
CHAPTER X 

Semi-relativistic quantum statistics 
of spin media 

1 Introduction 

By means of a quantum-statistical averaging procedure with Wigner func 
tions the semi-relativistic macroscopie laws for spin media will be obtained 
in this chapter, on the basis of the microscopie results found in the preceding. 
This will lead to laws from which one may infer - by comparison with the 
non-relativistic results of chapter VII - which new terms arise if the spin of 
the particles is taken into account. At the end of the chapter the magneto 
striction phenomenon will be studied on the basis of a simple model of a 
magnetic medium. 

2 The Wiqner function in statistics; particles with spin 

In quantum-statistical mechanics the average value of a dynamica! quantity, 
represented by an operator1 A, is usually written as 

A(t) = Tr {P(t)A}, (l) 
where P(t) is the density operator 

P(t) = L w,li/J(t))(i/l(t)l (2) 

that describes the macroscopie mixed state. The states li/Jy(t)), which forma 
complete orthonormal set, are weighted by the numbers w

7
, which are nor 

malized to unity (I;7 w7 
= l ). 

The average (1) of the operator A may be written in a different form, if 
one introduces Weyl transforms. As in section 3c of chapter VIII we denote 
the Weyl transform of the operator A by the symbol aK, ... KN.i., ... ;.N(l, ... , N) 
depending on indices Ki and À.i (i = l, ... , N), which in the present semi 
relativistic description of systems of spin particles take the values I and 2. 
1 In this section capitals denote operators, lower case symbols their Weyl transforms. 

AC\0 
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The arguments 1, ... , N stand for the momentum and coordinate varia bles 
in a phase space of dimensionality 6N for an N-particle system. The Wigner 
function is, apart from a factor h-3N, equal to the Weyl transform of the 
density operator (2 ), so that it may be written as 

PKr ... K,,i., ... ;.J1, ···, N; t) = I wi,P,,.K, ... KN;,, ... ;.Jl, ···, N; t) (3) 

with partial Wigner functions P, given by (cf. (VI.Al66)): 

P,·.K1 ... KNÎ,1 .. ,Î.,,e1, .•. , N; t) = P,.1<1 .. ,K,vÎ,1 ... Î,r.·(P1' q!, ... , PN, q,v; t) 

J (. N ) _ -3N / • 1 1 • - h du, ... dvN exp .h ;"2;/i V; 1/l,.K1 ... K,v(q1 -zV1, ... , qN-zVN, t) 

1/<;.1,.,;,N(ql +!V1, ···, qy+½vN; t). (4) 
In terms of this Wigner function one may write the average (I) as ( cf. 
VI.A167) 

A(t) = a(t) = I _ J dl ... dN pK1 ... KNÎ.1 ... J.,v(1, ••• , N; t) 
K1 .,.KNl,1 ... ).N 

a;.1 ... i.NK, ... KN(l, ••• , N). (5) 
The right-hand side contains a trace over the matrix indices, which will be 
denoted by the symbol Sp (to distinguish it from the trace Tr in Hilbert 
space which is meant in (1 )). Thus (5) may be written in the form 

A(t) = a(t) = Sp J dl ... dN p(l, ... , N; t)a(1, ... , N). (6) 

The Wigner function is normalized 

SpJdl ... dNp(l, ... ,N;t)= I; (7) 

as a result of the normalization I1, w, = I ( or Tr P = I ). 
The time evolution of the Wigner function is governed by an equation of 

which (VI.Al 69) is the special case valid fora single particle in a pure state. 
It reads 

èpK, ... K,v?., ... ;.,v(I, ••• , N; t2 = ~ sin f ~ I (~~:. aCPJ .>, a<Pl)Î 
àt h l2i=l àq' óp' óp' óq' f 

I ( h KI .. ,KN/Lj .. ,µN p µ, ... /LNÎ,, ... ?.,v + PKj .. ,KJV/lj ... /LN h µ, ... µJVÎ,1 .. ,Î,N) 
µ1 .. ,µN 

- ~ cos {~ I (au·~. a<P.) - ~~;. a<P~)Îf 
h 2 t=v àq' óp' àp' óq' 

where the Weyl transform hK, ... KNÎ,r ... i.:v of the Hamiltonian depends on the 
coordinates and momenta of all particles (i.e. on l, ... , N), while the Wigner 
function PK, ... KNi,, ... ;,N depends moreover on the time t. 
As a consequence of the time behaviour (8) of the Wigner function the 

time derivative of the expectation value (6) of an operator is given by (cf. 
(VLAJ 70)) 

da(t) 1 J ' [ . (h ~ (a(a). au,) a(a). é/hJ)î ----- = -- Sp dl ... dlv p sm - _I --- :;-· - -::;-- -"-- (ah+ha) 
dt h l2 ,=1 oq; cp; cp, c,q; f 

{/i N (è(a) f/"l 0(a) é)(/1)) Î ] 
-icos - I -· - --·-- (ah ha), l2 i=J oqi êp; èp; aqi f (9) 

where a"1 ... K,·i., ... ;.,, and h", .. K,J., .. ;,_, depend on all coordinates and momenta 
(J, ... , N) and PKr ... K,i., ... ;.,... moreover on the timet. 

In the following it will be convenient to employ reduced Wigner functions, 
which are generalizations of the reduced Wigncr functions for spinless 
parti cl es. 
The average of a sum of one-point functions (i.e. of quantities that depend 

on the coordinates and momenta of a single particle) 
,; 

A +±: a"'· .K,i., .. ;Jl, ... , N) = I I1 <\J;.,ai.K;i.,(i) (10) 
i= l j(*iJ 

may be written as 

A(t) = Sp J a1(l)f1(l; t)dl 

with the one-point reduced Wigner function defined as 

(11) 

I (hKj .. ,KJV/lJ, .. µN Pµ1 .. ,µ,vÎ.J .. ,Î,N - PK1 .. ,K.V/Lj .. ,µN hµJ ... µ,v},1 .. ,i.,v), 
µ1 .. ,µ,v 

(8) 

f1,,,:_(1; t) = IV I_ J PKK2 .. ,K,vÎ,K2 .. ,KJI, 2, ... , N)d2 ... dN, (12) 
K1 ... KJ,.· 

normalized to N. 
In the same fashion one may employ two-point reduced Wigner functions 

f2,Kii,,K2;,z{1, 2; t) = N(N-1) L J p1<1,2 ... KNÎ,,J,i1<J .. ,K_v(1, 2, ... , N)d3 ... dN, 
K3 ... KN 

(13) 

normalized to N(N -1 ), to write the average of a two-point function in a 
compact way. 
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The two-point correlation function is defined as 

Cz,K1K2À1),2(l, 2; t) = fz,K1K2À1Î,2(1, 2; /)-fl.K1Î,1(l; f)jl.K2À/2; f), (14) 

normalized to - N. 

