to be considered in some detail. 
Let us first show that the conservation law ofmass (59) possesses Galilean 

covariance. Indeed the mass density defined in (56) is an invariant 

g'(R', t') = g(R, t), 

A CH. II 

(155) 

as follows from the invariancc: of the one-point distribution function ( cf. 
(24)): 
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that the pressure Pis invariant with respect to pure Galilean transformations: 

P'(R', t') = P(R, t). (161) 

f{(l'; t') =f1(l; t), (156) 

where I stands for the position, velocity etc. of atorn I; primes indicate the 
corresponding transformed quantities. Furthcrmore it follows from (58) 
with (155) and (156) that 

v'(R', t') = v(R, t)+ V. 

Now from (23), (155) and (157) one proves irnmediately that (59) is a 
covariant equation, i.e. also valid with primes. 
We now turn to the momentum balance (105-106) for fluid systems of 

neutra] atorns. With the help of the rnass conservation law (59) it may be 
brought into the form 

g dv -V·P+(VE)·P+(VB)-M +c- 1g i (vP AB), 
dt dt 

where v = g-1 is the specific volume and 

d ó - = --- +v·V, 
dt àt 

(157) 

(158) 

(159) 

the material time derivative. By inspection of the expression ( 107) with ( 63 ), 
(73), (94) and (104) it follows from (27), (61) and the invariance of the 
distribution function expressed by (156) and 

Hence, according to (23), the term V·P in the momentum equation (158) is 
invariant with respect to pure Galilean transformations. The other terms in 
(158), viz gdv/dt, (VE)·P+(VB)·M and c-1Q(d/dt)(vPAB) are a!so, se­ 
parately, invariant under pure Galilean transformations as follows from 
(23), (26), (27), (155), (157) and (159), where terms of order c-2 must of 
course be discarded. In this way the Galilean covariance of the momentum 
balance has been proved for the case of fluids systems of neutra! atoms. The 
momentum balance for neutra! plasmas and for systerns with long range 
correlations (subsections g and h) also possess Galilean covariance as fol­ 
lows by a similar reasoning from the transformation formulae. 
Let us discuss now the Galilean covariance of the energy balance equation 

(113) for fluids of neutra! atoms. With the help of the mass conservation 
Iaw (59) and the material time derivative (159) it may be written as 

d 
Q --(}v2+u) -v·(P·v+Jq) 
dt 

du 
0- = 
"' dt 

d(vP) dB 
+Q-- ·E-M· - +v·{(VE)·P+(VB)-M}. 

dz dt 
(162) 

If the first term is rewritten with the help of the ( Galilei covariant) moment­ 
um cquation (158) we obtain 

-V·Jq-P : (Vv) 

+g ~_(vP) ·(E+c-1vAB)-(M+c-1vAP)• dB, (163) 
dt dt 

where Pis the transposed of the tensor P ( or Pij = PjJ and the double dot 
indicates a double contraction of two tensors (A : B = I,i,j AijBj;). With 
(61), (155), (156), (157) and (160) it follows by inspection that the contribu­ 
tions (78), (97) and (lll) to the specific internal cnergy u (115) are each 
Galilei invariant, so that 

u'(R', t') = u(R, t). (164) 

fl(l', 2'; t') = Ji(l, 2; t), 

c;(l ', 2'; t') = c2(1, 2; t), 
(160) 

Consequently with (23), (155) and (159) it follows that the lcft-hand side of 
(163) is invariant. Furthermore with the help of (27), (61), (156), (157) and 
(160) it is seen that the contributions (81), (89), (96), (100) and (ll2) to the 



60 NON-RELATIVISTIC CLASSICAL STATISTICS 

heat flow Jq (116) are each Galilei invariant, so that 

JiR', t') = 1/R, t). 
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(165) 

Hence the invariance of the first term at the right-hand side of (163) follows 
if (23) is used. The invariance of the second term at the right-hand side of 
(163) follows from (23), (157) and (161). Finally if one uses (23), (26), (27), 
(155) and (157) one may prove the invariance of each of the last two terms 
of (163). In this way the Galilean covariance of equation (163) has been 
established, and hence that of the energy equation (162). We have chosen to 
give this proof via equation (163) because, in contrast with (162), all its 
terms are separately invariant. For (neutra!) plasmas and for systems with 
long range correlations the Galilean covariance of the energy equations is 
proved in an analogous way. 

6 The angular momentum equations 

a. The inner anqular momentum balance 

On a par with the momentum and energy equations derived in the preceding 
section, macroscopie angular momentum laws wil! now be obtained by 
averaging the corresponding atomie equations. The macroscopie angular 
momentum density is defined as the average: 

si«, t) = < I s, i5(Rk - R)>, 
k 

lntroducing the velocity fluctuation vk ( 61) we get 
ûS -;;-- = -V·(vS+J~)+DL+Ds* 
et 

with the kinetic flow of inner angular momentum 

J~ = J V1 S1 f1(R, V1, S1; t)dvl ds1 

(166) 

where sk is the inner angular momentum (I.68) of atom k. The time derivative 
of S(R, t) is found with the help of the lemma (2) and (I.76): 

~s = -V·< I>kski5(Rk-R)>+< I (d;+d~)i5(Rk-R)). (167) 
et k k 

(168) 

(169) 

and the abbreviations DL,s* = < Lk d;·si5(Rk-R)) with d;·s given by 
(I.77-78). 

Let us first consider the external field part D~ of DL. It may be written 
with the help of the polarizations (65), if one uses the vector identity 
aA(bAc)+cycl. = 0: 

D-:; = PAEe+MABe+c-1vA(PABe) 

+c-1 J V1 A(µ\1) ABe)/1(R, V1, µ\l); t)dv1 dµ\1). (170) 

The part of the long range term in (168) that is due to the interatomic 
interactions is 

DL-DL =J( :.;;., »v /\ÎÏ:(II): v11-Jri(m): V"' 1 ) 
c L, 1 rl . 1 r2 . 2 I I 

11,m=O 4n R1 -Rz 

ö(R- R1)f2(R1 , 1, R2, 2; t)dR1 dR2 dl d2, (171) 

where 1 and 2 indicate all electric multipole moments. We split this expres­ 
sion with the help of (7). In the uncorrelated part we introduce the macro­ 
scopie charge and polarization densities (64) and (65), omitting (just as in 
§ 5c) higher multipole moments. In this way (171) becomes 

DL-D~ = -JP(R, t)A Vfoe(R', t)+P(R', t)-V'}-1 , dR' 
4nlR-R 1 

J ( ~ u -(11) · nn-1-(m) • ""'' 1 ) + L, /1 V /\ µ. l • V µ.2 · V 
11,m=O . . 4nlR-R'I 

c2(R, 1, R', 2; t)dR' dl d2. (172) 

The total long range moment density which is given by the sum of (170) 
and (171) may be written with the help of (71) as 

DL= PAE+MAB+c-1vA(PAB)+DF+Dc*, (173) 

where the last two contributions are given by 

DF - -1J~ c-(1) B)J (R -(1). )d d-(1) = C V1 /\ µ1 A 1 , V1, µ1 , t V1 µ! , 

D0 = f dc(s, 1, 2)cz(R, 1, R-s, 2; t)dsdld2, 

with the abbreviation 

dc(s, 1, 2) = Î ( - l)"'nV /\ p:<11J : V"-1µ:<mJ : V"' _1_. 
n,m=O s 1 • s 2 . s 4ns 

(174) 

(175) 

(176) 
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Finally the short range moment in (168) reads 

D5* = J d5(s, 1, 2)Jz(R, 1, R-s, 2; t)dsdl d2 

A CH. II 

(177) 

§ 6 

and the source term 

ANGULAR MOMENTUM EQUA TIONS 

De= J de(s, 1, 2)cz(R+½s, 1, R-½s, 2; t)dsdl d2, 

63 

(184) 

with the abbreviation 

s J{ e-e · e } d(s,1,2)= -I_r1,AVs '1• -d(s,1,2) 
,,1 4nls+r1i-12) 

f2(R, 1, R-s, 2; t)dsdl d2. (178) 

The integrand in ( 177) vanishes if the atoms are outside each other. Since the 
two-point distribution function remains practically unchanged if both R 
and R-s are shifted over a distance of the order of an atomie diameter, one 
may write the short range moment (177) with the help of (92) as 

D5* = - V·J~ + D5
, (179) 

with the short range contribution to the inner angular momentum flow 

J; = J ½sd\s, 1, 2)f2(R+½s, 1, R-½s, 2; t)dsdl d2, 

and the source term: 

De* = -V·J;+De 

(180) 

D5 = J d\s, 1, 2)fz(R+½s, 1, R-½s, 2; t)dsdl d2. (181) 

The correlation contribution De* will be specified for particular systems 
in the next subsections. 

b. Fluid systems 

For fluid systems of neutra! atoms ( and amorphous or polycrystalline solids) 
the correlation function has usually short range. In that case it may be ex­ 
panded as in (102). In that way the correlation contribution De* (175) gets 
the form 

(182) 

with the correlation contribution to the inner angular momentum flow: 

J; = J ½sde(s, 1, 2)cz(R+½s, 1, R-½s, 2; t)dsdl d2 (183) 

where de(s, 1, 2) has been given by (176) (with the atomie charges Pio) = 
Pi0) = 0). 
The balance equation (168) of the inner angular momentum becomes, for 

fluid systems of neutra! atoms, upon insertion of (173) and (179): 

as= -V·(vS+J.,,)+Ds+PAE+M AB+c-1vA(PAB). (l85) 
àt 

The conduction flow of inner angular momentum consists of three parts: 

J, = J~+J; +J;, (186) 

where the various contributions have been given in (169), (180) and (183) 
with (176) and (178) (with the atomie charges Pi0l = µj,0) = 0). Further­ 
more the source term contains a material part 

D, = DF +Ds+De, (187) 

where the three contributions have been given in (174), (181) and (184) 
with (176) and (178) (again with Pi0l = Pio) = 0). The other source terms 
are the torque densities which the Maxwell fields exert on the polarization 
densities in the moving fluid. 
The source terms with the Maxwell fields may be written in a simpler form 

if 'rest frame quantities' are introduced. The rest frame ( denoted by primes) is 
related to the observer's frame by a pure Galilean transformation (22) with 
transformation velocity V = -v, such that v' = 0 (cf. (157)). Then the 
Maxwell fields and polarizations transform according to (26) and (27) (up 
to order c - 1): 

E' = E+c-1vAB, 

P' =P, 

B' B-c-1vAE, 

M' = M+c-1vAP. 
(188) 

With the help of these formulae we get for the source term (up to order c-1) 

PAE+MAB+c-1vA(PAB) = P' AE'+M' AB'. (189) 

In fluid systems qui te often the rest frame polarizations P' and M' are parallel 
to the rest frame fields E' and B' respectively. In that case the field source 
terms ( 189) vanish. 
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The equation (185) is a balance equation: the inner angular momentum is 
not conserved. A conserved quantity is obtained if the orbital angular 
momentum 

L(R, t) = RA(gv+c-1EAB) (190) 
is added to it. The time derivative of the Jatter quantity may be obtained 
with the help of (109): 

~~ = -V·(vL+J1)+PA-DAE-BAH-c-1vA(PAB). (191) ot 
Here the conduction flow of orbital angular momentum is 
J1 = -PAR-D(RAE)-B(RAH)-c-1vRA(DAB) 

+E·R(½E2+½B2-M·B). (192) 
Furthermore PA = € : P is the antisymmetric part of the pressure tensor P 
( € is the Levi-Civita tensor with components eijk so that the components of 
P Pi - ijkp ) A are A - e jk • 

If (185) and (191) are added one obtains a conservation law for the total 
angular momentum density S + L, since the source terms cancel, as we shall 
now show. Indeed the source terms with fields in (185) and (191) cancel 
immediately if one uses the definitions D = E + P and H = B - M. Further­ 
more the antisymmetric part of the pressure tensor follows from ( 107) with 
(63), (73), (94) and (104): 

PA= -c-1 J î\ A(µ\1l AB)f1(R, 1; t)dl 

-J f s A V s ( L e; e j - Î ( -1 )"'µ~•) : v: µ:gn) : v:· _l ) } l i,j 8nls+rli-r2_;I 11,m=l 8ns 
JJ.(R+½s, 1, R-½s, 2; t)dsdld2 

- J Î ( -1 )"' (s A V s µ\"l : v: µg"l : V;' -1-) 
n,m= 1 8ns 

c2(R + ½s, 1, R-½s, 2; t)ds dl d2. (193) 
The first term at the right-hand side is equal to -DF (174). The second 
term may be transformed to 

J{ e.e, L (ru-r2J A Vs ' 1 

t.l 8nls+ru-r2) 

- Î (-l)"'n(µi"l:V;-1)AVsP:im):V:'-1- 
n,m=l 8ns 

- Î (-l)"'mµY,l: V~(p:gn): v;-1)A VS !_J 
11,m=l 8nsJ 

f2(R+½s, 1, R-½s, 2; t)dsdld2. (194) 

Using the symmetry of the distribution functionj , with respect to the inter­ 
change of 1 and 2 together with s and - s, we find that ( 194) is equal to - D5 

(181) with (178) and (176). In the same way one finds that the third term of 
(193) is equal to -De (184) with (176). So finally the antisymmetric part 
(193) of the pressure tensor is equal to the material source term (187) of the 
inner angular momentum balance: 

PA= -Ds. 

This allows one to write (185) in the alternative form: 

as -:;- = -V·(vS+Js)-PA+PAE+MAB+c-1vA(PAB). 
et 

Ifwe add equations (191) and (196) we have now 

o(L..1..S) -~-' - = -V·{v(L+S)+J1+Js}, 
et 

(195) 

(196) 

(197) 

which is the conservation law of total angular momentum L+S fora :fluid 
system of neutra! atoms. 

c. Plasmas 

In plasmas the internal structure of the ions is usually disregarded. Then the 
inner angular momentum does not occur either. The angular momentum is 
thus entirely of orbital origin 

L(R, t) = RA(Qv+c-1EAB). (198) 

From the conservation law (145) of total momentum for plasmas follows: 

oL = -V·(vL+J1), ot (199) 

where we used the symmetrical character of the material pressure tensor 
(129) with (122) and (127). Furthermore the flow of angular momentum is 
( cf. ( 192)) : 

J1 = -PAR-E(RAE)-B(RAB)-c-1vRA(EAB)+E·R(½E2+½B2) (200) 

(with € the Levi-Civita tensor). Hence as (199) shows the angular momentum 
satisfies a local conservation law. 
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d. Crystalline solids 

In the preceding two subsections we studied systems with short range correla­ 
tions. Now we shall turn to the general case of arbitrary range correlations - 
as occur in crystalline solids - including the effects due to charged atorns. 
Then all results of subsection a rernain val id 1. 

Since the correlation function is no longer of short range, the Irving­ 
Kirkwood approxirnation (102) is not applicable. Nevertheless by use of an 
artifice of the type (148) we may still obtain a formula (182), such that 
again (195) is valid. Indeed with the help of the identity 

cz(R, 1, R-s, 2; t) = ci'(R+½s, 1, R--1s; t)-½s·VcÎ(R+½s, 1, R-½s; t), 
(201) 

where 

ci'(R+½s, 1, R-½s, 2; t) 1J+l c2{R+½(),+ l)s, 1, R+½(},-l)s, 2; t}dï. 
2 -1 

(202) 
and 

cf(R+½s, 1, R-½s, 2; t) 

= !J+\1-)a)c2{R+½V+l)s, 1, R+½(},-l)s, 2; t}dJc, (203) 
2 -1 

one may write (cf. (182)) 
De* - V·J; + De. (204) 

Here the correlation part of the inner angular momentum flow is 

J; = J ½sde(s, 1, 2)cÎ(R+½s, 1, R-½s, 2; t)dsdld2, (205) 

while the source term is 

De= J de(s, 1, 2)ci'(R+½s, l, R-½s, 2; t)dsdld2. (206) 

In these expressions de(s, 1, 2) is given by (176). 
Furtherrnore one may prove that just as in subsection b 

De= -P~, (207) 

where Pf is the antisymmetric part of the correlation pressure ( 151 ). There­ 
fore also (195) is valid in the present case, and consequently (196) and (197). 
1 For mixtures an extra summation over the indices labelling the species should be added. 

e. Galilean inoariance 

The inner angular momentum equation (196) is Galilei invariant, as rnay be 
shown if one rewrites this equation with the help of the law of mass con­ 
servation (59) and the relation (189) as: 

d(vS) 
Q-- = -V·Js-PA+P' /\E'+M' /\B1

, 

dt 
(208) 

where v = Q-1 is the specific volume, d/dt is the material time derivative 
(159) and the primes denote rest frame quantities (188). From inspection 
of the various terms of (208) it may be proved that they are all separately 
Galilei invariant. 

7 The laws of thermodynamics 

a. Thefirst law 

The first law of thermodynamics for fluid systems with neutra! atoms (and 
for amorphous or polycrystalline solids) will followfrom the energy equation 
(113-114) which may be written as 

d o -(Jv2+u) = 
"dt 2 

d(vP) dB -V·(P·v+J)+o--- ·E-M· - 
q " dt dt 

+ v·{(VE)·P +(VB)·M}, (209) 

where (59) and (159) have been used and where v = Q-1 is the specific 
volume. At the left-hand side the sum of the specific macroscopie kinetic and 
internal energies appears. A balance of internal energy alone is obtained if 
the momentum law (105-106) with (59) or (158) is used in (209): 

du - d(vP) _ dB Q--- -V·Jq-P: (Vv)+Q -- -- ·(E+c-1vAB)-(M+c 1vAP)· - , 
dt dt dt 

(210) 

where P is the transposed pressure tensor. Each of the terms of this balance 
equation is separately Galilei invariant (v. subsection Si). In particular the 
rest frame fields and polarizations (188) (up to order c-1) appear 
(v. (26-27)), so that we may write (210) as 

du - d( vP') ., , dB' (2l l) Q-= -V·J-P:Vv+a--·E-M·- 
dt q dt dt 
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(it should be remembered that M' is of order c - 1 ). Traditionally one writes 
the divergence of the heat flow Jq in terms of the 'supplied heat' dq/dt per 
unit mass and time: 

V·Jq = dq -o-. 
" dt 

(212) 

Then (211) gets the form 

dq = du +vP: Vv- d(vP') ·E' +vM'· dB~. 
dt dt dt dt 

û = u+vM' ·B', 

one gets instead of (213) 

dq = dû +vP: Vv- d(vP').E' - ~0~') ·B'. 
dt dt dt dt 

d~ = du +vP: Vv':_vJ·E', 
dt dt 

(213) 

This is the first law of thermodynamics for fluids (and amorphous or poly­ 
crystalline solids) of neutra! atoms in an electromagnetic field. If the pressure 
tensor is a scalar p (times the unit tensor) the second term at the right-hand 
side reads vpV·v or, if one uses (59), pdv/dt, the usual form. All quantities 
of (213) are well-defined as statistica! expressions in terms of atomie quanti­ 
ties (v. section 5/). In particular the specific internal energy u has been given 
by (115) as the sum of the three contributions uK (78), il (97) and é (111 ). 
lt should be noted that the polarization terms in (213) show a special asym­ 
metry, which is a direct consequence of the asymmetry present already on the 
atomie level ( chapter I, section 5b ). This asymmetry may of course be re­ 
moved by means of a Legendre transformation of the internal energy1. For 
instance, with the transformation 

(214) 

(215) 

However the introduction of the energy û is rather artificial: the energy u, 
in contrast to û, has a clear-cut physical meaning from the microscopie point 
of view. 
For a neutra! plasma the first law of thermodynamics follows from the 

energy equation (140) with (59), (128), (159), (188) and (212) as 

(216) 

1 For a discussion of various types of Legendre transformations in the first and second 
laws for magnetized media see for instance H.A. Leupold, Am. J. Phys. 37(1969)1047. 
Compare also the microscopie considerationsof A. N. Kaufman and T. Soda, J. Chem. 
Phys. 37(1962)1988. 

where J is the electric current density (purely conductive; the convective 
part (!°vis not present in a neutra! plasma). The 'supplied heat' which figures 
in the Ieft-hand side and has been given by (212) is essentially the divergence 
of the heat flow and represents therefore the heat supplied through conduc­ 
tion by the surroundings. The last term at the right-hand side represents the 
Joule heat produced per unit mass and time. 
Finally for systems with correlations of arbitrary range the first law fol­ 

lows from (152) with (59), (150), (159), (188) and (212): 

dq = du +vP: Vv-vJ'·E' - d(vP') ·E' +vM'· dB', (217) 
dt dt dt dt 

where J' = J - Qev is the rest frame ( or conduction) electric current density. 

b. The second law for fiuids 

The microscopie basis of the second Ia w of thermodynamics has a character 
which is different from that of the laws established so far. The latter were all 
statistica! averages of corresponding microscopie equations, whereas the 
second law contains a new quantity, the entropy, which is not the average of 
a microscopie quantity. Furthermore the system for which one wants to 
derive the second law has to be specified in more details as to its statistica! 
properties: here we shall confine ourselves to systems in equilibrium described 
by a canonical ensemble. 
In the present subsection we shall be concerned with the derivation of a 

second law for systems of neutra! atoms in which only short range correla­ 
tions are present. namely fluids and amorphous or polycrystalline solids. 
The theory may be developed along two slightly different lines. In the 

first conception one considers a system at rest enclosed in a vessel and sur­ 
rounded by a heat bath in a uniform and time-independent field. As a con­ 
sequence of the fact that the polarizations are discontinuous at the surface 
it turns out then that the pressure and related thermodynamic quantities 
vary over the sample. In the other conception one avoids non-uniformities 
due to surface effects by dividing a large polarized system into nearly uniform 
cells, still containing many atoms. These cells are then described by a 
canonical ( or grand) ensemble with their environments playing the role of a 
heat bath. As external fields the averages of the fields arising from the sur­ 
roundings of the cell are employed, so that correlations between particles 
inside and outside the cell are neglected. This is the reason why such an ap­ 
proach is only applicable to systems with short range correlations. We shall 
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employ it (in this subsection) for fluids and amorphous or polycrystalline 
solids. 
The uniform Maxwell fields E and B in the cell are related to the fields 

Ee(R) and Be(R), due to the surroundings of the cell, as 

E = Ee(R)+P·Jv VV l dR', 
4nlR-R'I 

B = Be(R)+M +M·Jv VV l dR' 
4njR-R'I 

(218) 

( cf. ( 17) ), where P and M are the uniform polarizations in the cell and where 
the integrals are extended over its volume V. They are to be understood as 
the sum of a principal value and an integral over a small surface around R 
(v. problem I). The equations (218) are satisfied by uniform external fields 
E, and Be if the integral 

IV vv l dR' ( = - L) 
4nlR-R'I 

E = Ee-L-P, 

B = Be+M-L·M, 

e-F*/kT = C J e-H/kT dqdp, 

(219) 

is independent of the position R. This is the case if the sample has ellipsoidal 
shape (see appendix I). In that case the expressions (218) may be written as 

(220) 

where the tensor L, which is equal to (minus) the integral (219), is called the 
'depolarizing tensor'. (It depends on the shape of the boundary.) 
The cel! wil! be described with the help of the canonical ensemble 

(221) 

where F* is the free energy1, T the temperature and C a constant ( depending 
on the number ofatoms in the system), while H(q, p) is the Hamiltonian for 
a dipole system (appendix II, formula (A32), with the atomie charges 
ek = 0): 

1 An asterisk is written at the symbol for the free energy to distinguish it from F = U- TS 
with U the total internal energy. In fact we shall find that the Jatter will differ from the 
average Hamiltonian <H), which will be denoted by U* ( = F*+TS; v. (227) and (232)). 

( 
p2 J-1 2 J-l , ) 

H(q, p) = L -~- + L _Pki - L Pki Pkj 
" 2mk i=l 2mki i,j=l 2mk 
f 

+ L L eki ekj + I 
k i,.i=l(i*j) 8njRk;(q)-R1Jq)/ k,l(k*l) 

_ -v f-µc1J.E + (vc1J+c-1-µc1J /\ p") ·B Î 
L, l k e k k ef , 
k mk 

êJF* 
ee, 

f 

I 
i,j=I 8n/Rk;(q)-Rlj(q)/ 

ek;eu 

where ïïi1l and ï{1l are the electric and magnetic dipole moments. 
The free energy F* is a function of the external fields E; and Be, the 

temperature Tand the position of the boundaries of the system. The partial 
derivatives of the free energy with respect to the external fields follow from 
(221) and (222): 

óF* 
ee, -< L Î'k1)) = - VP, 

k 

- \ i (1fl+c-1µf1l /\ ~)) = -VM, 

where ( 65) has been used. The brackets indicate canonical ensemble averages 
so that for a dynamica] variable a = a(q, p) one has the average value 
(a) = C Ja exp {(F*-H)/kT}dqdp. Furthennore the partial derivative 
with respect to the temperature gives the entropy Sof the system: 

-p* 
?__= -S. 
êJT 

öF* = -S6T-VP•6Ec- VM·6Be+A: 0€, 

(222) 

(223) 

(224) 

The free energy changes also if the boundary changes. We consider in­ 
finitesimal variations of the position vector R ( choosing the centre of the cell 
as the origin of the coordinate systern): 

6R = O€·R, (225) 

with a uniform (infinitcsimal) deformation tensor 0€. Then the ellipsoidal 
shape of the boundaries remains ellipsoidal. (The external fields E; and Be 
may b.:: kept constant during such a deformation by adjusting the charges on 
condenser plates and currents in coils around the total system in the proper 
way.) 
The total change of the free energy now follows from (223-225): 

(226) 
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where the tensor A, which is contracted twice with be (i.e. A : be = 
Li,i Aiib"i;), has still to be determined. 
The free energy is connected to the average <H) = U* of the Hamiltonian 

Hby 
F* = U*-TS, (227) 

where H is given by (222) or by (A37) (with ek = 0). The third term at the 
right-hand side of (A37) may be expanded as a series if the atoms are outside 
each other. For that reason we write (A37) in the form 

J eki eki 

H = K + t i,i=fu*n 8njRk;-Rd 

1 co cl n-Cml. V"' -- - I ïï/ : Vd.1.1 : 1 8n\Rk-R1I n,m=l 
+ I k,l(k,lcl) 

+ I ( f ekielj __ - I µtl: vzµ:[m): V;" __ 1 __ ) 
k,l(k,lcl) i,j=l 8n1Rki-R/j\ 11.m=l 8nlRk-R1I 

-I:UP)·E0, (228) 
k 

with K the kinetic energy and where the penultimate term vanishes if the 
atoms are outside each other. The canonical average of (228) is the total 
energy of the system. U sing (I.41 ), (I.44 ), ( 61) with v = 0 and appropriate 
(time-independent) one- and two-point distribution functions it gets the 
form 

U*=<H>=J(tmvi+J:z:'.111;1t+ . .L. ~;ei, )11(Ri,l)dR1dl 
, ,,1(,*1) 8nl11ï-12) 

+ J .;(!. ü<"l : V" ü<mJ : V"' l f (R 1 R 2)dR dR dl d2 L, rl . 1 r2 . 2 
8 

I 2 1, , 2, 1 2 
11,m=l nR1-R2I 

+ J ( '\' e; ei _ ~ -(nJ : V" -(ml : vm 1 ) L, L, µ1 . 1 µ2 . 2 
i,j 8n\Rli-R2) n,m=l 8n\R1 -R2\ 

Ji(R1, 1, R2, 2)dR1 dR2 dl d2 

-J-µol.E f (R -µ<1l)dR d-µ<1l 1 e 1 1, 1 1 1, (229) 

where the integrals are extended over the volume of the system. Since the 
system is uniform the integrals over R1 in the first and last terms may be 

performed. In the second term we splitf2 into a correlation function of the 
type (7) and a product of two one-point distribution functions. The Jatter 
give rise to an uncorrelated part, in which we 0111it all multipele moments of 
orders two and higher (as in subsections 5c, d such moments would yield 
terms containing macroscopie multipole densities of higher order, which are 
assumed to be negligible in our system). We then obtain 

* K ·J 1 U = VQu +PP. V1 V2----dR1dR2 8nlR1 -Rzl 

+ J I (-1)111µ<11): V"µ:(m): vm _1:__ C (R+1-s 1 R-.ls 2)dRdsdl d2 
n,m = 1 1 . s 2 • s 8ns 2 2 ' ' 2 ' 

+J ( I e.e, __ - f (-l)"'P:i"J: v;p8"l: v;'-1-) 
i.! 8n/s+r1i-r2) n,m=l 8ns 

f~(R+Js, 1, R-½s, 2)dRdsdld2-P·E0, (230) 

where (65) and (78) have been used, and new integration variables Rand s 
have been introduced in the third and fourth terms at the right-hand side. 
The Iimits of the integration over s depend on the value of the variable R. 
However since both the correlation Iength and the dimension of the atoms 
(which is the range of the first factor in the integrand of the fourth term) are 
small cornpared to the dimension of the system, effectively the limits of the 
integration over s depend on R only in a small region near the surface. 
Neglecting these surface effects, and using the fact that the system is uniform, 
we perform the integrals over R in the third and fourth term. Furthermore 
the integral in the second term may be written as (see appendix I): 

J 1 IV 1 V1 V2 ----dR1 dR2 = -V VV -- dR = VL, (231) 
4nlR1 - R2I 4n\RI 

where R is the position with respect to the centre of the ellipsoid and where L 
is the depolarizing tensor (which depends on the shape of the system). In 
this way we obtain as the average Hamiltonian, using the internal energy u 
(115) with (97) (neutra! atoms have µl0l = 0) and (111) 

V* = V+ V(-}PP: L-P·E0), (232) 

with V = VQu the total internal energy. 
Finally the tensor A occurring in (226) has to be found. In appendix III 

it is proved that A is the following average 

\ (àH oH)) A = - I -~ Pk- Rk ~- 
k er, ee, (233) 
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with R, and Pk the canonical centre of mass coordinates and momenta of 
atom k. We substitute into this expression the Hamiltonian (222), add and 
subtract the multipole series expansion of the third term and use the appro­ 
priate time-independent distribution functions. This gives 

A = - J mb ; v1 f1(R1, v1)dR1 dv1 

+ J ~ {(R -R )V ïï:<"l: V" ïï:<ml: V"' l } L, l 2 l rl . 1 ,2 . 2 I 11,111=1 8nlR1 -R2 

Jz(R1, 1, R2, 2)dR1 dR2 dl d2 

+J{(R1-R2)V1 (I e;ej 
i,i 8nlRu-R2jl 

- ~ ïï:<11l: V" ïï:<111l: vm l )}f (R 1 R 2)dR dR dl d2 
L, ,l . l ,2 . 2 8 IR R 1 2 l ' ' 2' 1 2 

n,m:::::1 1t 1- 2 

-1 J ~ -<1l B f (R -ul)dR d d-<tl + C V1 P1 /\ e 1 1, V1, P1 1 V1 P1 , 

j. 1 
A = -V(PK+PF)+ (R1-R2)V1P·V1P·V2----dR1dR2 

8nlR1 -R2I 

+ J f c-1r (sv. µ:~·) = v:µ~n) = v:-1-) 
11,m= 1 8ns 

(234) 

where we used the Hamilton equation vk = Rk = 3H/3Pk and the expression 
( 61) with v = 0. Because of the uniformity of the system the space integrals 
in the first and last terms may be performed. Then they become, apart from 
a factor - V, equal to the sum of the kinetic pressure pK (63) and the field 
dependent part of the pressure pF (73). In the second term we introduce a 
correlation function with the help of (7). In the uncorrelated part we omit all 
multipole moments of order 2 and higher, as in (230). In this way we obtain 
for (234) 

c2(R+½s, 1, R-½s, 2)dRdsdld2 

+J{sv. ( I eiej - I (-1)"'µ\"l: v:µ:~n): v;· _!_)) 
i,j 8nls+ru-r2il 11,111=1 8ns f 