The macroscopie field equations wil! follow from the atomie equations of 
chapter IX, section 5. Let us multiply these equations, valid for Weyl trans 
forms, with a Wigner function, integrate over all coordinates and rnomenta, 
and take the spur. The resulting equations are still not in the form of the 
Maxwell equations, since they contain terms as OorP instead of 30p, where p 
is the Weyl transform of the atomie polarization (and likewise two terms with 
the electric and magnetic fields ). However they may be brought into the 
desired form, if one employs the identity (9) for the polarization density and 
the fields. Let us consider first the time derivative 30p. With the help of the 
expressions (IX.63) with (IX.64-65) for the Weyl transform of the polariza 
tion and (IX.37) for the Weyl transform of the Hamiltonian of the system 
we find that in the right-hand side of (9) the eosine term does not contribute, 
while the sine term reduces to the average of the Poisson bracket cT;;;,p. 
This shows that indeed 80pp may be replaced by 30p. 
The derivatives of the electromagnetic fields may be treated along similar 

lines by using the Weyl transforms of the atomie fields (v. (IX.46)). Then 
again one proves that 30p e and 80p b are equal to è0 e and 30 b. If one writes 
E, B, Q°, J, P, and M for the averages e, b, p0,}, pand mof the corresponding 
atomie quantities one recovers indeed the Maxwell equations: 

V·E = Q0 -V·P, 

-3oE+VAB = c-1J+80P+VAM, 

V·B = 0, 

30B+V AE = 0. 

(15) 

The sources Q°, J, Pand Mare again found as statistica! averages of (IX.58) 
and (IX.63) and thus ultimately expressed in terms of the atomie charges ek 
and electromagnetic multipole moments µi"l and vf•l. They contain the com 
plete semi-relativistic contributions due to the spins of the constituent elec 
trons of the atoms. 

4 The momentum and energy equations 

a. Conseroation of rest mass 

The atomie rest mass density is given by its Weyl transform 

P = I,mkc5(Xk-R) 
k 
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with Xk the Weyl transform (IX.68) of the position operator for the atom as 
a whole. The definition of the delta function is analogous to that of (IX.52). 
The quantity mk is the total rest mass L,; mki of the atom. The Weyl trans 
form p satisfies the conservation law 

01rP = -V·{ L, mkvkö(Xk-R)} 
k 

with vk = o,rXk and 01pp the Poisson bracket of the density p and the Weyl 
transform of the Hamiltonian. We used the fact that vk commutes with X, 
in serni-relativistic approximation, since the non-diagonal matrix part of Xk 
is of order c-2 while the part of order c0 in vk is diagonal. 

A macroscopie conservation law is obtained from (J 7) by multiplying it 
by a Wigner function, integrating over phase space and taking the spur of 
the matrices. Then one obtains for the left-hand side of (I 7) the expression 
fJ1pp, which may be shown to be equal to 01p. Indeed one may conclude this 
from (9) by inspection of the expressions (16) for p and (IX.37) for the 
Weyl transform of the Hamiltonian, if one confines oneself to semi-relativ 
istic terms. Thus the macroscopie conservation law of rest mass gets the 
usual form 

OQ = -V·(Qv), ai 
where the mass density and the mass flow density are given by 

Q = p = Sp J 1111 ö(X1 -R)f1(1; t)dl, 

QV = Sp J 1111 V1 b(X1 -R)f1(l; t)dl. 

(16) 

(17) 

(18) 

(19) 

(20) 

Here we introduced the one-point reduced Wigner functions (12). The ex 
pressions (19) with (20) serve to define the macroscopie velocity v(R, t). 

b. The momentum balance 

The momentum law will follow by multiplying the atomie law (IX.75) by 
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ö(Xk - R), summing over k and averaging with a Wigner function. The left 
hand side may be written as 

Sp J ~ 8,r{(mkvk+gk)ö(Xk-R)}p(1, ... , N; t)dl ... dN 

+ V· Sp J ~ vimkvk+gk)c5(Xk-R)p(l, ... , N; t)dl ... dN, (21) 

where we used the fact that in the serni-relativistic approximation vk com 
mutes with the expression between the brackets, because both vk and Xk 
are of the form of a diagonal matrix of order c0 and c-1 plus a non-diagonal 
matrix of order c-2• 
ln the first term of (21) we may apply formula (9) to write it as the time 

derivative of an average. Indeed it follows from the forms of Xk (IX.68), 
gk (IX.69), vk and the Weyl transform of the Hamilton operator (IX.37) that 
the sine and eosine terms occurring in (9) reduce toa Poisson bracket. Then 
this first term becomes û(Qv + g )/ot with 

g = Sp J g1 ö(X1 -R)/1(1; t)dl. 

To specify the equation (26) completely, we shall now study the explicit 
expressions that result if (IX.71) with (IX.73) and (IX.74) are introduced 
into (27). The external field terms of the long range force density follow 
from (IX.71). We find, usingthemacroscopic charge-current and polariza 
tion densities Q°, J, P and M of section 3, and limiting ourselves to dipole 
substances, for these terms 

F~ QcEc+c-1 J /\ Bc+(VEc)·P+(VBe)·M 

+ C- 1 Sp J ~ Oip{µPl /\ Be(Xk, t)-vf;,b /\ Ee(X1o t)}ö(Xk- R) 

p(l, ... , N; t)dl ... dN. 
! The last term may be written as 

(28) 

(22) 

In the second term of (21) the velocity vk wil! be split into the macroscopie 
velocity at the position R, defined by (20) with (19), and a fluctuation term: 

vk = v(R,t)+v1/R,t). 

Then we may write this second term of (21) in the form 

V·(Qvv + vg + PK) 

with the kinetic pressure 

pK = Sp J v1(m1 v1 +g1)c5(X1 -R)J1(J; t)dl 

é:(gv+g) 
èt 

-V·(gvv+vg +PK)+FL+f5 

(23) 

(24) 

(25) 

and the momentum density g (22). Tirns we have found that the momentum 
balance equation reads 

(26) 

with the long range and short range force densities: 

FL.s = Sp J tft·5c5(Xk R)p(1, ... , N; t)d1 ... dN. (27) 

c-1 spf I êip[(µf1l I\Bc(X1n t) vt2rbl\Ec(Xk, t)}c5(Xk-R)] 
k 

p(l, ... , N; t)dl ... dN 

+c-1V· Sp J t vk{µPl I\Bc(X1" t)-vt2rbl\Ee(Xk, t)}ö(Xk-R) 

p(l, ... , N; t)dl ... dN, (29) 

since c-1vk commutes with X1 and with µpi I\Bc-Vk'.2rbl\Ec in serni-rela 
tivistic approximation. In the first term of (29) one applies the identity (9). 
By inspection of the integrand of (29) and the Weyl transform of the Hamil 
tonian (IX.37), it follows that the eosine term does not contribute and of the 
sine term only the Poisson bracket, so that one may write for (29) 