Jz(R+½s, 1, R-½s, 2)dRdsdld2, (235) 

where (65) has been used and new integration variables R and s have been 
introduced. Just as for the Hamiltonian, the integrations over s in the third 
and fourth term are effectively to be extended over a volume small compared 

to that of the system, so that the integration over R may be performed, the 
system being uniform. Furthermore the second term may be written as (see 
appendix I): 

J(R1-R2)V1V1V2 l dR1dR2 8nlR1 -Rzl 

= -vJRVVV-
1
-dR = -lVK, (236) 

8nJRI - 

where R measures the position relative to the centre of the system and K is 
a tensor of the fourth rank, which depends on the shape of the boundary of 
the ellipsoidal system. In this way we obtain for (235), using (107) with (94) 
and (104), 

A = - V(P+½K: PP), (237) 

where P is the pressure tensor and the last indices of K are contracted with 
those of the two factors P (the electric polarization). 
This result could have been found along different lines, namely by starting 

from the expression (A48) of appendix III according to which 

!JJ* = - J \.pout·!Je·RdS, (238) 

where P out is the pressure exerted by a wall ( supposed to be unpolarizable) 
which separates the cell from its surroundings and n is the normal to the 
wal!. This pressure is not equal to the pressure P, just inside the boundary. 
The reason for this difference is that the electromagnetic fields are discon­ 
tinuous across the boundary. In fact it follows from momentum conservation 
in the form (109), applied to a thin volume element with surfaces on either 
side of the boundary between the separation wall and the cell, that for a 
system in equilibrium and at rest one has 

n-(P-Pout) = n-[DE+BH-(½E2+½B2-M·B)U} 

-n-{EE+BB-(½E2+½B2)U}out· (239) 

The fields just inside the cell and inside the separation wall are connected by 
relations which are consequences of the Maxwell equations: 

n-D = n-Eout, 

n-B = n-Bout, 

E-nn-E = E0u1-nwE0u1, 

H-nn-H = B0u1-nn-B0ui· 

Insertion of these formulae into (239) leads to 

n·(P-P ) = --1-n(P·n)2 out 2 , 

(240) 

(241) 
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up to order c -1• (Terms quadratic in the magnetization are of order c - 2 

and hence not considered in the non-relativistic theory.) The right-hand side 
of equation (241) is usually called the Liénard pressure1• (Incidentally this 
formula shows how one could measure the pressure P just inside a polar­ 
izable system: P001 may be measured by means of a manometer made of un­ 
polarizable material, while a value of the polarization P may be obtained in­ 
dependently.) If one introduces (241) into (238) and uses the assumed uni­ 
formity of P and öE one finds 

öJ* = -VP: öE-½ J\·öeR(P·n)2dS. 

Afiuid system at rest is isotropic in the absence ofpolarizations and fields. 
Then the entropy depends only on the internal energy u and the specific 
volume v, not on the shape of the boundary. Therefore in this case only the 
scalar part of the tensor öE should contribute to the second term and hence P 
reduces to a scalar p (times the unit tensor U). In this way, since vU : öE is 
the change of volume à», the entropy law (247) becomes then 

Tds = du+pdv, (248) 

(242) 

This expression is indeed equal to A : öE with A given by (237) as follows 
with the help of the identity valid for the tensor K ( defined in (236)) of a 
volume of ellipsoidal shape (v. problem 5) 

1 Js K = V RnnndS. 

where we have written differentials, because now sis a function of u and v. 
If fields and polarizations are present, it is not immediately clear that 

again Pis diagonal, since now the isotropy of the system is perturbed. How­ 
ever, if the polarization vectors P, M are assumed to depend only on the 
specific volume v, the specific entropy s ( or temperature) and the fields, i.e. 

P = P(v, s, E, B), M = M(v, s, E, B), (249) 

(243) the entropy law (247) may be integrated at constant € and s with the result 

Collecting the results (223), (224) and (237) and substituting them into 
(226) with (227), we have found now for the change of the entropy 

TöS = öU*+ V(P+½K: PP): öE+ VP·öEe+ VM·öBe. (244) 

If one inserts moreover (232) one obtains, dividing the result by the total 
(constant) mass Mof the system: 

Tos = ö(u+½vPP: L)+v(P+½K: PP): öE-Ee·ö(vP)+vM·öBe, (245) 

where s = S/M is the specific entropy and v = V/M the specific volume. ln 
this relation the external fields occur, not the Maxwell fields. We may intro­ 
duce the latter instead of the former, by using (220) and also the relation 
(proved in appendix I) that gives the change of the depolarizing tensor ifthe 
shape of the boundary is changed: 

ö(v-1L) = -v-16€: K. 

We then obtain, up to order c-1 (noting that Mis of order c-1 already) the 
entropy law 

rs» = öu+vP: öE-E·ö(vP)+vM·öB. 

(246) 

(247) 

This law wil! be further studied, first for fluids, then for amorphous or poly­ 
crystalline substances. 

1 A. Liénard, Ann. Physique 20(1923)249. 

u = u0+Au, 
where u0 is the specific energy at zero polarizations and fields, which depends 
only on v and s. Furtherrnore L1 u is a function of v, s, E and B or ( with (249)) 
of v, s, vP and B. Therefore u depends on these variables so that àu contains 
only the trace of öE which is equal to v-1öv. Hence from (247) it follows that 
in equilibrium the tensor P reduces to a scalar pressure pU for the fluid 
systems studied. So finally the non-relativistic second law ( or 'Gibbs rela­ 
tion') becomes for a (one-component) fluid of neutra] atoms 

Tds = du+pdv-E·d(vP)+vM·dB. 

(250) 

(251) 

(It should be kept in mind that all quantities have been defined for a system 
at rest. In particular the fields arid polarizations are therefore the same as the 
primed quantities of the preceding subsection.) The field terms in the second 
law (251) show the same asymmetry as has been discussed in connexion 
with those appearing in the first law (213). 
For amorphous or polycrystalline substances it is not possible to reduce 

the entropy law (247) to the simple form (251): the pressure tensor does not 
reduce to a multiple of the unit tensor. In order to obtain a Gibbs relation 
from (247) we start by expressing the infinitesimal deformation öE in terms 
of state variables; öE itself is not a stable variable as its definition (225) 
shows, because R is the position of a point in the deformed state. Let us 
introduce, as state variables characterizing the position R of a point of the 
substance in terms of its position R0 in a fixed reference state (denoted by 
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the symbol 0), a tensor "Il by means of the relation 

R = fi·R°. 
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(252) 

Here lJ is independent of R since only uniform deformations of the (uniform) 
ccll are considered. Comparison of (252) with (225) shows that one has for 
3e: 

ÖE = ÖY)')1-1. (253) 

In this way èie is expressed in variations of the state variable Y). 
It is convenient to write the deformation tensor il as a product of a sym­ 

metrie 'dilatation' tensor YJ ( = ij, the transposed tensor). and an orthog­ 
onal 'rotation' tensor YJA (so that Y!A = YJ,:;:1): 

il = YJA'YJ. (254) 

If the sample is only slightly deforrnable the tensor YJ is nearly equal to the 
unit tensor U. Furtherrnore the tensor YlA might be parametrized in terms of 
three angles, for instance the Eulerian angles. Introducing (254) into (253) 
we get for the variation 

Ö€ = ( ÖYJA 'Y) + YJA 'óYJ)'YJ l 'Y);: l ::,: ÖYJA 'Y)A + YJA'ÖY)'Y)A, (255) 

where in the second expression YJ could be replaced by the unit tensor. The 
first term in the last member of (255) is antisyrnmetric as follows from 
YlA'iiA = U, while the second term is symmetrie, since öYJ is symmetrie and 
YJA orthogonal. With the help of (255) we obtain as the second law for an 
amorphous or polycrystalline solid: 

Tds = du+v(YJA·P·YJA): dYJ+vP: (dYJA'iiA)-E·d(vP)+vM·dB, (256) 

which is written with differentials since now all quantities are state variables. 
In the second term at the right-hand side only the symmetrical part P5 

= J(P + P) of the pressure contributes, since dYJ is symmetrie and YJA is 
orthogonal. In the third term only the antisyrnmetrical part ½(P- P) re­ 
mains, because the bracket expression is antisymmetric. From the angular 
momentum balance equation (196) it follows by employing the uniformity 
of the cell that 

PA= p AE+M AB, (257) 
or alternatively, 

½(P-P) = ½(PE-EP+MB-BM). (258) 

Then the second law (256) becomes 

Tds = du+v(YJA·Ps·YJA): dY)+v(PE+MB): (dYJA'YJA)-E·d(vP)+vM·dB. 
(259) 

This form shows that the entropy changes not only through a change of the 
internal energy and through symmetrie deformations, but also due to effects 
of the electromagnetic fields as is apparent from the last three terms. The 
first of the Jatter in particular shows the effect of rotation of the ellipsoidal 
cell as a whole in the external field. (lf desired so, the tensor YJA may be ex­ 
pressed in terms of the three Euler angles with respect to a fixed reference 
state.) 

Often the polarizations are parallel to the fields for amorphous and poly­ 
crystalline solids. Then (257), (258) and the third term at the right-hand side 
of (259) vanish, so that we are Ieft with the second law 

Tds = du+v(ilA'Ps·YJA): dY)-E·d(vP)+vM·dB. (260) 

In this way the Gibbs relations for uniform fluids and amorphous or 
polycrystalline solids have been found as the Iaws (251) and (260). The only 
difference between these two cases consists in the occurrence of a pressure 
tensor in (260) and a scalar pressure in (25 l ). 

c. The second law for plasmas 

The method used to derive a second law for fluids will be employed in this 
subsection to find that for plasmas. 

Let us considcr a uniform cell as a subsystcm of a neutra! plasma at rest 
in a uniform and constant field. The plasma is a mixture of charged particles 
of which the internal structure is disregardcd. In such a system the uniform 
Maxwell fields are connected to the fields Ee(R) and Bc(R) from outside the 
cell as (v. (17)) 

E = Ee(R)-Q°VI l dR', 
· 4nlR-R'I 

B Bc(R)-c-1JAVj" l -clR', 
4nlR-R'I 

(261) 

where Q0 and J are the uniform charge and current densities. Hence the ex­ 
ternal fields are uniform only if the macroscopie charge and current densities 
Q
0 and J vanish. For that reason wc only consider neutra! plasmas without 
currents. Then the Maxwell fielcls are equal to the external fields. 
The Hamiltonian for the plasma is (cf. (A26) or (A32) of appendix II) 

H=' Pf v ei e, , { (R)- -1Pk·A(R)\ L, + L, ---- + L, ek ({Je k C e k · 
k 2mk k,l(ka"l) 8nlRk-R1I k m.; f (262) 
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The potentials describe a constant and uniform external field and may thus 
be chosen as 

cpe(Rk) = -Rk·Ee, 

Ae(Rk) = ½Be/\Rk. 

(ff a different gauge would have been used, the resulting Hamiltonian might 
be transformed to (262) with (263) by means of a canonical transformation.) 
The free energy1 Fis again a function of the external fields Ee, B0, the 

temperature Tand the position of the boundary of the system. The partial 
derivatives with respect to the external fields and the temperature are up to 
order c-1: 

(263) 

óF 
se, - J RQ°(R)dR = 0, 

er = -½c-1 J RAJ(R)dR = 0, 
oBe 

with the charge and current densities (124), and 

oF = -S. 
ar 

In this way we get for the change of the free energy 

öF= -SöT+A:öE, 

(264) 

(265) 

(266) 

where A has still to be determined. 
The free energy F = <H)-TS follows from the average of the Hamil­ 

tonian ( cf. (A37)) for the plasma 

'\"' ek e1 '\"' ( ) H = K+ L- --- + L- ekcpe Rk. 
k,ICk*ll 8nlRk-Ri\ k 

(267) 

The average of this expression is 

<H> = ~ J ½ma vf ff(R1, V1)dR1 du. 

+ IJ ea eb f{\R1, R2)dR1 dR2, (268) 
a,b 8nlR1 -R2\ 

where (263) and the vanishing of the charge density have been taken into 
account. In the first term the integration over R1 may be performed as a 
1 Here the free energy is denoted by a symbol E without asterisk, si nee it wil! turn out that 
the average Hamiltonian <H> is equal to the total internal energy (v. (270)). 

consequence of the uniformity of the system. In the second term we write 
f{b as the sum of a correlation function c;b and the product r[j]'. The Jatter, 
uncorrelated part gives no contribution, since the charge density vanishes, 
so that we obtain now, using also (131) 

<H) = V guK+ If eaeb c;\R+½s, R-½s)dRds. (269) 
a,b 8ns 

For neutra! plasmas in equilibrium the correlation function has short 
range. Then the integral over R may be performed, since the system is uni­ 
form. In this way we get with (138) and (141) 

<H) = Vçu. (270) 

The tensor A, which occurs in (266), follows from (A55) of appendix III 
with (262): 

A = - ~ J ma v1 v1 ff(R1, v1)dR1 dv1 - ~ e; J R1 Eeff(R1)dR1 

+½c- 1 ~ J e0{v1(R1 /\ Be)-R1(v1 /\ Be)}ff(R1, v1)dR1 dv1 

+ IJ(R1 -Rz)V1 _e.aeb .. -J{\R1, R2)dR1 dR2, 
a,b 8nlR1-R2I 

(271) 

where we have used the Hamilton equation óH/oPk = è; == vk. In the first 
term the integration over R1 may be performed. In the second and third 
terms one recognizes the charge and current densities (124), which vanish 
in the plasma studied. In the fourth term we split f{b into c;b and nn. 
Again the Jatter part gives no contribution because the charge density is zero. 
In this way (271) becomes, with ~he help of (122), 

A - VPK+ If -v, eaeb c;b(R+½s, R-½s)dRds. (272) 
a,b 8ns 

The integration over R may be performed owing to the short range character 
of the correlation function. Then we get with (127) and (129): 

A = -VP. (273) 

So finally we obtain from (266), with (264), (265), (270) and (273), dividing 
by the total mass M, 

Tos = öu+vP: ö€, (274) 

where s = Sf M and v = Vj M are the specific entropy and volume. From 
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(274) it follows that the specific energy at constant s and€ does not change if 
fields are switched on: 

U = Uo, (275) 

where u0 is the specific energy at zero fields, which depends only on u and s, 
since the plasma is isotropic in the absence of fields. So in (274) only the 
trace of 6€ (which is equal to v-16v) may occur. Therefore the second law 
for a neutra! and current-free plasma becomes 

Tds = du+pdv, (276) 

showing that the pressure tensor in a plasma reduces to a scalar at equi­ 
librium. 

d. The second law for crystalline solids 

For the systems with short range correlations treated so far we derived the 
second law of therrnodynamics by considering a uniform cel! as a sub­ 
system of a larger system, which played the role of a heat bath. For the case 
of systems with long range correlations - as crystalline solids - sucb a division 
of the systern into cells is no Jonger feasible. One has to consider in that case 
the system as a whole. As a consequence one can no longer suppose that the 
systern is uniform: non-uniforrnities will enter the system through boundary 
effects ( even if simp Ie shapes are chosen for this boundary ). 
We use again the canonical ensemble to describe the system in uniform 

external fields in a heat bath, limiting ourselves to systems without space 
charge. Then the existence of a thermodynamic limit has been proved 1. At 
equilibrium the electric current dcnsity in the system at rest will vanish ( since 
then both the conduction and convection currents are zero). The Hamil­ 
tonian is given by (A32) with the potentials (263) for the uniform external 
fields. The partial derivatives of the free energy with respect to the external 
fields are, up to order c - 1, 

~/* = -<L(ekRk+µk1l)) = - J P(R)dR, 
oEc k 

êF* 
en, -(L(½c-1ekRk/\ pk +v[ll+c-111i1l/\ p")) = -JM(R)dR, 

k mk ~ 

(277) 
where the expressions (64-65) have been used and the fact that the charge 
and current densities vanish. Furthermore the partial derivative of the free 
1 J. L. Lebowitz and E. H. Lieb, Phys. Rev. Lett. 22(1969)631. 

energy with respect to the temperature is 

óF* 
-= -s. 
óT 

The total change of the free energy is now 

bF* = -S6T-VP·c5E -VM·bB +6 F* e e e , 

(278) 

(279) 
where we have introduced the notation X for space averages of a quantity 
X(R): 

X = i J X(R)dR, 

- J {PK(R)+Pr(R)} : 6e(R)dR, 

(280) 

and where !5eF* is tbc change of the free energy through deformations. The 
canonical average (H) = U* of the Harniltonian (A37) with (263) is ( cf. 
(232)) 

. J 1 - U"" = U- P(R1)P(R2): °\\ V1 . dR1 dR.2-VP·Ec, (281) 
8nlR1 -R2\ 

where (115) with (78), (97) and (153) have been used and where U is the 
total internal energy VQu of the system. 
The change of the free energy 6eF* under deforrnations follows from 

(A53) of appendix III, with the Hamiltonian (A32). The term with the de­ 
formation gradient tensor be in (A53) gives 

(282) 

as follows from the explicit forms (63) and (73) of the kinetic and 'field' part 
of the pressure tensor. The term with 6€ in (A53) becomes upon introduction 
of (A32) 

( L~ I: {Rk·M.(Rk)-R1·bë(R1)}·V" - ekielj ) . (283) 
k,l(krll ,,1 ~nlR1ci-Rz) 

If this expression is split into a long range and a short range part by making 
a rnultipole expansion and if appropriate two-point distribution and cor­ 
relation functions are introduced, one finds 

-J{R1·bë(R1)-R2·c5ê:(R2)}P(Ri)P(R2): V1 'V\ V1 l dR1 dR2 
8nJR1 -R2I 

+ J [{(R+½s)·bê:(R +½s)-(R-½s)-c5ê:(R-½s)}·Vs,,,,to ( - lY'P:1"l 

: v~µ:g,•l: V~" __ 1_] c2(R+½s, 1, R-½s, 2)dRdsdl d2 
8ns 
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+ J [{(R+½s)·bË(R+½s)-(R-½s)·bË(R-½s)}·Vs ( I elieZj 
i,j 8nls+rli-r2) 

- f ( - l)"'PS') : v:µ:iti: v;' J--)] 
n,m=O 8ns 

Jz(R+½s, 1, R-½s, 2)dRdsd1 d2, (284) 

where in the second and third term we introduced the variables Rand s, con­ 
nected with R1 and R2 by R1 = R+½s and R2 = R-½s. In the last term the 
integration over s is extended over small values of s only, so that one may 
expand the factors (R±½s)·bË(R±½s) around R·bË(R) and break off after 
the second term. Then the last term of (284) becomes 

- J Ps(R) : be(R)dR, (285) 

where we introduced the short range pressure tensor (94) and the tensor 
be (A51 ). The second term in (284) may be written in the form 

- J Pc(R) : be(R)dR, (286) 

as we shall now prove. To that end we introduce the correlation pressure 
(151) into (286); owing to the symmetry of the integrand of (151) one may 
employ cJ (202) instead of cl (149). Then one gets 

- J Pc(R): be(R)dR = J~/;J~
00
dR'f~

00
ds J dld2

11
,,t

0
(-l)"' 

fs·be(R'-1-J.s)·V ïi:(nl:V"ïi:<mJ:v"'-1-}c (R'+-ts 1 R'-.ls 2) (287) l 2 • s rl . s r2 . s 16ns 2 2 ' ' 2 ' ' 

where we introduced the integration variables R' = R+½}s. Effectively the 
integrations over R' and s just as these over R and s are extended over those 
values for which the arguments of the correlation function are inside the 
volume of the system. Since the correlation function vanishes if these argu­ 
ments indicate positions outside the volume, we may for convenience write 
- co and oo as integration limits. The first factor in the integrand in (287) 
may be written in an alternative form 

s·be(R' -½}cs)-Vs = -2 ° {(R' -½Jcs)·bË(R' -Fs)}·Vs, (288) 
oÀ 

if we use the definition (A51) of be. If this expression is inserted into (287) 

the integration over }, may be performed. Then one recovers indeed the 
second term of (284). 
We have found now for the change of the free energy under deformations 

s.r: = - J P(R) : be(R)dR 

-J{R1·bi(R1)-R2·bi(R2)}P(Ri)P(R2): V1 V1 V1 _l __ 
8nlR1 -Rzl 

dR1 dR2• (289) 

This form for the change of the free energy seems to be dependent on the 
deformation tensor be: (or be (A51)) throughout the volume. We may how­ 
ever obtain an alternative form of beF* which shows cxplicitly that only the 
deformation at the surface comes into play. Such an expression follows if 
one employs (A48) of the third appendix. Together with (241) one then 
finds 

bJ* = - J\·P·be:-RdS-½ J\·be:·R(P·n)2dS. (290) 

(For uniform pressure and deforrnation tensors this formula reduces to 
(242).) One may prove the equivalence of (289) and (290) by performing 
a partial intcgration in the first term of (289), using the definition (A51) of 
be, and employing the identity 

I (V·P)·be:·R dR + 1 Is n-be:·R(P·11)2ds 

=I{R1·bi(R1)-R2·bé(R2)}P(R1)P(R2): V1 V1 V1 --
1 

8nlR1 -Rzl 
dR1 dR2, (291) 

which ho Ids for a polarized system in equilibrium. The proof of this relation 
(v. problem 5) makes use of the equation of motion (150), which for the 
present system in equilibrium and at rest reads 

V·P = (VE)-P+(VB)·M. (292) 

In the second term at the right-hand side only the external magnetic field 
appears (v. (71)). This field is uniform, so that (292) reduces to 

V·P = (VE)·P. (293) 

(For uniform pressure, deformation tensor and polarization the relation 
(291) reduces to (243 ), as follows by employing (236).) 
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The change of entropy is found now if one substitutes (227) and (289) or 
(290) into (279). In the lat ter case, i.e. with (290), we get the entropy law 

TöS = 6U*+ J\·P·6E·RdS+½ J\·6E·R(P·n)2ds+ VP·6E0+ VM·6B0, 

(294) 
while in the first case, i.e. with (289), the result is 

TöS = 6U*+ J P(R): 6e(R)dR+ J {R1·6ë(R1)-R2•öë(R2)}P(Ri)P(R2) 

. 1 - - 
: V 1 V l V 1 ---- dR1 dR2 + V P·6Ee + V M·6Be. (295) 

8nlR1 -Rzl 

The form (294) shows that the change of entropy depends only on the de­ 
formation tensor at the boundary, while (295) has a form that reduces for 
uniform pressure, deformation and polarizations to (244) of subsection b. 
If one inserts moreover (281) the relation (295) becomes 

TöS = so + J P(R) : 6e(R)dR-E0·ö(VP) 

-6 {JP(R1)P(R2): V1 V1 l dR1 dR2f) 
8nlR1 -Rzl 

+J{R1·6ë(R1)-R2·6ë(R2)}P(R1)P(R2): V1 V1 V1 --
1 

8nlR1 -Rzl 

dR1 dR2 + VM·6B0• (296) 

We may cast this law in a form which contains the Maxwell fields instead 
of the external fields. Let us consider the fourth term of the right-hand side 
separately. As a consequence of the variation the polarization changes and 
also the boundary of the integral, so that it may be written as 

-f [{60P(R1)}P(R2)+P(R1)60P(R2)]: V1 V1 l dR1 dR2 
8nlR1 -Rzl 

-Jv dS 1Js dR2 6R1 ·nP(R1)P(R2) : V 1 V 1 __ l __ 
8nJR1-R21 

Js Jv 1 - dS 2 dR1 6R2 ·nP(R1)P(R2) : V 1 V 1 ---- , 
8nlR1 -Rzl 

where in the first term 60P(R;) is the 'syntopic' variation (i.e. P'(R;)-P(R;)) 
of the polarization. In the second term the integration with respect to R1 is 

(297) 

extended over the surface Sof the sample with surface element dS1 and nor­ 
mal n, while the integration with respect to R2 is performed over the volume 
V. Furthermore 6R1 is the variation öE(R1)·R1. Similar remarks apply to 
the third term. If the last two terms are transformed with Gauss's theorem 
we obtain for (297): 

- J [{6P(R1)P(R2)+P(R1)6P(R2)}: V1 V1 

+{R1·6ë(R1)-R2·6ë(R2)}P(R1)P(R2): V1 V1 V1 

1 + {Tr öe(R1) + Tr 6e(R2)}P(R1)P(R2) : V 1 V 1] --- dR1 dR2, 8nlR1 -Rzl 
(298) 

where the 'asyntopic' variations of the polarizations (i = 1, 2) are 

6P(R;) = P'(R;)-P(R;) = 60P(R;)+R;'öË(R;)-\';P(R;). (299) 

The third term at the right-hand side of (296) may likewise be written in 
terms of the asyntopic variation (299) since 

6(VP) = 6 J P(R)dR = J 6P(R)dR+ J {Tr 6e(R)}P(R)dR. (300) 

Substituting (298) and (300) into (296), we obtain with the expressions (71) 
for the Maxwell fields (with vanishing charge density) the non-relativistic 
entropy law 

TöS = 6U + J [P(R): 6e(R)-E(R)·6P(R) 

-{Tr 6e(R)}P(R)·E(R)+M(R)·6B]dR, (301) 

or with the bar notation for volume averages 

TöS = 6U+ VP: 6e-VE·6P-V(Tr öe)P·E+ VM·öB. (302) 

This form of the entropy law is closely analogous to (247) if the latter is 
multiplied by the total (constant) mass M of the system ( so that s, u and v 
are replaced by S, U and V). The difference between these formulae is that 
(302) contains the tensor 6e instead of ö€ and volume averages instead of 
uniform quantities. 
The entropy law (301) or (302) contains the tensor 6e(R), which charac­ 

terizes the deformation throughout the volume. However, one may show by 
a transformation of the right-hand side of (301) that effectively only values 
of the deformation tensor at the surface come in, just as in (289-290). 
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With the help of ( A5 l ), (299) and parti al integrations one may write (301) as 

Té>S = se + r n-(P·bE·R-bE·RP·E)dS 

- J {(V·P)·bE·R+E·b0P-R·bË·(VE)-P-M·b0B}dR, (303) 

where nis the outward nonna! to the surface element dS. We now substitute 
the equation of motion (293), with the result 

Té>S = é>U + J\·(P·é>E·R-é>E·RP·E)dS- J (E·o0P-M·o0B)dR, (304) 

which may also be obtained directly from (294). This formula shows that 
the change of entropy depends only on the value at the surface of the de­ 
formation tensor oE. lt depends moreover on the variation of the total energy, 
of the polarization and of the magnetic field throughout the system. 
It should benoted that the infinitesimal oEis defined by(225)andis thus not 

the variation of a state variable. Just as in subsection b Iet us introduce as 
state variables characterizing the deformation of the boundary a tensor YJ, 
which gives the transforrnation of the position R of the boundary frorn a 
:fixed position R0 in a reference state denoted by the symbol O to a deformed 
state 

R = YJ(R0)·R0
• 

A CH. II 

(305) 

(In contrast to the case of subsection b the tensor 'YJ is now a function of 
R0

.) For an infinitesimal deforrnation we have then 

oR = oYJ(R0)·R0 = oYJ(R0)·YJ 1(R0)·R, 

so that the variation oE(R) is 

oE(R) = OYJ(R0)'YJ-1(R0
). 

(306) 

(307) 

We want to write the tensor YJ(R0
) as the product of an orthogonal tensor 

'tJA (independent of R0
) and a tensor 1J(R0

). To fix 'tJA we factorize the surface 
integral 

J
So 

YJ(R0)-R011°dS0 (308) 

(where 11° is the normal to the surface element dS0 of the surface S0 in the 
reference state) into a product of the orthogonal tensor 'tJA and a symmetrie 
tensor. This condition fixes the tensor 'tJA. With the help of 'tJA we now define 
1J(R0

) by means of the relation 

YJ(R0
) = 1JA·1J(R0

). (309) 

§7 THERMODYNAMICS 

In view of (308) the tensor 1J(R0
) has the property that 

J
So 

1J(R0)·R011°dS0 

öA = 00+R·1JA"01]A'V. 
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(310) 

is symmetrie. 
The reason for factorizing the tensor YJ in the particular way described 

above is that a rotation of the body as a whole without deformations is 
described by a change of 'tJA, leaving 1J(R0

) invariant. (From (310) it is ap­ 
parent that if 1J(R0

) is uniform over the surface, then this tensor 't} is itself 
symmetrie.) 
If the sample is only slightly deformable the tensor 1J(R0

) is nearly equal 
to the unit tensor U. Introducing (309) into (307) we get for the variation öE: 

öE(R) = { 01JA·1J(R0
) + 'tJA'01J(R0

)} • 't} -1(R0
)-'t}; 1 ~ O'tJA'iiA + YlA00'tJ( ijA·R) .. tJA' 

(311) 

where in the second expression 'tJ( R0
) could be replaced by the unit tensor and 

01J(R0
) by 01J(-ikR) as a consequence of the fact that the deformations are 

small. The first term in the last mernber of (311) is antisyrnmetric as follows 
from the orthogonality ofYJA. With the help of (304) we obtain for the change 
of entropy 

ToS = so + Is n-(P-P·EU)·o1JA0"ÎJA·RdS 

+ Jsn-(P-P·EU)-1JA·o1J("ÎJA·R)·~A·RdS- J (E·boP-M·ooB)dR, (312) 

where the quantities P, E, B, Pand Mall depend on the space coordinates 
R. With the use of Gauss's theorem and (293) the first integral at the right­ 
hand side may be transforrned, so that one gets 

Tos= so + J P: (01JA·iiA)dR 
+ J\·(P-P·EV)-1JA·oYJ(iiA·R)-iiA·Rds- J (E·oAP-M·oAB)dR, (313) 

where we used the fact that the trace of ö1JA'iiA vanishes, and the notation 

(314) 

In the second term at the right-hand side of (313) only the antisymmetrical 
part ½(P-P) of the pressure tensor contributes, because the other factor is 
antisymmetric. It follows from the angular balance equation (196) ( cf. sub- 
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section 6d) by integration over the volume that 

J PAdR = J (P AE+M AB)dR 

as a consequence of the fact that the system is in equilibrium and at rest. 
Alternatively one may write 

J ½(P-P)dR = J ½(PE-EP+MB-BM)dR. 

Substituting this relation into (313) we get the entropy law 

-P·E r n-YJA·dYJ(ijA·R)·ikRdS- VE·dP+ VM·dB, 

A CH. Il 

(315) 

(316) 

TbS = se + r n-(P-P·EV)·YJA"öYJ(ikR)·ijA•RdS 

- J {E·bAP-M·bAB-(PE+MB): (öYJA"iiA)}dR, (317) 

which gives the entropy in its dependence on the change of the total internal 
energy, of the electric polarization, the magnetic field and the state variables 
YJA and YJ(iiA·R) at the surface. 
In the case that the solid is not rotated but only deformed, the entropy Jaw 

( 317) reduces to 

TöS = so + J\·(P-P·EV)·öYJ(R)·RdS- J (E·b0P-M·b0B)dR, (318) 

since then YJA = U. 