C-l ~-(P I\Bc-Morbl\Ec)+c-1V·[v(P /\Bc-Morb/\Ec)} 
èt 

+c-1V· Sp J t vlµk1l I\Bc-vt0lrbl\Ee)c5(Xk-R) 

p(l, ... ,N;t)dl ... dN, (30) 

where the macroscopie orbital magnetic dipole density 

Morb = Sp J VJ1.~rbó(X1 R)f1(l; l)dl (31) 

and the velocity fluctuation vk of (23) have been introduced. 
The interatomic field contribution to the long range force density follows 

from (IX. 73 ). [t may be split into an uncorrelated and a correlated part, if 
one employs the definition of the two-point Wigner correlation function (14). 
One finds in this fashion for the sum of the interatomic and external field 
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contributions i.e. for the total long range force density 

FL = f/E+c-11 AB+(VE)·P+(VB)·M+c-1 i(PAB-MorbAE) 
ót 

+c-1V·{v(PAB-M0rbAE)}-V·PF +Fc, (32) 

where the Maxwell fields E and B appear. The field dependent part of the 
pressure is given by: 

pF = -c-1 Sp J v1(µ11) AB-v\~irbAE)<>(X1 -R)f1(1; t)dl (33) 

and the correlation force density by 

Fc = Sp J /c(l, 2)<5(X1 -R)cz(1, 2; t)dl d2, 

where we introduced the abbreviation: 

(34) 

X! 

fc(l 2) = - ' " 11<11l: V" 11<ml: V111V , l L., rl . 1 r2 . 2 1 
nm=D 

+ ~ (V"-1 : v<"l A V )·(Vm- i : v<ml A V )V } l (35) 
1..., 1 . 1 1 2 . 2 1 1 X 

n,m=t 4nlX1 - 21 

An expression for the short range force density F5 (27) in the momentum 
balance (26) follows if one inserts (IX.74 ): 

F5 = Sp J J5(1,2)<5(X1-R)fz(1,2;t)dld2 (36) 

with the abbreviation 

/5(1, 2) = - ~ [1-c-2(óipr!i)-(óipr2J 
i,J 

+c-2{Óip(ru-r2)}· {(-h- uu+ _h_ 0'2j) J\ V1i} 
2mu 2m2j 

_2 h2 ( ) ( )] eue2j c( ) ( ) +c --- u1iJ\ Vu· u2jA Vu Vu-~--"-- -f 1, 2. 37 
4mu m2j 4nlX1i-X2) 

Owing to the antisymmetric character of (37) with respect to the inter 
change of 1 and 2, one may write (36) as 

Then, sincefs(l, 2) diminishes rapidly with increasing interatomic distances 
we may apply an Irving-Kirkwood procedure to write (38) as a divergence1: 

Fs = -V·Ps 

Fc = -V·Pc 

with a correlation pressure given by 

with the total pressure tensor 

p = pK+pF +Pc+PS, 

(39) 

with the short range pressure 

P5 = ½ Sp J (X1 -X2)f\1, 2)<5{½(X1 +X2)-R}f2(1, 2; t)dl d2. (40) 

We are left with the correlation force density e= (34). For systems of 
neutra! atoms in which no long range Wigner correlations exist, so that a 
correlation length may be defined, one may apply an Irving-Kirkwood 
procedure to the correlation terms as well. One gets then 

(41) 

pc=½ Sp J (X1 -X2)fc(1, 2)h{½(X1 +X2)-R}cz(1, 2; t)dld2. (42) 

Hence we have found now the macroscopie momentum balance equation 

ó(gv+g) = -V·(Qvv+vg+P)+(VE)-P+(VB)·M 
èt 

+c-1 i (PAB-MorbAE)+c-1V·{v(PAB-M0rbAE)} (43) 
Ót 

(44) 

valid for systems of neutral atoms without long range correlations. The 
Lorentz force density, which occurs in (32), is absent for systems with neutra! 
atoms. 
As compared with the non-relativistic theory, namely with (VII.64), the 

momentum density contains an additional term g specified in (22) with 
(IX.69). The pressure tensor includes, apart from a similar additional term 
in its kinetic part (25), additional terms due to the interaction of magnetic 

F5 = ½Sp J /5(1, 2){c5(X 1 -R)-c5(X2 -R)}f2(1, 2; t)dl d2. (38) 

1 In contrast with the procedure used in earlier chapters, where the distribution functions 
were developed, we employ here the equivalent methods of developing the delta functions. 
This has a forma! advantage because the delta functions have to be understood as (IX.52). 
Integration over R.1 would lead then to slightly more complicated expressions, which are 
now avoided. 
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dipoles with each other, as ( 40) and ( 42) with (35) and (37) show. In the 
terms that depend solely on the Maxwell fields (E, B), the polarization 
densities (P, M) and the macroscopie velocity v two extra terms appear, 
which couple the orbital magnetization density M0,b to the electric field. 
These terms may be written in alternative form by using mass conservation, 
namely as 

-1 d r (M E)' C {! dt l i; orb A f (45) 

(with v the specific volume and cl/dt the rnaterial time derivative é:/èt+v·V): 
the magnetodynamic effect on the macroscopie level. It contains only the 
orbital part of the magnetization, si nee the spin magnetization is assumed to 
be completely nonna! ( without an anornalous contribution ). Furthermore the 
Maxwell fields and the polarization densities also contain terms duc to the 
presence of spins. 

By employing the Maxwell equations one may write the balancc equation 
( 43) in the form of a conscrvation law: 

~~ [gv+g+c-1EA(B M0,b)} 
et 

+ V·[gvv+vg +P-DE-BH-c-1v(P A B-Morb A E) 

+(1E2+}B2-M·B)U} = 0. (46) 

The method outlined may be extended to plasrnas and to systems with long 
range correlations. In the Jatter case one has to introduce a mean correlation 
function è2(l, 2; t), as discussed for instance in chapter II, section Sh. 

c. The energy balance 

The energy balance equation on the macroscopie level will be derived from 
its atomie counterpart (fX.86). Multiplying the Jatter by c5(Xk R), summing 
over k and averaging with a Wigner function yield an equation of which the 
left-hand side may be written as: 

Sp J ~è,r{(½mkvf+vk·gk+tk+u")é5(Xk-R)}p(1, ... , N; t)dl ... dN 

+V· spJI vi½mkvf+vk·gk+t"+u")c5(Xk-R)p(l, ... , N; t)dJ ... dN. 
k 

(47) 

In the first term of this expression we apply the identity (9 ). In the present 

case it leads to the following form 

~ spfI(½m"v;+vk·g"+t"+u")b(X"-R)p(l, ... , N; t)dl ... dN 
et " 

ri
2 J [{ a ;PI) ( a a<H) )

2 
( a aun)3l + ~ Sp L 3 -- · ~-- L ----- · - - I- . -- 

24 t,j oR/j èP1j , m,p èP111P èR111P i.t ê!P1_; èR1; } 

H(l, ... , N; t) f'(-}mkv;+v"·g"+tk+uk)èi(Xk-R)] 

p(!, ... , N; t)dl ... dN, (48) 
where H(I, ... , N; t) is the Weyl transform of the Hamiltonian. The super 
scripts (H) at the differential operators indicate that they act only on the 
Harniltonian, while the other operators act on all functions under the 
brackets save for the Hamiltonian. Using the explicit expression (TX.37) 
for H(I, .... N; t), one finds in the semi-relativistic approximation for the 
second term of ( 48) the divergence 

of the vector 

J~' = spf h,
2 

L eki {AkiAe(Rki, t)}c5(Xk-R)p(l, ... , N; t)dl ... dN 
8 k.i m, 111k; C 

S Jh
2
, , ekiekjh ( 1 1 ) ..., '(X X )-(X R) - P -- L. _L . ---2 --· + -- <ïk; A "k;u ki- kj èJ k- 

16 " ,.1(,*1! m" mk; c m"; mk.i 
p(I, ... , N; t)d! ... dN 

S J 11
2 
, , e";ekjh ..., "(X X )-(X R) + P -- L L-----2<ï1jAvkiu ki- ljè) k- 

16 k.l(keSZ) i,j m" mk; mij c 
p(l, ... , N; t)dl ... dN. (50) 

The first term with the vector potential of the external field has been found 
already in the 11011-relativistic treatment of chapter VJT. It was shown there 
that such a term does not spoil the gauge invariance. The second term con 
tains semi-relativistic contributions connected with the presence of spin. 
Collecting the results ( 47-50) we find the macroscopie energy balance in 
the form 

à 
-(½cv2+v·g+guK) = -V·{v(½ev2+v·g+guK)+PK·v+J~}+o/L+P5. (51) at 

V·JK' 
q (49) 

It contains a kinetic contribution to the energy density 

guK = Sp J (½1111 ilî +î\·u1 +t1 +ui)èi(X1 -R)/1(1; t)dl (52) 
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and a kinetic heat flow 

J~ = Sp J vi(½m1 vf +v1·g1 +t1 +u1)c5(X1 -R)f1(l; t)dl +J~'. (53) 

The long range and short range power densities pL and P8 stand for the 
expressions 

pL,s = Sp J; !jJ}·8c5(Xk-R)p(l, ... , N; t)dl ... dN. 

The long range power density pL is found explicitly by considering first the 
external, then the interatomic field contributions (splitting the Jatter into an 
uncorrelated and a correlated part with the help of (14)) and using the 
identity (9). Then one finds in the present semi-relativistic case 

(54) 

8P 8B 8 
ipL = J·E+ - ·E+V·(vP·E)-M·- + -(M . ·B)+V·(vM . ·B) 8( 8( 8( spi n spm 

+2c-1 i {v·(E AMorb)} +2c-1V·{vv·(E J\Morb)}- 3eu~ 
8t 8t 

-V·(vei/ +PF·v+J;)+ Pc. (55) 

Here the macroscopie fields E, B, the macroscopie current density J, the 
polarization den si ties P, M = Morb + M,pin appear and moreover - also 
separately - the macroscopie orbital and spin magnetic dipole densities 
Morb (31) and 

Afspin = Sp J Vi1,~pin<>(X1 -R)f1(l; t)dl. 

The symbol euF stands for that part of the energy density (JU which depends 
explicitly on the Maxwell fields. It is defined as 

(56) 

(2UF = -2c 1 { J v1:lrb J\ v1 c5(X 1 - R)f1 (1; t)dl} ·E. (57) 

The field dependent part pF of the pressure tensor has been given in (33), 
while that of the heat flow is defined as 

1: = - {sp J v1(µ11>-c-1vp> J\ v1)c5(X1 -R)f1(l; t)dl} ·(E+c-1vAB) 

- {sp J v1 v1:lpinö(X1 -R)f1(l; t)dl} ·(B-c-1vAE) 

-2c-1 {sp J v1 v1~lrbAv1 ö(X1 -R)f1(1; t)dl} ·E. 

Finally the power density due to the correlations in the system is given by 

pc= Sp J {ipc(l, 2)+v:fc(l, 2)}ö(X1 -R)cz(l, 2; t)dl d2, 

where we employed the abbreviations j'? (35) and 
Cl) 

,/,C(l 2) = - '\" {il •V ll(n) : V" ll(m) : V"' 'f' , L, 1 1 rl . 1 r2 . 2 
n,m=O 

1 " • " (mJ • V"'} -- + ( 81p µl >): V 1 µ2 : 2 4nlX
1
-X2I 

cc 

+ I [(V'{-1: v~•) /\ V1)·{v;-1: (81pV~11))AVi} 
n,m=1 

-v ·V (V"-1: v(n) /\ V )·(V'"-1: v(mJ A V) 211.1 1 2 .2 1 
-(v -v )·V (V"-1: v("l . A V )·(vm-i: v<mJ J\ V) 1 2 1 1 . 1 .sp rn 1 2 . 2 1 

- rv11-1 : (8 v(nl . ) /\ V }·(V"'-1 : v(ml /\ V ) l 1 • IP 1 .sp m 1 2 • 2 1 

-(V"-1: v("l . /\ V )·fV"'-1: (8 v<"'l)A V }] __ l 1 . 1,sprn 1 l 2 . tP 2 1 4n1X1 -X2I 

The short range power density follows from (IX.85). One finds 

P8 = Sp J {!/18(1, 2)+v:f8(1, 2)}c5(X1 -R)fz(l, 2; t)dld2 

with the abbreviations j" (37) and 

!/18{1, 2) = ~ {-(v1 +8,prJi)·Vli+c-2(81Pr1}(81pr2J(v2 +81Pr2j)'Vli 
l,J 

h2 
·- ---2 (v2 +81pr2J·Vu(81Pru)·(u2j J\ Vu) 

2m2jC 

+ ~ (v1 +81Pr1i)-V1i(81pr2J·(u2j/\ Vli) 
2m2jC 

- ~(v1 +81pr1}V1;81p(rli-r2}(uli/\ Vli) 2mlic 

505 

(59) 

(60) 

(61) 

(58) 

h
2 

(A ;-i ) ( V ) ( V )} e1,e2j - 2 V1 +u,prli ·Vli U1;J\ 1i • Uzjl\ 1i 
4mlim2jc 4nlX1i-X2) 