In certain cases the polarizations in a system with long range correlations in a 
uniform external field are approximately uniform if the sample has ellipsoi­ 
dal shape. This is indeed only an approximation, since not all physical quan­ 
tities are uniform (the pressure tensor, for instance, will in genera! vary over 
the sample, cf. section 8b ). In that case the entropy law (317) becomes 

TdS = dU+ J\·P(R)0YJA0dYJ(iiA·R)·ijA·RdS+ V(PE+MB): (dYJA"iiA) 

(319) 

which has been written with differentials since now all quantities are state 
variables. The fourth term at the right-hand side is equal to -P·EdV as 
follows from (225), (311 ), Gauss's theorem and the fact that dYJA"1ÏA is trace­ 
less. Therefore (319) becomes 

§7 

ee, oPj -- = -~, ee, aEi 

THERMODYNAMICS 

TdS = dU + J\·P(R)·YJA0dYJ(iiA·R)-ijA·RdS 

+ V(PE+MB): (dYJA"1ÏA)-E·d(VP)+ VM·dB. (320) 

In the case that no rotations of the solid are considered this relation reduces 
to 

TdS = dU + J\·P(R)-dYJ(R)·RdS-E·d(VP)+ VM·dB, (321) 

since then YJA = U (it also follows from (318) as a special case)1. The set of 
integrability conditions includes the relations between polarizations and 
fields (i,j = 1, 2, 3) 

ee, aMj --=-, es, se, 
oMi = aMj 
se, oBï 
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(322) 

where the polarizations have been considered as functions of E, B, Tor S, 
and YJ. (These relations are trivially valid for isotropic substances.) 
The Gibbs relation (320-321 ), which is an approximation to the entropy 

law (317-318), is the final result for crystalline solids. It shows how the 
total entropy is a function of the total energy, the polarization, the magnetic 
field and the deformation tensor at the boundary. The law is the counterpart 
of the Gibbs relations (251) for fluids and (260) for amorphous or poly­ 
crystalline solids. In contrast to these local laws the result just found has the 
form of a global law: it makes no sense to subdivide a crystalline solid (in 
which long range correlations are present) into nearly uniform cells for which 
local laws may be derived. 

e. The entropy balance equatio': 

Por fluid systems of neutra! atoms we found a first law of the form (211) and 
a second law of the form (251 ). The latter equation has been derived for a 
system at rest so that the fields and polarizations are measured in the rest 

1 In (321) the complete pressure tensor P appears. Ifthe tensor dri(R) is uniform over the 
surface, it follows from (310) that it is symmetrie. With the help of Gauss's theorem, 
(293) and the uniformity of the electric field E one may write then the second term at the 
right-hand side of (321) as (f P(R)dR) : dri. Since now dri is symmetrie only the symmetrie 
part of the pressure tensor comes into play. The same statement may be made for another 
special case, namely that of a pressure tensor which is uniform over the surface. In that 
case it follows directly from (310) that the second term at the right-hand side of (321) 
contains only the symmetrie part of this uniform pressure tensor. Similar remarks apply 
to the corresponding terms in (320). 
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frame. They are therefore the same as those occurring in (211 ). The second 
law, which we may write as 

Q ds = _g_ du + g p dv _ g E'· d(vP') + 1 M'· dB', (323) 
dt T dt T dt T dt T dt 

is supposed to be valid also for fluid systems which are not too far from 
equilibrium. If we substitute the first law (211) into this equation we obtain 
the balance of entropy 

ds (J) J 1 - Q-=-V· _i __ q·VT- (P-pU):Vv, 
dt T T2 T 

(324) 

where we used mass conservation in the form edv/dt = V·v, as follows from 
(59) and (159). This balance equation shows that the entropy changes as the 
result of the divergence of an en tropy ( conduction) flow J q/T and an entropy 
source strength arising from heat conduction and viscous phenomena. In 
equilibrium the source term vanishes since the temperature and velocity 
fields are then uniform. (Moreover simultaneously the heat flow lq and the 
viscous pressure P-pU also vanish then.) Outside equilibrium the entropy 
source strength is positive, as may be shown if the distribution function is 
known to satisfy particular equations, Iike Boltzmann's. 
In the preceding we assumed that the quantities E' and M' in (211) were 

equal to the equilibrium values E~q and M~q of these quantities occurring in 
(323), so that in the entropy source strength no electromagnetic contribu­ 
tions appear. If however E' and M' are supposed different from their equi­ 
librium values we obtain instead of (324) as the balance of entropy: 

ds 
D- = ~ dt (J) J 1 - -V· _i - --'l •VT- -(P-pU): v» 

T T2 T 

+ _€_ (E' -E; )· d(vP') - _!_ (M' -M~ )· ~~~. (325) 
T q dt T q dt 

The last two terms show which contributions to the entropy production arise 
frorn electromagnetic phenomena. They represent the entropy source 
strength due to electric and magnetic relaxation. 
For amorphous and polycrystalline solids the first law (211) may be written 

in a slightly different form if one uses the relation 

v» = V (de ·R) = de ' 
dt dt 

(326) 

as follows from the definition (225) of the uniform deformation tensor öe. 

Inserting this expression we then find: 

Q du = -V·J, _ p : de + Q dvP' ·E' -M'· dB' (327) 
dt l dt dt dt 

If this relation is combined with the entropy law (260) (whicb will be 
assumed to be valid in the neighbourhood of equilibrium) written as 

p ds = _Q_ du+ !:_pe : de_ g_ E'· d(vP') + .!_ M'• dB' 
dt T dt T q dt T dt T dt 

(328) 

with a symmetrie equilibrium pressure, one gets an entropy balance which 
has the same form as (325) but for the third term at the right-hand side, 
which reads now 

i 1 - (P-P ) . de 
T 

eq .- dt . (329) 

Fora neutra! plasma the first law of thermodynamics has been given in 
(216) and the second law in (276). Fora plasma not too far from equilibrium 
one obtains the entropy balance equation 

Q ds = -v· (!_g) - lq ·VT- _!_(P-pU): Vv+ _!_J·E', 
dt T T2 T T 

where the last term represents the entropy source due to Joule heat produced 
in the plasma. 

Since for systems with long range correlations only a global entropy law 
has been derived, it is not possible to find a Iocal entropy balance equation 
in the same way as above. The global entropy production law will follow 
by combining the first and second laws, both in their global forms. The 
global form of the first Iaw is a direct consequence of (217) with (212). In 
fact, integrating (217) over the mass of the system, one finds 

dQ = dU + J {f>: Vv-J'·E' -Q d(vP') ·E' +M'· dB'} dR (331) 
dt dt dt dt 

with the amount of heat added to the system per unit of time 

dQ = -IJ ·ndS. dt q 

Now one has fora non-uniform solid system (cf. (326)): 

Vv = V (de ·R) = dë ' 
dt dt 

(330) 

(332) 

(333) 



94 NON-RELATIVISTIC CLASSICAL STATISTICS A CH. II § 8 HELMHOLTZ AND KELVIN FORCES 95 

as fellows from (225) and (A51). With this relation (331) becomes 

~~ = d~ + J {p: ~~ -J'·E' -Q d(vP') ·E' +M'· dB'} dR. (334) 
dt dt dt dt dt 

This form of the first law is to be compared with the entropy Iaw (301 ). In 
the Jatter we divide by öt. Then it becomes 

T dS = dQ +J {p: de -E'· dP' - (Tr ~) P'·E' +M'· dB'} dR. (335) 
dt dt dt dt dt dt 

At the right-hand side we added primes to indicate that the quantities are 
taken in the rest frame (the second law has been derived fora system at rest). 
Using the fact that, as a consequence of (333) Tr (de/dt) is equal to V·v 
or to gdv/dt with v = g-1 the specific volume ( as follows frorn the conser­ 
vation of mass), one may writc (335) in the form: 

T ~~ = ~~ + J{p: de -g d(vP') ·E' +M'• dB'} dR. (336) 
dt dt dt dt dt 

Again we assume that this law remains valid if the system is near equi­ 
librium. Then one finds, by combining (334) and (336), for the global en­ 
tropy balance equation 

T dS = dQ -J {(P-P ) : de - d(vP') ·(E' -E' )+(M' -M' )· dB'} dR 
dt dt eq dt (2 d t cq eq dt ' 

(337) 

where we added some indices eq to distinguish the equilibrium values, oc­ 
curring in the second law, from the non-equilibrium values occurring in the 
first law. Note that the temperature has been supposed to be uniform, so 
that no term with the gradient of the tempcrature appears in (337), in con­ 
trast with what was the case in (325). At the right-hand side of (337) appears, 
apart from a term with the supplied heat, a volume integral which contains 
elastic, electric and magnetic relaxation terms. 
A particular case, which arises for ferrornagnetic materials, is that of a 

system in which magnetic hystcresis occurs. lf one considers a cyclic process, 
in which no elastic after-effects occur, we have, if no heat is added, 

8 Helmholtz and Kelvinforces 

a. Fluids 

Let us consider a fluid of neutra! atoms in which constitutive relations exist 
between the polarizations and fields: 

P' = K(v, T)E', 
M' = x(v, T)B'. 

Primes have been added to indicate that the quantities are counted in the 
rest frame. The electric and magnetic susceptibilities K and x depend on the 
specific volume v and the temperature T. The second law for such a fluid in 
local equilibrium has been given in (251) and may be written in the form 

dj= -pdu-sdT+E'·d(vP')-uM'·dB' 

with the specific free energy 
f = u-Ts. 

(339) 

(340) 

(341) 
The differential expression (340) may be integrated at constant specific 

volume and temperature. Then one finds for the difference of the specific 
free energy in the presence and that in the absence of fields: 

f-f0 = v J (E'•dP'-M'·dB'). (342) 

With (339) this relation becomes 

f-J0 = ½v(P'·E' -M'·B'). (343) 
The scalar equilibrium pressure follows from the specific free energy by 

differentiation with respect to the specific volume at constant ternperature, 
specific polarization vP' and magnetic field B', as (340) shows. Hence the 
pressure p = -of/ov is connected to the pressure p0 = -of0/ov for the 
same values of v and T, but with switched-off fields by a relation ' which 
follows from (343): 

Pr=P» = ! (P'·E'+M'·B'+v éne E'2+v ox B'2). (344) 
2 OV ov 

The specific entropy follows from the specific free energy by differentiation 
with respect to temperature T at constant v, vP' and B'. From (343) one has 

TAS - J j (M'-M~q)'dB'dR (338) 
1 ( OK E' 2 ox 1 2) s-s0 = - - v- +v--.'.'.-B 
2 er êJT ' 

(345) 

for the entropy production AS per cycle. 
1 P. Mazur and I. Prigogine, Mém. Acad. Roy. Belg. (Cl. Sc.) 28(1953)fasc. 1; cf. W. F. 
Brown jr., Am. J. Phys, 19(1951)290, 333. 
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so that the difference of the specific energies is 

u-u0 = ½v (P'·E'-M'·B'+T OK E'2+T ox B'2), ar or 

A CH. II 

(346) 

§ 8 HELMHOLTZ AND KELVIN FORCES 

The equation of motion reduces under these circumstances to 

ffe = Vp0• 

97 

(352) 

as follows from (343) with (341). 
The relation (344) shows how the pressure changes if the fields are switched 

on. The pressure p is the equilibrium value of the pressure P used so far. 
We shall call it the Kelvin pressure, to distinguish it from the pressure p O, 
defined at equilibrium and with switched-off fields. The Jatter wiII be caIIed 
the Helmholtz pressure at that specific volume and temperature, 
In the equation of motion for a fluid of neutra! atoms, which has been 

given in (105) with (106) or in (158), we introduce the Helmholtz pressure 
instead of the Kelvin pressure by using (344). Then we obtain 

dv 
Q- = -Vp0-V·Il+(VE)·P+(VB)·M 
dt 

+c-1Q ._<!_ (vP AB)-½V (P'·E' +M'•B' +v OK E'2+v ox B'2), (347) 
dt ov ov 

where the viscous pressure tensor 

Il= P-pU (348) 

has been introduced. Alternatively, introducing rest frame quantities with 
the help of (26) and (27), we have for the equation of motion, using also 
(339) 

dv 
Q dt = -Vp0-V·Il+ffe, 

where the 'Helmholtz' force density is: 

(349) 

ffe = - ! {E'2VK+B'2Vx+V (v OK E'2+v ox B'2)} +c-1(Vv)·(P' AB') 
2 ov ov 

+c-1g d (vP' A B')+(VE')·(P' -P;q)+(VB')'(M' -M;q). (350) 
dt 

Here P;q and M;q represent the equilibrium values (339) in the rest frame. 
The Helmholtz force ffe has a simpler form in the important special case 

of fluids in equilibrium and at rest in time-independent fields. Then the 
expression (350) reduces to 

ffe = - 1 {E'2VK+B'2Vx+V (v OK E'2+v ox B'2)\. (351) 
2 ov êv f 

The expression (351) contains the Helmholtz terms found on the basis of 
energy considerations1• The expression for statie electric dipole systems 
has been derived already in a statistica! treatment2. Earlier the connexion 
between Kelvin and Helmholtz forces and pressures had been found from 
thermodynamics3• 

Often one employs a magnetic susceptibility x defined by 
M' = x(v, T)H' (353) 

instead of the second line of (339). The connexion between the two suscep­ 
tibilities is then 

x = 1-x (354) 

With the help of this relation one may eliminate x in favour of x in the rela­ 
tions (344-346) and in (347), (350) and (351). The Jatter becomes in 
particular 

ffe = - ! {E'2VK+H'2VX+ V (v ~K E'2+v ox H'2)}. (355) 
2 ov ov 

For practical applications one may alternatively use the equation of mo­ 
tion (105-106), which contains the Kelvin pressure and the Kelvin force, 
or the equation of motion (349-350), which has been written in terms of 
the Helmholtz pressure and the Helmholtz force. However the Jatter has a 
more Iimited validity, since it may only be employed if the system is char­ 
racterized by Iinear constitutive relations. In its form (351-352) it may 
be applied only to equilibrium situations. 

From the equation of motion (352) with (351) fora fluid in equilibrium and 
at rest, one may obtain the density distribution that arises if a statie electro­ 
magnetic field is switched on. In fact since the Helmholtz pressure Po is a 
function of the density Q = v-1 and the temperature T, one may write (352) 

1 D. J. Korteweg, Ann. Phys. Chcm. 9(1880)48; H. von Helmholtz, Ann. Phys. Chem. 
13(1881)385. 
2 P. Mazur and S. R. de Groot, Physica 22(1956)657. 
3 P. Mazur and I. Prigogine, op. cit. For a review and applications see S. R. de Groot and 
P. Mazur, Non-equilibrium thermodynamics (North-Holland Publ. Co., Amsterdam 1962); 
A. Sanfeld, Introduction to the thcrmodynamics of charged and polarized layers (Wiley, 
London 1968). 