-!/lc(l, 2). (62) 

If the system is sufficiently homogeneous and if no long range correlations 
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are present, one may employ an Irving-Kirkwood procedure and the iden 
tity (9) to write both the correlation and short range power density as the 
sum of a divergence and a time derivative. In this way one finds for the 
correlation power density 

with the abbreviation 

(/(1, 2) = ~ { 1 +c-2(01pY1}(01pYzj)+ h (orpl'1}(aliJ\ \\;) 
,,1 mu 

C ~ C 
IJ.' = -V·(veuc+Pc·v+J~)- oeu . at (63) (69) 

Here é is the correlation contribution to the internal energy density 

Que= Sp J cpc(l, 2)J{½(X1 +X2)-R}c2(1, 2; t)dld2 

with the abbreviation 

00 

cpc(l, 2) = { I 11-Y'J: V'; µ~"J: v;• 
n,m=O 

00 

- ' (V"-1 : v<nJ A V )·(V"'-1 : v(mJ A V ) L, 1 . 1 ,orb l 2 . 2 ,orb l 
n,m=l 

1 cc ( ) ) (um-1 • (m) J\ V )} + I (V';-1 : v/:spin J\ V 1 • ,. 2 : Vz,spin 1 8nlX1 -X2I 
11,m=l 

(64) 

(65) 

The correlation internal energy density (64) consists hence of three contri 
butions: due to electric multipole-electric multipole, orbital magnetic multi 
pole-orbital magnetic multipole and spin magnetic multipele-spin magnetic 
multipole contributions. No cross-terms between orbital and spin magnetic 
multipoles occur, in contrast with the situation for the correlation pressure 
(42) with (35) and the correlation part of the heat flow which is given by: 

J; = Sp J {½(v1 +v2)cp\1, 2)+½(X1 -X2)if,c(l, 2)} 

J{½(X1 +X2)-R}c2(1, 2; t)dld2. (66) 

Likewise we find for the short range power density 

OQUS 
ps = -\l•(veus+Ps·v+J!)- at, (67) 

where the short range contribution to the energy density is 

QUS = Sp J cp8(1, 2)J{½(X1 +X2)-R}/2(l, 2; t)dld2 (68) 

h
2 

} e1-e2· c + 2 (auJ\ Vli)'(a2jA V1;) ' 1 -q> (1,2) 
4m1;m2jc 8n!Xli-X2jl 

and where the short range part of the heat flow is 

J! = Sp J {½(v1 +v2)cp\1, 2)+½(X1 -X2)i/i(l, 2)}ö{½(X1 +X2)-R} 

fz(l, 2; t)dl d2. (70) 

Collecting the results, we obtain as the energy balance equation for a 
system with short range Wigner correlations as for instance a fluid ofneutral 
atoms 

a 
-(½ev2+v·g+eu) = -V·{v(½ev2+v·g+eu)+P·v+Jq} at 

aP ee a { _ 1 ( )} +-·E-M·--+- Mspin·B+2c v·EAMorb ai at at 
+ V'[v{P·E+Mspin·B +2c-1v·(E A M0,b)}J. (71) 

(The Joule heat term J·E of (55) is absent here because the atoms were taken 
to be neutral.) This energy balance contains the total specific internal energy 

u = uK+uF +uc+us (72) 
and the total heat flow 

Jq = Jf+1:+1;+J!. (73) 

As compared to the non-relativistic theory (v. VII.65)) the left-hand side of 
(71) contains a new term v·g with the macroscopie velocity and the momen 
tum density g (22) due to the intra-atomie fields. It also appears at the 
right-hand side in the transport term. Furthermore at the right-hand side 
two extra terms are present with the macroscopie spin magnetization Mspin 
and moreover two terms with the macroscopie orbital magnetization Morb, 
which are coupled to the magnetic and electric fields respectively. Other 
extra semi-relativistic terms are contained in the expressions for the pressure, 
the specific energy and the heat flow. 
With the use of the Maxwell equations we may cast the balance equation 

(71) into the form of the following energy conservation law 
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à s1 2 • 1E2 1B2 M B 2 -i ·(E M )} :;- liQV +v g+QU+z +2 - spin° - C V ;\ orb 
ot 

+ V-[v(½gv2 +v·g+ gu)+P·v+lq+ cE /\ H 
-v{P·E+Mspin·B+2c-1v·(E/\M0rb)}J = 0. (74) 

The energy laws for plasmas and for systems with long range correlations 
may be treated along similar lines, as was done in non-relativistic classica! 
theory. In the case of long range correlations one has to introduce mean 
correlation functions (v. chapter II, section 5h ). 

d. The anqular momentum balance 

The macroscopie inner angular momentum law will follow from its atomie 
counterpart (IX.91 ). In the first place we take half the anticommutator of 
that equation with c">(Xk-R). This procedure is followed since the Weyl 
transformed atomie inner angular momentum (more precisely its spin con 
tribution) does not commute with the delta function. Then one takes the 
sum over the atoms k and averages with a Wigner function, As a result, one 
obtains after calculations of the type discussed earlier for the momentum 
and energy Iaws, for the balance equation of inner angular momentum 

èS 
èt 

-V·(vS+Js)-P A -v /\ g +P /\ E +M /\ B+c-1v /\ (P /\ B-M0,b /\ E). 

(75) 
Here the inner angular momentum density S is defined as 

S(R, t) = Sp J ½{s1, 3(X1 -R)}Ji(l; t)dl (76) 

with the atomie inner angular momentum s 1, which is the sum of the four 
quantities defined in (IX.87-90). At the right-hand side appears the diver 
gence of a convection term »S and an inner angular momentum flow J5, 

which may be expressed as a statistica! average of atomie quantities. Further 
more as source terms one has in the first place the antisymrnetric part 
PA = e : P ( with e the Levi-Civita tensor) of the pressure tensor P ( 44); 
secondly the vector product of the macroscopie velocity v and the momentum 
density contribution g (22), and thirdly four terms with the polarizations and 
fields. 
As compared to the non-relativistic equation (VII.70) with (VII.73) two 

new terms appear here: a term due to the spin momentum density and a 
semi-relativistic term due to orbital magnetic dipoles in motion. Moreover 
the quantities S, J5, PA, P and M all contain spin contributions. 