98 

with (351) as 

NON-RELATIVISTIC CLASSICAL STATISTICS 

Vpo = ½eV (~K E'2 + ax B'2) 
OQ ÓQ 

for constant T. If one defines now a function cp as 

1Pa 

cp(po , T) = _ e - 1CPo, T)dffeo, 
Po 

( ) 
1 à« ,2 1 ox ,2 

<p Po , T - - - E - - B = const., 
2 óe 2 ae 

A CH. II 

(356) 

(357) 

which follows from the equation of state e = Q(Po, T) (the lower limit is an 
arbitrary, but fixed constant), one may write (356) as 

Vp= ½V(P'•E' +M'·B')+c-1 ~ (P' AB')-½(E'2VK+B'2Vx). 
ot 

(358) 

§ 8 HELMHOLTZ AND KELVIN FORCES 

one bas for the partial derivatives 

aK I 2 
Q- = K+3K, 

àe 

ax " 2 e- = x-tx. 
ÓQ 

i.e. independent of the position in the fluid. 
For an incompressible liquid at uniform temperature the function 

cp(p0, T) is equal to v(p0-p0) with constant v(T). Then one finds from (358) 

Po(R) = Po(Ro)+½e (~K E'2(R)+ ~X B'2(R)}, (359) 
\OQ OQ 

where R0 denotes a position in the liquid where the fields vanish. Combining 
this result with the relation (344) between the Kelvin and Helmholtz pres­ 
sures, one finds for the Kelvin pressure in an incompressible liquid at con­ 
stant temperature 

p(R) = p0(R0)+½{P'(R)·E'(R)+M'(R)·B'(R)}. (360) 

An alternative way to derive this formula starts from the equation of motion 
(105-106), which may be written for the present case of a fluid in equi­ 
librium and at rest 

(361) 

For an incompressible liquid at constant temperature the last terms vanish, 
so that one recovers for the statie case (360). 
If the dependence of the susceptibilities on the density is given by the 

Clausius-Mossotti laws 

If one inserts these relations into (359) one obtains 

Po(R) = p0(R0)+½{P'(R)·EUR)+M'(R)·B~(R)} 

with the Lorentz cavity fields 

E~ = E' +½P', B~ = B' --g-M'. 
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(363) 

(364) 

(365) 

For the electric case the relation (364) has been checked experimentally by 
measuring the index of refraction of a liquid placed between the plates of a 
condensor, which gives the pressures p0(R) and p0(R0) 

1• 

For an ideal gas the equation of state has the Boyle-Gay-Lussac form 

il = mp0/kT 

cp(po' T) = kT log Po . 
m Po 

(366) 

with m the mass of the molecules and k Boltzrnann's constant. Then the 
function cp becomes 

(367) 

Inserting this into (358) one finds 

e(R) = p0(R) = exp f_!!!_ (àK E'2+ ox 8,2)}, 
e(Ro) p0(R0) \2kT oe oe 

where at the right-hand side the quantities depend on R. With (363) and 
(365) this relation reduccs to 

(368) 

e(R) - { m (P'·E' M'·B')} --- - exp -- L + L • 
e(Ro) 2ekT 

This formula shows that the quantity -(m/2e)(P'·E~ +M'·B~) may be 
looked upon as the energy of a particle with an electric and a magnetic 
dipole moment in a field. 
A useful application of the expression (360) arises if one considers a 

solid body at rest immersed in an incompressible liquid at uniform tempera- 

(369) 

1( 

K+3 ~ Q, 
,...._, (!, 

3 2x 
(362) 

1 S. S. Hakim and J. B. Higharn, Proc. Phys, Soc. 80(1962)190. 
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ture. In equilibrium the equation of motion (150) with (108) gives upon 
integration over a volume with a boundary that lies just outside the solid: 

M :: = - f {pV-E'D'-H'B' +(½E'2+½B'2-M'·B')U}·ndS, (370) 

where Mis the total mass of the solid. If one employs now (360) one obtains 
the equation 

M :: = f {E'D' +H'B' -½(E'·D' +B'·H')U}·ndS, (371) 

wbere (14) has been used. The right-hand side contains the field pressure 
tensor of Maxwell and Heaviside, The derivation shows that it corresponds 
to a material pressure which is the pressure p0(R0) at a point R0 in the 
liquid where the electromagnetic fields are zero. lt wil! depend on the ex­ 
perimental situation whether such a pressure is accessible to measurement. 
A second application of the expression (360) for the Kelvin pressure in an 

incompressible liquid consists in the evaluation of the radiation pressure on 
a metallic surface immersed in a liquid. Consider a plane electromagnetic 
wave 

Ei = E0 cos (wt- k·R), 

Bi= n(nAE0) cos (wt-k·R), 
(372) 

with w the circular frequency, k the wave vector, n the refractive index and 
n = k/k the direction of propagation, hitting a plane metallic surface 
perpendicularly. The wave is assumed to be totally reflected, so that its 
reflected part has the form 

Er= -E0 cos (wt+k·R), 

If the fluid is assumed to be in equilibrium, its time averaged pressure is 
diagonal and follows from (360). (The time derivative c-1(8/ot)(PAB) 
which is present in (361) drops out if one employs it for time averaged 
quantities.) Then one finds: 

wP meta1 = Pnuïct,o(Ro)n +-H D(R)·E(R) + B(R)·H(R)}n, (376) 

where R is a position in the light beam and R0 a position outside of it. The 
average values occurring in the second term at the right-hand side follow 
from (372-373). One gets 2eEi n, because the refractive index n is equal 
to (eµJ½. Therefore one obtains as the radiation pressure, which is the dif­ 
ference of the Ieft-hand side and the first term at the right-hand side of (376) 

Prad = 2eEi. 

1/s 2 IS!= c V ~ E0, 

one finds for the radiation pressure 

Pract = 2c-1njSj. 

(377) 
Introducing the amplitude of the absolute value of the Poynting vector S = 
cE AH of the incident wave, which is 

(378) 

(379) 

B, = n(nAE0)cos(wt+k·R) 

(the metallic surface passes through the origin of coordinates). If one aver­ 
ages the law (150) or (109) over a period 2nw-1, one finds, taking the fluid 
to be at rest, that 

(373) 

V·{P-DE-BH+(½E2+½B2-M·B)U} = 0, (374) 

where the bars indicate time averages. Applying this formula to a cylinder 
with unit cross-section and its axis parallel to n, lying half in the fluid and 
half in the metal, one obtains upon using Gauss's theorem 

For the case of vacuum (n = I) this result bas been found experimentally1• 
If one compares radiation pressures in different media, keeping ISI constant, 
one finds from (379) that the radiation pressures are proportional to the 
refractive index, a second result which has been checked experimentally2• 
The derivation shows that due to the time averaging the terms with time 
derivatives in the momentum law drop out: in other words neither the ma­ 
terial nor the field momentum density play a role in the discussion of radia- 
tion pressure. · 

n.-p . -H•-P +(J-E2+l-B2-M·B)n - 0 f lu i d " metal 2 2 - • (375) 

b. Crystalline solids 

Amorphous and polycrystalline solids may be discussed along similar lines 
as a bove. In contrast with these, crystalline solid systems cannot be described 
by thermodynamics in local formulation: only global laws could be derived 
in the preceding section. Yet it is possible, at least in principle, to find the 
1 P. Lebedew, Ann. Physik 6(1901)433; E. F. Nichols and G. F. Huil, Phys. Rev.13(1901) 
307, 17(1903)26. 
2 R. V. Jones, Nature 167(1951)439; R. V. Jones and J.C. S. Richards, Proc. Roy. Soc. 
221A(l954)480. 
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deformation of a solid system from thermodynamica\ considerations, To 
that end one may start from the entropy law (294). The infinitesimal defor­ 
mation tensor Je may be expressed in terms of state variables by means of 
relation (311 ). If the solid does not rotate, (i.e. if YJA = 1) and if only 
small deforrnations are considered, one finds from (294) for the change of 
free energy F* = U* -TS fora sol id at rest in a uniform external field: 

dF* = -SdT- J\·P(R)'dYJ(R)·RdS 

-½ r n-dYJ(R)·R{P(R)·n}2dS- VP·dEe- VM·dBC. (380) 

(In contrast to the preceding subsection no primes were added although 
again rest frame quantities are meant.) From this relation one rnay find the 
difference of the free energies in the presence (F*) and absence (F/;) of 
external fields, at constant surface deformation YJ(R) and temperature T: 

F* - F't; = - VJ (P·dEe + M·dBe)- 

If in particular the polarizations are proportional to the fields one finds 
simply 

F*-F't; = -½V(P·Ee+M·Be)• 

(381) 

(382) 

( valid for an ellipsoidal sample), which cntails a free energy change 

dF = -SdT- J\·P(R)·dYJ(R)·RdS+E·d(VP)-VM·dB. (383) 

Again wc assumed that the solid does not rotate and that only small defor­ 
mations occur. The sample has been chosen ellipsoidal, so that the polariza­ 
tiens and fields are approximately uniform. The differencc F-F0 of the free 
energy in the presence and the absence of external fields, but with the same 
surface deformation YJ(R) and temperature Tmay now be found. We assume 
that the polarizations depend on the Maxwell fields through linear relations 
of the form 

P = x(YJ, T)·E, 

M = X(YJ, T)·B, 

with symmetrical susceptibility tensors x and x ( v. (322)). In these relations 
YJ stands for the whole set of deformation tensors everywhere at the surface. 
Therefore one may write for small deforrnations the following expressions 

x-1(YJ, T) x;;-1(T)+ t J\~1(R, T)·{YJ(R)- U}·RdS, 

1 Js X(YJ, T) = Xo(T)+ V X1(R, T)·{YJ(R)- U}·RdS, 

(384) 

(385) 

The relation (380) then shows that the difference of the pressurc tensor at 
the surface ( contracted with the normal on the surface) in the presence and 
in the absence of external fields follows by taking a functional derivative of 
(381) ( or (382)) with respect to YJ(R), the deforrnation tensor at the surface. 
Since the ( nonna! component of the) pressure tensor in the presence of 
cxternal fields follows directly frorn the Liénard expression (241 ). we find in 
this way the nonna! pressure at the surface in the absence of external fields, 
but with the sarne values of the temperature and of the deformation tensor. 
Hence the problem to find the deformation YJ(R) at the surface under the 
influence of external fields has been reduced now to a problem of ordinary 
(field-free) elasticity theory. 
The programme as sketched abovc is not feasible in genera] since the 

dctermination of the functional dcrivative of (381) presents difficulties in 
practical cases. One of these is the way in which the shape of the sample 
enters through the occurrence of the external fields instead of the Maxwell 
fields. A way to avoid this difficulty is to start frorn a second law which con­ 
tains the Maxwell fields rather than the cxternal fields, namely relation (321) 

for the inverse electric and the rnagnetic susceptibilities. (x;;-1 and Xo are 
tensors of the second rank, while x; 1 and Xi have three indices.) From (383) 
with (384) it follows that one has 

F-F0 = ½V(P·E-M·B). (386) 

By differentiating this relation functionally with respect to YJ(R) at constant 
ternperature T, total electric polarization VP and magnetic field B, one finds, 
according to (383), the nonna! component of the difference between the 
pressure tensors at the surface in the presence and in the absence of fields: 

n-{P(R)-P0(R)} = -½PP: x;1(R, T)+½BB: x1(R, T)+-½(P·E+M·B)n. 
(387) 

Here we used the fact that the volume change that accompanies an infinites­ 
imal change of a deformation YJ is given by 

dV = J n-dYJ(R)·RdS, (388) 
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as follows from the definition of Y). (Por a fluid it follows from the isotropy 
of the system and the fact that the susceptibilities depend only on the total 
volume of the system, that 

xö1(T) = UK-1(T), 

-1(T) U èK-1(v, T) 
X1 = 11V ~ 

ov 
(389) 

conclude from this fact that the tensors x; 1 and Xi, which occur in (390), 
have the following dependence on the position R 

Jx-1(R T)}ijk = n r><-1(T)}ij1k l 1 , Il 1 , 

{X1(R, T)fjk = n1[x1(T)};jz\ 
(391) 

and similarly for the magnetic susceptibilities 1• In deed one finds back now 
(344) from (387).) 
With the help of the Liénard expression (241) we obtain now for the 

normal component of the pressure tensor in the absence of fields, but with 
the same deformation at the surface and the same temperature: 

n-Po(R) = wP0ui(R)-½n(P·n)2+JPP: x.;1(R, T) 
-JBB: X1(R, T)--l(P·E+M·B)n, (390) 

with Pout the pressure outside the system (in the presence of fields ). The ex­ 
pression (390) may be looked upon as a boundary condition for an ordinary 
(field-free) elasticity problem. It shows that the boundary value n-P O con­ 
sists of two parts, 1st: two terms that represent the effect of the ontward and 
Liénard pressures (the corresponding deformation is called the electro­ 
strictive form effect), and 2nd: three terms which contain the constants that 
characterize the material and which forma generalization to solids of (minus) 
the right-hand side of (344) (the corresponding deformation is ca!led the 
electro- and magnetostriction effect sensu stricto ). 
Por a uniform scalar ontward pressure - as the atmospheric pressure - 

one may evaluate, with the usual methods of elasticity, the deformation at the 
surface of the sample due to the form effect, at least for spherical shapes cut 
from substances with simple crystal symmetries ( as for instance the cubic 
symmetries )2• One finds in this way a non-uniform deformation at the 
surface. Comparison with the experimental data showed that the total de­ 
formation at the surface has the same non-uniform character in the sense 
that there is a uniform difference. This means that the proper e!ectro-magne­ 
tostriction gives rise to a uniform deformation over the surface. One may 

where the fourth-rank symbols ( symmetrie in i and j) are independent of the 
position at the surface, the only dependence on R being represented by the 
outward normal unit vector n (which occurs also in the left-hand side of 
(390)). The theory of the proper electro-magnetostriction is concerned now 
with the study of the quantities x; 1 (T) and )è1 (T). (A microscopie theory 
of e!ectro-magnetostriction will be given for a simple model of a magnetic 
material in chapter X, § 6.) Phenomenologically one may employ the crystal 
symmetry to reduce the number of independent electro-magnetostriction 
constants, which occur in the two tensors of the fourth rank in (391). Por 
instance for an isotropic or polycrystalline solid the number of independent 
electrostriction components x; 1 (T) reduces from 54 to 2 since one has then 

(x;lfkl = abijr/l+b(é>ik()jl+öil()jk), (392) 

because the Kronecker deltas are the only invariant quantities with respect 
to rotations. (Por fluid systems it follows from (389) that b vanishes while a 
is equal to voK-1 /ov.) Similar remarks apply to the magnetostriction con­ 
stants. 