The form (75) of the inner angular momentum equation allows us to 
deduce the conservation law of total angular momentum. In fact the balance 
equation of orbi tal angular momentum L, which follows from ( 46) by vector 
multiplication with R, is: 

àL 
àt 

-V·(vL+J1)+P A + v /\ g-D /\ E-B /\ H-c-1v /\ (P /\ B-M0,b /\ E) 

with the orbital angular momentum defined as 

L(R, t) R/\fov+g+c-1E/\(B-M0rb)} 

and the conduction part of the orbital angular momentum flow 

(77) 

(78) 

J1 = -P/\R-D(R/\E)-B(R/\H)-c-1vR/\(D/\B) 

+e·R(½E2+½B2 M·B). (79) 

The total angular momentum law follows by adding (75) and (77): 

è(L+S) = -V·{v(L+S)+J1+Js}, 
àt 

(80) 

which has indeed the form of a conservation law. 
Laws for plasmas and systems with long range correlations may be derived 

in a similar way. 

5 The laws of thermodynamics 

a. The first law 

The first law of thermodynamics follows if one subtracts the momentum 
equation ( 43) multiplied by the macroscopie velocity v from the energy law 
(71 ). If one employs the notation d/dt for the material time derivative 
à/àt+v·V and the mass conservation law (18), one gets thus 

Qdu = -V·J,-P :Vv-g·dv +ed(vP')·E'-M'·dB' 
dt 1 dt dt dt 

d ( , ') _ 1 dv (E' M' ) +e - vMspin·B C ... • ;\ spin' 
dt dt 

(81) 

where vis the specific volume and where the tilde indicates the transposed of 
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a tensor. The electromagnetic quantities are all counted in the local rest 
frame: 

E' = E+c-1v/\B, 

P' = P-c-1v/\M, 

B' = B-c-1v/\E, 

M' = M+c-1v/\P. 

D CH.X 

(82) 

(Mspin could be replaced by M;pin since the difference is of order c-3.) 
The law (81) is valid for fluid systems of neutral atoms. Amorphous or 

polycrystalline solids, plasmas and systems with long range correlations may 
be treated in a similar way. 

b. The second law 

To derive the second law for a fluid system of neutral atoms in which only 
short range Wigner correlations are present we shall apply the canonical 
ensemble method to a nearly uniform sample of ellipsoidal shape which is 
at rest in a large polarized system. Then the external fields due to the sur 
roundings of the sample are uniform and given by (II.220) with (II.219). 
The Hamilton operator H0P which is to be used, is derived in appendix I and 
given by (Al) with (A9), with atomie charges ek = 0. We denote its Weyl 
transform as H(l, ... , N). 
The partial derivatives of the free energy F* with respect to the external 

fields may be expressed as averages involving the partial derivatives of the 
Weyl transform of the Hamiltonian: 

"F* f "H eï_ = Sp !1.___ p(l, ... , N)dl ... dN, 
es, ee, 
àF* f en - = Sp ~-- p(l, ... , N)dl ... dN, se, 8Be 
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nates Rki of the constituent particles (v. appendix I). This non-relativistic 
dipole moment may be expressed in terms of the semi-relativistic ones by 
means of the identity (AIO). Then the first relation of (84) gets the form 

oF* = -spJ (µi1)-c-1vi1) /\ _P1). J1(1)d1 = -VP, (85) 
es, 1111 

where the uniformity of the system has been taken into account, so that the 
volume V times the polarization P appears. The second relation of (84) may 
be transformed if one uses the stationarity of the canonical ensemble in the 
same way as has been done in the non-relativistic treatment (v. (VII.89)). 
Then it gets the form: 

àF* f ( P) -,.,- = -Sp v\1l+c-1µ?) /\ -1 f1(l)dl = -VM 
oBe 1111 

with M the macroscopie magnetization. (A term with spin electric dipole 
moments µ\!lpîn in motion is added for reasons of elegance, although it leads 
toa term of order c-3 only.) 

Since the change of free energy depends on changes in temperature, ex 
ternal fields and position of the boundary ( specified by the deformation ten 
sor be, see for instance (VII.92)), one may write 

bF* = -SbT-VP·bEe-VM·bBe+A: 6€, 

(86) 

(87) 

(83) 

where p(l, ... , N) is the Wigner function of the canonical ensemble. From 
the explicit form of the Weyl transform of the Hamilton operator (Al) 
with (A9) it follows that 

"F* f ( p ) <!__ _ _ -(1) __ l -1 (1) _1 J. (1). - Sp µ1,orb zC V1,spin /\ + 2µ1,sprn f1(l)dl, es, mi 

»r , J{<1) -1<1) P1 1-1( (1)) } () - - -Sp V1 +½c µ1,orb/\ - -2C 01pµ1,orb /\R1 f1 1 dl. ee, 1111 

(84) 

where S = -oF* /oT is the entropy. The second law will follow by establish 
ing the statistica! expressions for the free energy F* and the tensor A. 
The free energy may be obtained from the average of the Hamilton opera 

tor of the system. From the expression (A6) with (Al 1) for the Hamiltonian 
one finds in semi-relativistic approximation, by comparison with the expres 
sions (52), (57), (64) and (68) for the various parts of the internal energy, for 
the average Hamiltonian <H) = U*: 
U* = U+ V{½(PP-MM): L-P·Ee+½M2 

-Mspîn·(Be+M)+MspînM: L}. (88) 

Here U is the internal energy Vçu with Q the mass density and L the depolar 
izing tensor defined in (II.219). 
Finally we consider the tensor A, which is given in the appendix II (A23) 

as the statistica! expression 
The bar in the first of these formulae denotes an orbital electric dipole mo 
ment that is defined in a non-relativistic fashion, i.e. in terms of the coordi- A = -Sp J ~ o1p(XkPk)p(l, .•. , N)dl ... dN, (89) 
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where atP denotes the Poisson bracket with the Weyl transform H of the 
Hamiltonian (AI) with (A9). With vk = a1rXk we may write (89) as 

A = -Sp J ~(vkPk+XkatPPk)p(l, ... , N)dl ... dN. (90) 

The velocity vk may be calculated with the help of the explicit expressions for 
Xk and H (v. (IX.40)). One finds then, in semi-relativistic approximation, 

pk= mkvk+gk-½c-lµF) /\Be+c-lv?c:rb/\Ee 

+c-2 I I {(atPrlj)-T(Rki-Rlj)+2rk;(atPl\;)°,\J ekie/j 
1(*k) i,j 8nlRk;-Rljl 

-2 '\' ,, h V ekielj 
- C L, L, -- (J'lj /\ ki 

l(*k) i,j 2mlj 4nlRki-Rul 

where Uk has been given in (IX.69). The quantity 31rPk in the second term 
of (90) is equal to -3H/3Rk and may hence be evaluated explicitly. In this 
way one finds for the tensor A in semi-relativistic approximation, by com 
paring with the expressions (25), (33), (40) and (42) for the pressure tensor, 

A = - V{P+½K: (PP+MM)-½M2U}, (92) 

where K is the tensor defined in (II.236). In the course of the derivation of 
(92) one needs to apply the stationarity of the canonical ensemble. 

Substituting the expression (88) for U*, which is equal to F* + TS, and 
the expression (92) for the tensor A into the relation (87) one finds, upon 
dividing through the conserved total mass Q Vof the system: 

b[u+v{½(PP-MM): L+½M2-Mspi,,-(Be+M)+MspïnM: L}] 
= Tbs+Ec"b(vP)-vM·bBe 

-v{P+½K: (PP+MM)-½M2U} : be, (93) 

where v and s are the specific volume and entropy. 
If one makes use of the relation (II.220) one may eliminate the external 

fields in favour of the Maxwell fields. With the help of (II.246) one finds 
then for the change of the entropy the relation 

Tbs= bu+vP: be-E·b(vP)+vM·bB-b(vMspin·B). (94) 

One notices that the specific internal energy appears in combination with a 
magnetic energy term -vMspin·B, just as in the first law (81). 
For an isotropic fluid one may argue that under certain conditions (v. 

chapter II, section 7b) the pressure tensor P reduces in equilibrium to a 

multiple of the unit tensor pU with p the (scalar) pressure. Then we may 
finally write (94) for such systems in the form of a Gibbs relation 

Tds = d(u-vMspin·B)+pdv-E·d(vP)+vM·dB, (95) 

where we have written differentials instead of variations, since only state 
variables are involved now. 

(91) 

The derivation of the second law for amorphous or polycrystalline solids, 
neutra! plasmas and systems with long range correlations such as crystalline 
solids may be performed in a way similar to that given above for fluid 
systems with short range correlations. In the following we shall indicate 
which new features arise for the case with long range correlations. Just as in 
the non-relativistic treatment of chapter II, we consider a sample at rest 
without macroscopie charge and current densities although we allow for the 
atoms carrying electric charges. Under those circumstances the system is 
characterized by a free energy with partial derivatives with respect to the 
external fields 

3F* 
aEC = - J P(R)dR = - VP, 

3F* 6~ = - J M(R)dR = -VM. 
(96) 

The right-hand sides are written as integrals ( or in terms of volume averages 
(lI.280) indicated by bars over the symbols) since the polarizations of the 
system are not necessarily uniform in the present case. 
For the average Hamiltonian U* = <H) we find, using again the fact 

that the charge density vanishes, 

U* = U- J {P(R1)P(R2)-M(R1)M(R2)+2M(Ri)Mspin(R2)} 

1 - - : V1 V1 ----dR1 dR2-VP·Ec+-½VM2 

8n/R1 -R21 

-VMspin·Be- VMspin·M. (97) 

Here U is the total internal energy J gudV, with çu theinternal energy density, 
which occurs in the Iocal energy balance equation for a system with long 
range correlations. (This balance equation has the same form as that for 
systems with short range correlations, v. (71), with the only difference that 
the correlation contributions to the heat flow and the pressure tensor contain 
mean correlation functions. A similar situation arose already in the classica! 
non-relativistic theory.) 
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For the change ö,F* of the free energy under deformations one finds by a 
reasoning analogous to that which led to formula (II.289) of the non 
relativistic treatment of chapter II the result 

JJ* = - J P(R) : öe(R)dR 

- J {R1·Ji(R1)-R2·oe(R2)}·[P(R1)P(R2): "\\ V1 

1 
-{M(Ri)A Vi}·{M(R2)A V1}]-V\ ---dR1 dR2 (98) 

8nJR1 -R2I 

with Je the defonnation gradient tensor (II.A5 l ). As compared to the clas 
sical non-relativistic result (II.289) an additional term quadratic in the 
magnetization appears here. It may be written in the alternative form 

-J{R1·be(R1)-R2·öe(R2)}M(R1)M(Rz); V1 V1 V1 l dR1 dR2 
8nlR1 -R2I 

+½ J {Tr Je(R1)}{M(R1)}
2dR1• (99) 

The entropy law that follows from (96-99) reads: 

TöS = so + J P(R): oe(R)dR-Ee·o(VP) 

+ VM·8B0-ö [J {P(R1)P(R2)-M(Ri)M(R2) 

1 +2M(R1)MspÎl,(R2)}: V1 V1 ----dR1 dR2 
8nlR1 -Rzl 

-½VM2+ VMspin·(Be+M)] 

+ J {R1·8ë(R1)-R2·oë(R2)}{P(R1)P(R2)+M(R1)M(R2)}: V1 V1 V1 

_l -- dR1 dR2 -½V(Tr Je)M2. (100) 
8nJR1 -R2I 

Along similar lines as followed in chapter II to obtain (II.302) from (II.296) 
one may introduce the Maxwell fields instead of the external fields, using 
(II.220). Then one gets for the entropy law 

Tc5S = so +VP: 6e-VE·JP+ VM·öB-Vi5(Msrin·B) 
-------~ 

-V<Tr öe)(P·E+Mspin·B), (101) 

again with a bar notation for volume averages. By performing a partial 
integration in the integral represented by the second term at the right-hand 
side this equation may be written in the form (cf. (II.304)): 

rss = so + Is wfP•c)E·R-oE·R(P·E+M . ·B)}dS l spin 

J { E·c50 P- M·30 B + o0(MspÎI/B)}dR, (102) 

where we used the equation of motion ( 43) which reads in the present case 

V·P = (VE)·P+(VB)-M. (103) 

If the system is not rotated and if it is only slightly deformed, one may re 
place OE by the change OYJ of state variable YJ according to (II.3 I 1 ). Further 
more, if the system is chosen to have ellipsoidal shape, the uniform external 
fields cause polarizations and Maxwell fields that are nearly uniform. Then 
one finds from the entropy law (102) the Gibbs relation 

TdS = d(U - VMsp;0·B)+ Js n-P(R)·dYJ(R)·RdS 

-E·d(VP)+ VM·dB, (104) 

where we have written differentials since now the (uniform) Maxwell fields 
and the polarizations may be considered as state variables. Comparison 
with (II.321) shows that the only difference is that a magnetic spin term is 
present in the Gibbs relation (104) (v. also (95) for fluids ). 