1 Note that the specific volume v enters as a parameter at the right-hand side. This cor­ 
responds to the parametric dependence in (384) of the quantities K and x on the reference 
state with respect to which îJ is defined. 
2 R. Gersdorf, Physica 26(1960)553 for the magnetostrictive case; v. also R. R. Birss and 
S. R. Adamson, Brit. J. Appl. Phys. 1(1968)63j, R. R. Birss and B. C. Hegarty, Brit. J. 
Appl. Phys. 1(1968)789 for the calculation of the form effect for prolate spheroids. 
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APPENDIX I is Taylor expanded, it follows that it is sufficient to prove that for all integer 
n ?c O the integral 

On the depolarizing tensor (Y Jv
0

V'V'(R-R')"V'" l dR' 0 
4nlR-R'I 

(AS) 

vanishes. 
Let us first consider these integrals for R = 0. With Gauss's theorem, (AS) 

becomes for this case, apart from a factor ( - 1 )", 

In section 7b occurs the integral (219), which in genera! depends on the 
position R. We want to prove first that for an ellipsoidal volume the integral 
is in fact independent of R (if R is inside the volume) so that we then have 

Jv V'V' l dR' = Jv V'V' _l _ dR' = - L, (Al) 
4nlR-R'I 4nlR'I 

where the centre of the ellipsoid has been chosen as the origin of the coor­ 
dinate system. The quantity Lis called the 'depolarizing tensor'. 
The second integral in (Al) depends only on the shape of the ellipsoidal 

volume and not on its scale, so that we may replace it by an integral over a 
small volume around the origin and of the same shape as the ellipsoid. This 
means that it is sufficient to prove instead of (Al) the vanishing of the in­ 
tegral 

&Jv V'V' -- __ !_ dR' 
f ' 4nlR-R 1 

R =A·R, 

(A2) 

where the principal value sign indicates that an infinitesimal ellipsoid of the 
same shape as the large one with centre R has to be excluded from the in­ 
tegration over R'. By a conveniently chosen Iinear transforrnation of coor­ 
dinates 

(A3) 

it is possible to transform the ellipsoid toa sphere. Then it becomes sufficient 
to prove the vanishing of the- integral ( omitting the circumflexes of R and R'): 

g> Jv
0
V'•AV'·A l (det A)-1dR', (A4) 0 4nlA-1·(R-R')I 

where the integration is now extended over a spherical volume V O and where 
the principal value sign indicates the cxclusion of an infinitesimal sphere 
around R from the integration over R'. The denominator may be written as 
4nl(R-R')+ (A -i _ U)·(R-R')I. Then, if the reciprocal of this expression 

J
So n'V'R'"Vm _l _ dS' -Jso n'V'RtnV'" _l _ dS', 

4nlR'I 4nlR'I 

where S0 is the surface of the large sphere, and s0 of the infinitesimal one; 
n' is the unit vector normal to the intcgration surfaces. Each of the integrals is 
independent of the scale of the sphere so that they are equal. Hence the ex­ 
pression (A6) vanishes, 
Since now the vanishing of (AS) is proved for the case R = 0, it is suffi­ 

cient to prove that (AS) is independent of R in order to ensure its vanishing 
everywhere. The derivative of (AS) with respect to Ris 

- Isa n'V'V' (R - R')"Vm l_ dS'. 
4nlR-R'I 

To prove the vanishing of this derivative we expand the integrand with 
respect to R. We find then that it is sufficiënt to prove the vanishing of the 
expression 

Js
0

n'V""+2 (R'"V111 
-

1
-) dS' 

4nlR'I 

for all m, 11 ?c 0, or alternatively the vanishing of 

JSon'R"'~'n+m+2 _1 __ dS'. 
4nlR'I 

(A6) 

(A7) 

(A8) 

(A9) 

This integral is an inuariant tensor of rank 211 + m + 3, which is symmetrie 
in the second up to and including the (n + 1 )th Cartesian index, and sym­ 
metrie in the last n + m + 2 indices. Moreover the traces taken with a pair of 
indices from the last n+m+2 vanish, since L1'(1/4n/R'I) is zero for R' # 0. 
Therefore (A9) is an element of the direct product space of tensors of rank 
1, symmetrie tensors of rank n and symmetrie, traceless tensors of rank 
n + m + 2. Symmetrie tensors of rank n form a reducible representation of the 
rotation group which contains irreducible representations of dimension 
211+ I and lower, whereas symmetrie, traceless tensors of rank n+m+2 
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form an irreducible representation of dimension 2n + 2m + 5. The direct 
product of tensors of these two types contains only irreducible representa­ 
tions of a dimensionality 2m+5 and higher, so that the direct product space 
mentioned above, of which (A9) is an element, contains irreducible repre­ 
sentations of dimensionality higher than 1. Since (A9) is an invariant tensor 
in this direct product space it must vanish identically. Thus, retracing the 
chain of reasoning, it is now proved that the first member of (Al) is indeed 
independent of R, and hence equal to minus the depolarizing tensor L. 
As a corollary of (Al) one finds by integrating over R: 

Jf v V'V' l , dR dR' = - VL, 
4njR-R 1 

where the integration is extended over the surface of the ellipsoid with 
normal n. With Gauss's theorem and (A15) this becomes 

c5L = - Jv V· (c5E·RVV -1-) dR. 
4nlRI 

Jv 1 Jv 1 c5L = -(Tr 6€) VV-- dR- 6€: RVVV-- dR, 
4nlRI 4nJRI 

(A17) 

Performing the differentiation one gets 

(A18) 

(AlO) 

a formula which has been used in (231 ). 
In a way analogous to the proof given above one may show that the in­ 

tegral 

Jv(R-R')V'V'V' l dR' 
8nlR-R'I 

is independent of R, so that we may write 

Jfv(R-R')V'V'V' l dRdR' = -lVK. 
8nlR-R'I 

2 

Finally we want to prove the identity 

c5L = (Tr c5E)L-c5€: K, 

6R = c5E·R, 

(All) 

Jv(R-R')V'V'V' l dR' =Jv(R-R')V'V'V'-1-dR' = -lK, 
8n!R-R'J 8nJR'I 

2 

(A12) 

where K is a tensor with four Cartesian indices. As a corollary it follows that 

(A13) 

(A14) 

which gives the variation of the tensor L when the boundary of the ellipsoi­ 
dal volume is deformed according to 

(A15) 

where 6€ is the (uniform) deformation tensor and where the centre of the 
ellipsoid is the origin of the coordinate system. From the definition (Al) of 
L one has 

Js 1 
c5L = - wc5RVV -- dS, 

4nlRI 
(A16) 

which in view of the definitions of Land Kis indeed (A14). 
A corollary is obtained by noting that Tr 6€ is v-13 V with V the volume 

of the ellipsoid: 
è>(V 1L) = - v-16€: K. 

It has been employed in subsection 7b (246). 

so that for the sphere 

j·v l 
Tr L = - L1 4nlRI dR = 1, 

L =½U. 

K;jkl = t1.è>;i6k1+/3è>;kè>j1+rè>;16jk· 

K: U = - J RVc5(R)dR = U 

as follows from partial integration. In this way we have obtained for a sphere: 

Kijkl = -}(è>ijè>k1+è>;kè>j1+6il6jk)­ 
The identity (A14) becomes for small deformations of the sphere 

c5L = 1\ (Tr c5E)U--}c5€--}óe, 

where the results (A21) and (A24) have been utilized. 

(A19) 

As an example let us derive the tensors Land K fora sphere. From (Al) it follows fora 
sphere that Lis an invariant tensor with two indices and hence a multiple of the unit tensor. 
The factor is determined by calculating the trace of L: 

(A20) 

(A21) 
Furthermore it follows from (Al2) for a sphere that K is an invariant tensor with four 
indices and hence of the form 

(A22) 
From the symmetry of K in its last three indices (see the definition (Al2)) it follows that 
cc, fJ and y are equal. Furthermore through contraction of the last pair of indices one has: 

(A23) 

(A24) 

(A25) 
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APPENDIX II 

The Hamiltonian fora system of 
com posite parti cl es in an external field 

The Hamiltonian of a system of particles ki (grouped in atoms or other 
stable entities numbered by k, while the constituent particles are labellcd by 
i = I, 2, ... ,J) with charges ek;, positions Rki and momenta Pk;, which 
move in an external field with scalar and vector potentials <f>e and A0, reads 
up to order c-1 (v. (I.16)): 

H(Rk;, r.; t) = L Pf; + L L ekiekj 
k,i 2mki k i,jU*j) 8nlRki-Rkjl 

'\' '\' eki eli '\' { (R ) - 1 P ki A (R )} + L, ,(...,_ + L,_eki <f>e ki,t -c ·-··· e ki,t . 
k,l(k*l) ,,1 8n1Rki-Rljl k,, mki 

(A26) 

potentials around the centres of mass Rk, retaining only terms up to first 
derivatives of the potentials: 

( 

A2 f- j A2 J-1 A O A ) 
H(q,p,t) = I Pk!+ I Pki - I PkiPkj 

k 2mk i= 1 2mki i,j= 1 2mk 
f f + I I ekiekj + L L ekieli 

k i,j= I(i* n 8n1Rk;(q)- Rkiq)I k,l(k*lJ t.i= 1 8nlRk;(q)- Rlj(q)I 

+ I ek {<p.(Rk, t)-c-1 FkJ ·Ae(Rk, t)} 
k n½ 

+ L _f eki [{Rk;(q)-qkf}·Vk {<pe(Rk, t)-c-1 r~1. ·Ae(Rk, t)} 
k ,= 1 mk 

-c-1 {Pk;(p) - Fk1} ·A.(Rk, t) 
mki m, 

-c-1{Rk;(q)-qk1}·\\A.(Rk, t)· {Pk;(p) - pkf}] , 
111ki mk 

(A29) 

Let us now introduce new canonical coordinates qki and momenta .Pki, 
such that the qk, are the centre of mass of atom k and (independent) relative 
coordinates of the constituent particles with respect to this centre: 

f 

qki = Rki-Rk = Rki- L (mk)mk)Rkj, (i = 1, ... ,/- 1), 
j=l 

J 
qkf = s, = L (mk)mk)Rkj, 

j=l 

Fkï = Pk;-(mkJmk1)Pk1, (i = 1, ... ,f-1), 
J 

Pk1 = I r.; 
i= 1 

(A27) 

This is a canonical transforrnation, as may be checked by evaluating the 
Poisson brackets. Inversion of (A27) gives 

J-1 
Rki = qkf+(l-c'5if)qki-c'5if L (mkj/mkf)qkj, 

j=l 

J-1 
r; = (mdmk)Pk1+(l-biJ).P1ci-(mkdmk) L .Pkj· 

j=l 

(A28) 

We substitute these relations into the Hamiltonian (A26) and expand the 

where R1c;(q) and Pkï(p) stand for the right-hand sides of (A28). This ex­ 
pression may be transformed by means of a second canonical transformation 
in order to cast the last three terms in gauge invariant form. This transfer­ 
ma tion is given by the generating function: 

J-I 
F(q, p, t) = I Rk-Pk+ II qkï'Pki 

k k i= I 
J 

+c-1 II ekiAe(Rk, t)·{Rk;(q)-qkf} 
k i= 1 

f 

+½c-1 I I eki{Rk;(q)-quf\\Ae(Rk, t)·{Rk;(q)-qkA, 
k i= 1 

depending on the old coordinates qk;, qkf = Rk> the new momenta Pki, 
PkJ = Pk and time. With the help of the transformation formulae 

oF 
qkï = opkï (i = 1, ... ,f-1), Rk = oF 

apk' 

(A30) 

.Pki = aF (i = t, ... J-1), FkJ = aF, 
aqki ee, 

it follows that the coordinates do not change. Furthermore the new Hamil­ 
tonian gets an extra term oF/ot. If we substitute (A31) with (A30) into (A29), 
neglecting again second derivatives of the potentials, and using the vector 

(A31) 
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identity ( a Ab )-(c Ad) = ( a-c )(b·d)- ( a-d)(b·c ), we get as the new Hamil­ 
tonian (up to c-1): 

( 
p2 f-1 2 f-1 , ) 

H(q, p, t) = I _k + I fä - I Pki Pkj 
k 2mk i= 1 2mki i,j= 1 2mk 
f f 

+ I I ekiekj + L L ekieU 
k i,j=1(itcj) 8n1Rk;(q)-Rk/q)I k,l(k*IJ i,j=1 8nlRk;(q)-Rlj(q)I 

+ I ek {<pe(Rk, t)-c-1 pk ·Ac(Rk, t)} 
k n¾ 

- '\' fµ-(l),E (R t)+ (v(1l+c-l-µ(l) A pk) ·B (R t)} f._; \ k e k, k k e k, , 
k \ n1k 

with the abbreviations 

f 

"ïï[0(q) = L eki{ Rk;(q)-qkA, 
i= 1 

f { J-1 î -(1) _ 1 -1 r Pki Pkj\ vk (q, p) = zC _I eki"lRk;(q)-qkf} A (1-oif)- - .I -1. 
z=l mki 1=1 mk 

33). Then we get up to c-1 

K(q, p, t) = I {J!_j;_ -c-1ek pk_ ·Ae(Rk, t)-c-1 ("ïïi1l A pk) ·Be(Rk, t)l/ 
k 2mk mk mk . 

{

f-1 2 f- 1 , } + I _I Pki - . I "fki Pkj -vfl·Be(Rk, t) . 
k ,=1 2mki ,,1=1 2mk 

Therefore the Harniltonian (A32) may be written in the form 

( ) ( ) '\' f' eki ekj H q, p, t = K q, p, t + 1..., 1..., 
k i,j=l(i*il 8nlRk;(q)-Rk/q)I 

(A36) 

(A32) f 
v v eki e1j , ( ) , -(1) ( ) + L, L, ----"--- + L,ek<pe Rk, t - L,µk -E; Rk, t. 

k,l(ktcl) i,j=1 8njRk;(q)-R1/q)j k k 
(A37) 

It should be noted that the terms with the vector potential and the magnetic 
field appear explicitly in (A32) but are hidden in the kinetic energy in (A37). 

(A33) 

These quantities are the electric and rnagnetic dipole moments, written in 
terms of the canonical coordinates and momenta. For the electric dipole 
moment this is obvious since qkf = Rk, the position of the centre of mass. 
For the magnetic dipole moment it follows because the Hamilton equations 
yield up to c0: 

f-1 
(1 ~ ) Pkï , Pki R. ( ) . -u;J -- - L, -- = ki q -qkf· 

mki [=A m.; 
(A34) 

(We note in passing that the Hamiltonian equations for the coordinates 
Rk and momenta Pk lead indeed to the equations of motion (I.50).) 
We shall need also an expression for the kinetic energy of the system: 

f 

K(q, <i, t) (= I I½mkiRL) 
k i= 1 

(

f-1 f-1 ) 1 · 2 • 2 mki 111 kj . . = I zmk s; + L _L ½mk; qki + . L --- qk(qkj , 
k k ,=1 ,,1=1 2mkf 

(A35) 

where (A28) has been used. We may express it in terms of the coordinates 
and rnomenta, by using the Hamilt~n equations <Îki = óH/ópki with (A32- 
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APPENDIX III 

Deformations and free energy 

In this appendix we want to study the change of the free energy F* with the 
change of the boundaries of the system. 
The system considered consists of atoms, carrying charges and dipole 

moments, in a uniform and time-independent external field Ee, Be. It is then 
described by the Hamiltonian (A32) of appendix IL At equilibrium it is 
represented by the canonical ensemble: 

e-F*/kT = C Jve-HfkTdqdp, (A38) 

where Vis the volume and T the temperature. (The constant C depends only 
on the particle number.) The free energy is thus a function of T, E0, B0 and 
the boundary of the volume V. The integrations over the coordinates q may 
be extended to infinity if a wall potential (which is infinite if one of the par­ 
ticles of the system is outside the volume V) is included in the Hamiltonian. 
We take as the wal! potential 

uw= I u';'(Rk) 
k 

(A39) 

with the functions U-:1 zero for R; inside the volume and infinite for Rk outside 
the volume. Here R, is the centre of mass of the atom k. In the first instance 
one might be inclined to write as the wal! potential Ik, i u:(_ (Rk;), where the 
sum is extended over all constituent particles. However, since the dimensions 
of the stable atoms are small compared to the volume the use of (A39) in­ 
stead of this expression is justified if surface effects are neglected. Thus we 
write instead of (A38) 

with an infinitesimal tensor öE that depends on the position of the wal! Rw. 
(The unit tensor is denoted by U.) Then the wal! potential uw is trans­ 
formed to uw· = LkU-:1° (Rk), such that ut' is infinite if the position Rk is 
outside the new boundary, and zero inside. Alternatively one may say that 
U;:'' is infinite if {U-öE(Rk)}·Rk is outside the old boundary; in other words 

uw· = I u:[{U-oE(Rk)}·Rk]. 
k 

From (A40) we find now the change o,F* of F* with öE at constant T, 
e, and Be: 

s.r: = CeF*fkT J"\uwe-(FI+UW)/kTdqdp, 

where o uw = uw· - uw. With (A42) this becornes, up to terms linear in 
öE(Rk) 

oJ* = -< I Rk·oi(Rk)·vk u';' (Rk)>, 
k 

where the brackets denote the canonical ensemble average and where bi is 
the transposed matrix of 6E. The right-hand side contains the force 
- V k U-:1 (Rk) exerted by the wall on atom k. This expression is only different 
from zero if R, is situated at the wall so that one may write it as a sum of 
contributions due to the various surface elements dS of the wal!: 

-Vk U-:;1(Rk) = J8
Jt(Rk)o(Rk-R)dS. 

-F*/kT cf oo -(FI-"-UW)/kTd d e = e · q p. 

RW' = Rw +c5Rw = {U +öE(Rw)}·Rw 

(A40) 

Let us change the positions Rw of the walls by means of an infinitesimal trans­ 
formation 

Inserting this expression into (A44), one finds 

c5, F* = J8

R•c5i(R)-fw(R)dS, 

where 
fw(R) = ( 'i,Jtc5(Rk-R)) 

k 

(A42) 

(A43) 

(A44) 

(A45) 

is the average force per unit surface exerted by the wall. The Jatter is conven­ 
tionally written as - n-P0ui(R), where 11 is the ontward normal to the bound­ 
ary and P0ui(R) the pressure tensor in the wal!. Therefore (A46) bas the 
form 

c5 F* = -J\,p ·oE·RdS e out • 

(A46) 

(A47) 

(A48) 

(A41) An alternative expression for c5,F* is obtained if one uses the virial theo- 
114 
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rem in the form 

/ i { I Pk·be(Rk)·Rk}) = 0, 
\dt k 

A CH. II 

(A49) PROBLEMS 
which follows from the fact that for a stationary ensemble the average of a 
total time derivative of a dynamica! quantity vanishes. In (A49) the total 
time derivative has to be read as the Poisson bracket with the total Hamil­ 
tonian H + uw, which includes the wall potential. Hence (A49) may be 
written as 

\ {auw en _ oH}) I -~ - ·be(Rk)·Rk+ -::;--- ·óe(Rk)·Rk-Pk·be(Rk)·-;:, - = 0, 
1c ee; oRk er, 

where we introduced the infinitesimal deformation gradient tensor be which 
is defined by a relation involving the partial derivatives of be: 

(A50) 

be(R) = ~à { be(R)-R}. 
oR 

be = be. 
With the help of the identity (A50), we find for (A44) 

s.r: = - / L {Pk·be(Rk)· ~H - ~H ·be(Rk)·Rk}). 
\ k oPk cRk 

(A51) 

In particular if be represents a homogeneous deformation, i.e. is indepen­ 
dent of R, we have 

(A52) 

(A53) 

In particular if be is independent of the position, one finds for the change of 
the free energy 

b8F* = A :be (A54) 

with the tensor A defined as 

\ (àH oH)) Á=- I-;:,--Pk-Rk-. 
k oPk àRk 

The results (A53) and (A54-55) are used in the main text. 

(A55) 

1. Show that the solution of the first Maxwell equation V·E = r/-V·P for 
the electrostatic case has the form given in the first line of (17). Check this by 
noting that one may replace the integral in the solution mentioned by one in 
which a small volume around R is excluded from the integration over R': 

-&f foc(R', t)-V'·P(R', t)}V l , dR', 
4n:IR-R 1 

since the integral is convergent. The advantage of the Jatter way of writing 
the integral becornes apparent if one takes the divergence: the divergence of 
the integrand does not give a contribution now. 
If in the expression given above a partial integration is pcrformed in the 

second term, one finds for the electrostatic field an expression with con­ 
vergent integrals: 

E(R, t) = Ee(R, t)-&J{r/(R', t)+P(R', t)'V'}V l , dR' 
4nlR-R 1 

-Js'n'·P(R', t)V l "dS', 
4n/R-R 1 

where s' is the surface of the small volume that is excluded from the inte­ 
gration in the first integral, while n' is the norrnal pointing in the direction 
away from R. The Jatter expression for E(R, t) is conventionally written in 
the form of the first line of (71 ), which contains a semi-convergent integral. 
An alternative form for the electric field may be obtained by starting again 

from ( 17), Ieaving the nabla operator outside the integral and performing 
a partial integration. Check that one obtains then 

E(R, t) = Ee(R, t)-VJ{Qc(R', t)+P(R', t)·V'} l , dR', 
4n/R-R / 

which contains again convergent integrals. Going still one step further one 
may write all nabla operators before the integral 

E(R, t) = Ee(R, t) 

-VJQ0(R', t) l dR' + VV·JP(R', t)--!_- dR' 
4n/R-R'/ 4n/R-R'/ 

( with convergent integrals ). 

117 
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The second expression of this problem may also be obtained directly frorn 
the last forrnula. 

2. Show by choosing for the excluded volume a small sphere with centre 
R, that one rnay write the electric field as 

E(R, t) = Ee(R, t)-&sphf {1t(R', t)+P(R', t)'V'}V l , dR' -½P(R, t). 
4nlR-R 1 

(The cornbination E+½P is called the Lorentz cavity field.) Comparing this 
result with (71) one may write symbolically 

v, v. --1-- = g;sph v. v, _l_ -½Uc5(s) 
4ns 4ns 

with U the unit three-tensor, Taking the trace one finds 

1 
Lis - = -c5(s). 

4ns 

Prove along similar lines the symbolic relation 

ivivkvz _1_ = g; sivjvkvt _1_ +1-(tic5k1+c5ikc5j1+c5i1c5jk)c5(s) 
s s s 4ns sph s s s 4ns s 

(cf. (A24)). Contracting the indices i andj, one finds 

1 1 -v, Vs '\\- = &sphs·Vs v, Vs - + Uc5(s). 
4ns 4ns 

Comparing with the second relation ofthis problern, one obtains the identity 

1 1 s·v.v.v.- = -3v.v.-. 
4ns 4ns 

(The identity is trivia! for s =/= 0, since then it follows irnrnediately by differ­ 
entiation.) 

3. Show by employing the equation of motion (found in problem 2 of 
chapter I) for a particle with dipoles and quadrupoles that the equation of 
motion for a fluid of neutra! atoms with dipoles and quadrupoles has the 

form (105) with the force density 

F = (VE)·P+(VB)·M +c-1 i (P AB)+c-1V·(vP AB)+LIF, at 
where P and M are the complete polarizations (39), including dipoles and 
quadrupoles. Furthermore the components of LJF read 

LIFi - V {(V;E )&<ZJik+(~iB )(Ji(2Jik+c-1ltmg)(2Ji v ) - j _ k k · .l m 

+c-18ikl_3_(g)(2)j B)+c-1,,_iklv (vmg)(Z)j B)} àt .k l m .k l 

( € is the Levi-Civita tensor). 
The 'field' part pF of the rnaterial pressure, occurring in the equation of 

motion (105), reads in the present case instead of (73) 

PFij = -c-1f{ri 8jk!(µ-(1l+µ-<2) ""')B +s µ-(Z)ikî} VjB"'}f(R 1· t)dl 1 1k 1km V ! klm 1 1 1 , , • 

The expression for F shows that the inclusion of quadrupoles has the effect 
that the force density can no Jonger be expressed in terms of the Maxwell 
fields and the complete polarizations: extra terms with the quadrupole 
densities iffiCZJ and vt7C2) occur in LJF. 

4. Consider the double integral 

IV, (JV2 l ) A(R1)·V 1 V 1 • B(R2) ---- dR2 dR1• 
4nlR1 -Rzl 

(Pl) 

In particular we want to study the limit of this expression for V1 and V2 both 
tending to a volume V, always keeping V1 smaller than V2• Note that the 
integral may be written also as 

J
V1 { JV2 1 } A(R1)·V1 & B(R2)·V1 ---dR2 dR1, 

4nlR1 -Rzl 

where the principal value excludes a small volume around R1 from the 
integration over R2. Show that this may be transformed to 

J
V1JV2 1 & A(R1)B(R2): V1 V1 ---dR1 dR2 

4nlR1 -Rzl r {J•z 1 } - A(R1)'V1 n2·B(R2)--- dS2 dR1, 
4nlR1 -R21 
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where s2 is the surface of the small volume excluded in the first integral over 
R2. Prove by means of a partial integration and Gauss's theorem that one 
may write this as 

JV1 {JS2 1 \ - A(R1)·V1 n2·B(R2)--- dS2f dR1 
4nlR1 -R2I 

I
V1IV2 [ 1 ] + A(R1)·V1{V2·B(R2)} --- dR2 dR1, 

4nlR1 -Ril 

where S2 is the surface of V2• Show by another partial integration and ap­ 
plication of Gauss's theorem that this expression is equal to: 

J
S1JS2 l 

- n1·A(Ri)n2·B(R2)---- dS1 dS2 
4n:IR1 -Rzl 

J
v,Js, 1 + {V1·A(Ri)}n2·B(R2) ·--- · dR1 dS2 

4n:JR1 -R21 

J
S1IV2 1 + 111·A(R1){V2·B(R2)}----dS1 dR2 

4n:IR1 -Rzl 

J
V1JV2 l 

- {V1·A(R1)HV2·B(R2)} ----dR1 dR2, 
4nlR1 -Rzl 

(P2) 

with V1 < V2 and 

-JJv2
C(R2)'V2V2V2: [Jv

1

{A(R1)-A(R;)}B(R1) l dR1] 
4nJR1 -R2I 

ö(R2 -R;)dR2 dR; 

with V1 > V2 (the reason for the occurrence of the delta function and the 
extra integration variable being that the functions A are not to be differen­ 
tiated). These two integrals are equal in the limit V1, V2 -+ V and are con­ 
ventionally written as 

Jfv { A(R1)-A(R2)}B(R1)C(R2) : V 1 V 1 V 1 l dR1 dR2, 
4nlR1 -Rzl 

as may be proved along similar lines. 
In the main text examples of integrals like the two mentioned here occur 

frequently. They are always written in the conventional symbolic way, but 
they must be understood in the sense described above. 
However integrals may be considered where the order of integration does 

matter. An example is given in the next problem. 

where (as in all preceding formulae of this problem) the surface and volume 
of the first integration are smaller than those of the second. 
If we had started from the double integral 

J
V2 (JV, l ) B(R2)·V2 V2• A(R1)---- dR1 dR2 

4n:IR1 -R2I 

5. Consider the integral 

J
V1 (JV2 l ) A(Ri)·V1 V1 V1• B(R2)----dR2 dR1 

4n:IR1 -R2I 
(P4) 

(P3) 

with V1 greater than V2, we would have found the same result, but with 
surface and volume of the first integration greater than those of the second. 
Prove now that in the limit of V1 and V2 both tending to V the limit prescrip­ 
tiens - V1 greater than or smaller than V2 - give the same result. Hence it is 
proved now that the limit of the integrals (PI) with V1 < V2 and (P3) with 
V1 > V2 are equal. For that reason this limit is conventionally written as 

IIV A(R1)B(R2): V1 V1 l dR1 dR2. 
4n:IR1 -Rzl 

The same situation occurs in connexion with integrals of the type 

JJv
1
B(R1)·V1 V1 V1 : [Jv2{A(R;)-A(R2)}C(R2) l dR2] 

4n:IR1 -Rzl 

c5(R1 - R;)dR1 dR; 

with V1 < V2• Prove along the same lines as in the preceding problem that 
this integral may be written as 

J
V1 ( JV2 . 1 ) Ali V1 :? B2·V1 v'~ ----dR2 dR1 

4n:IR1 -R2I 

JV1 . ( rs2 . 1 ) 
- Ali V 1 1 n2·B2 v'~ ----- dS2 dR1, 

.; 4n:IR1-R2I 

where the vector notation could no Jonger be maintained completely because 
of the order of the differentiations. The symbols A 1 and B 2 are abbreviations 
for A(R1) and B(Rz). Furthermore S2 is the surface of the small volume 
around R1. Partial integration and Gauss's theorem lead to a form 

J
V1IS2 1 - A1·V1 n2·B2 V1 ----dR1 dS2 

4nlR1 -Rzl 

J
V1 ( JV2 . l ) + AliV1 f!J (V2·B2)v'~----dR2 dR1. 

4n:IR1 -R2l 
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Show that by taking once more the same steps in the second integral, one 
arrives at 

J
S1JS2 1 

- n1·A1 ni·B2 \\ ----dS1 dSi 
4n!R1 -Ril , 

J
V1JS2 1 + (\\·Ai)n2·B2 V1 ---- dR1 dS2 

4nlR1 -R2I 

J
V1JS2 1 

- (Vi·Bi)n2A1·V1 -----dR1 dS2 
4nlR1 -Ril 

J~J~ 1 + {Vz(Vi·B2)}A1·V1 ---dR1dR2 
4nlR1 -R2I 

(PS) 

with V1 and S1 smaller than Vi and S2. 
Check that the integral 

J
V2 (JV1 1 ) - B(Ri)·V2ViV2• A(R1)----dR1 dR2 

4nlR1 -R2I 
with V1 > V2 may likewise be written in a form similar to that given in (PS) 
but with the replacements 

(P6) 

n1--n2, 'V\--Vi, A1-Bi. 

Show, by performing repeated partial integrations and employing Gauss's 
theorem, that one has for the difference of the two integrals (P4) and (P6) 
in the limit V1, V2 -+ V: 

{J
V1(<V2) (J V2 1 ) 

lim A(Ri)·V 1 V 1 V 1 • B(R2) ---- dR2 dR1 v,,V2->V 4nlR1 -R2I 

J
V2(<V1) (J V1 l ) } + B(Ri)-'V2 Vi Vi· A(R1) ----dR1 dRi 

4nlR1 -Ril S1 <S2 S1 >S2 
=- lim (JJ-JJ)n1·A1n2·B2V1 l dS1dS2• (P7) s,,s2->S 4nlR1 -R21 

Show that the right-hand side of this relation is equal to 

- f 5n-A n-BndS (P8) 

by proving first that one has for the integral over an infi.nite plane S 
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where R' is a point outside the plane and nis the normal to the plane pointing 
in the direction away from R'. 
With (P7) and (P8) one rnay prove now (291) of the main text. Employ 

to that end in the first term of the left-hand side of (291) the relation (293) 
together with the expression for the Maxwell field given at the end of 
problem 1. 
Prove finally (243), valid for an ellipsoidal volume, as a particular case 

of (291 ). (The pressure P, the polarization P and the deformation be are 
all uniform in this case and may be taken outside the integrals.) 

6. Show frorn the integrability relations 

oPi = oPj 
oEej oEei 

(v. (380)) and the connexion (220) between the external and Maxwell fi.elds 

(i, j = 1, 2, 3) 

B; = E+L-P 
with the symmetrical depolarizing tensor L (219) that one has 

(v. (383)). 

oPi = oPj_ 
ee, es, 

7. Show by introduction of the new integration varia bles R = ikR and the 
introduction of the abbreviations: 

P(R) = iiA'P(R), 
E(R) = iJA·E(R), 
P(R) = ikP(R)·YJA, 

M(R) = Y)A·M(R) 

B(R) = iJA·B(R) 

that the entropy law (317) may be written in the form: 

TöS = su + J\·(P-P·EV)·öYJ(R)·RdS- f (E·ö0P-M·60B)dR 

( where R has been written instead of R. and also 6 0 instead of JO, since they 
are merely integration variables). This entropy law has the same form as 
(318) as is to be expected from (305) with (309). 

Is 1 
V --- dS =, -.1.n, 

4njR-R'I 
2 

8. In Quincke's experimental arrangement a U-shaped tube with one of 
its legs inside a condenser is filled with an incompressible, electrically polar- 
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izable Iiquid. Show with the help of the formulae (360) and (241) that the 
difference Ah in height between the two Iiquid columns is given by 

(!gAh = ½KE2 

with Q the density, g the acceleration of gravity, K the electric susceptibility 
and E the electric field at the surface of the liquid. The liquid inside the con­ 
denser has alevel higher than on the other side. 

9. Prove that the volume average of the pressure tensor in a uniformly 
polarized solid of ellipsoidal shape is given by 

p = pout-½K: PP, 

if the outward pressure tensor is uniform. In order to prove this, write the 
components Pij of the left-hand side as 

pij= -{;Jv pkjVkRidR 

and apply then a partial integration, Gauss's theorern and the equation of 
motion V·P 0 (v. (293)). The use of the relations (241) and (243) leads 
then to the right-hand side. 

(The form effect of electrostriction described by the first two terms of 
(390) leads to a non-uniform deformation. The so-called 'uniform form 
effect' is obtained if one calculates instead the deformation corresponding 
to the average normal pressure n-P given above. This calculation is much 
simpler than that of the non-uniform effect, in particular for more compli­ 
cated geometries. It gives an estimate of the order of magnitude only.) 