6 Applications 

On the basis of the energy-momentum equations and the Iaws of thermo 
dynamics, derived in the preceding in the semi-relativistic approximation for 
systems with spin, one may derive now expressions for the pressure in the 
presence and in the absence of electromagnetic fields, i.e. the Kelvin and 
Helmholtz pressures (cf. chapter II, section 8). A special application of the 
genera! theory, namely the calculation of the magnetostriction in a simple 
model for a crystalline solid, will be treated in the following. In chapter II it 
was shown that the total electrostriction could be split into a so-called 'form 
effect' due to the outward and Liénard pressures and the proper electro 
strictive phenomenon. A similar splitting may be made in the case of mag 
netostriction. Just as in (H.239-241) one may find the Liénard pressure, which 
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gives the difference between the pressure just inside and just outside the 
boundary of a magnetized system. One finds 

n·(P-P ) = -1.n(M·n)2+1.nM2 
out 2 2 • (105) 

From this expression one obtains for the normal component of the pressure 
tensor PO in the absence of fields, but with the same deformation at the sur 
face and at the same temperature 

wPo(R) = wP0ui(R)-½n(M·11)2-½BB: x1(R, T)-½11M·H (106) 

(cf. (II.390)), fora unifonnly rnagnetized ellipsoid ofwhich the magnetiza 
tion fulfils a linear relation (II.384) with (II.385). The magnetization of a 
paramagnetic substance is described by such a law, at least in a certain ap 
proximation. The first two terms of (106) are conventionally called the pres 
sure corresponding to the form effect, while the (uniform) proper rnagneto 
striction is determined by the pressure tensor 

-½BB: y_i(T) ½M·HU, 

i\YJ, T) = X~(T)+t(1k(T),]k1 

(107) 

where (II.391) has been used. The centra! quantity that is to be calculated is x 1 (T), which fulfils, according to its definition, the relation 
(108) 

for uniform and small deformations, determined by nee- 
Let us study the proper magnetostriction for the following model' of a 

magnetizable crystalline solid: spin magnetic dipoles vk are situated on the 
lattice points k of a simple cubic lattice. The Hamilton operator for such a 
system in a uniform time-independent, external field Be follows from (Al) 
with (A9). Due to the combined action of the Pauli exclusion principle and 
the Coulomb interactions an effective 'exchange coupling' between spin 
magnetic rnoments of neighbouring atoms arises, so that the total effective 
spin Hamilton operator has the form 

1 H0p(1, ... , N)~ - L (vk/\ '\)·(v1AV1)--- 
k,l(ki'l) 8nlRk-R11 

+½ L Vk1Vk'V1- L vk·B0 (109) 
k.l(ki'l) k 

with Vkz the exchange interaction which is different from zero for neighbour 
ing atoms k and l only. 

The magnetization of such a spin system wil! be calculated now in the 
high temperature limit1, i.e. by writing first a series expansion of the energy 
in powers of f3 = (kT)- 1 : 
F -p-1 In {Tr e-PIIop} = -P-1 ln {Tr (/-/3H0r+-}/32HJr+ ... )}. (110) 

Here Tr / is the trace of the unit operator in Hilbert space; it is equal to the 
sum (2s+ 1 )N of all states (sis the spin of the atoms). From the form (109) 
of the Hamilton operator it follows that its trace vanishes, so that one may 
write for the free energy (110) up to order [32: 

re_ n-11 (T /) 1/JTr(H;P) 1/32Tr(H;P) L - -ff 11 r --2 --~ +6) --~. 
Tr / • Tr / 

The field dependent part of the second term is equal to 

-½f3Nv2B; 

(111) 

(112) 

with v = ( ehlmc ){ s( s + 1) }1 the magnitude of the atomie magnetic dipole 
moment (with g = 2, since the orbital magnetic moments do not play a role 
here). Furthermore the field dependent part of the third term of ( 111) is 

- 1\/32v4 I {(Be/\ Vk)·(B0 /\ V1) --· _ l · =v» B; \f . (113) 
k,l(k*ll 4nJRk-Rzl 

For an ellipsoidal system the sum over l for fixed k may be split into apart 
that is a sum over the lattice points inside a sphere around k ( containing 
many atoms, but small compared to the system as a whole) and a remaining 
term which may be approximated by an integral. Then one finds for (113) 

N2 
/8/32 - v4(L-½U+S1): Be Be, 

V 
(114) 

where Lis the depolarizing tensor (II.219) and where we employed the (ap 
proximate) uniformity of the ellipsoidal system. Furthermore we introduced 
the lattice sum S1 defined as: 

V sph ( 1 ) S1 = - - I vkvk ------ -vklu . 
N l(*kl 4nlRk-Rzl 

(For undeformed cubic lattices the first term in this lattice sum does not 
contribute. However since we shall consider deformations in the following, 
it may not be suppressed here.) 

(115) 

1 L. Néel, J. Phys. Radium 15(1954)225. 1 J. H. Van Vleck, J. Chem. Phys. 5(1937)320. 
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The magnetization up to order fi2 follows from the field dependent part 
of the free energy, given by the sum of (112) and (I 14): 

M = _ _!_ oF = 1-fi!!_v2B --1/32 (!i)2v4(L-1-U+S1)·Be. 
V oB 3 V e 

9 V 
3 

e 

Introducing the Maxwell field B by means of (II.220) one finds up to order 
/32: 

(116) 

M = x:B (117) 
with the susceptibility tensor 

x(T) = ½/J 0 v2U- z\/J2 ( 0) z v4U-½/J2 ( 0) z v4S1. 
To find the magnetostriction we have to calculate the change of this 

susceptibility tensor under uniform deformations 6R = 6-,rR with a symmet 
rie tensor 61). The change of volume is then given by 6 V = VTr ó1J- Further 
more the change of the lattice sum S1 (115) under such deformations may 

(l 18) 

be written as 

6 (0 S1) = - !!_ (6L)sph 
V 

~h { 1 } - L (Rk-R1)'ó1j"Vk vk vk --- -óvkl U . 
zen) 4nlRk-R1l 

The first term follows from (II.A25). Performing the differentiations in the 
second term and using the relations 

(119) 

a;a- = ½6r, 
:____ 

1 
- (120) 

«, rxpk rx1 = -½6,j 6,k óil +-½6ij 6,k 6,1 rx; + (6,j ókz + 6,k 6 jl + 6,16 jk)(-}-½rx;) 

for averages over angles of the direction cosines rx, = RJ R (i = 1, 2, 3) 
(with respect to the cubic axes) of the radius vectors R ( R1-Rk) from a 
fixed lattice point k to the other points /, one finds for the ij-component of 
(119): 

6 ( 0 S\j) = ; {161/'j -f56ij Tr ö't) + Sz({tj Tr ó1J + 3611ij - \5 6'jó1J'') 

+ S3 : ö't)ö'j} (121) 
with the lattice sums 

where l1 has been written now as a function v(R). Substituting the result 
(121) into the formula that fellows from (118) by variation one finds that 
óx is given by an expression like the second term of (108) with a fourth rank 
tensor x: 
:,.,jkl(T) __ .1/3 !!_ 2;/tl1+/J2 (!!_)2 v4{--12...l/j;_:}1 _ _2_;/k[/1+.1.sijs:k1 X - 3 V V V 135 45 9 1 U 

--¼Sz(óij!l1+'26ik3j1_53u3,ktl)-½S~1ó1j}. (123) 

For the pressure (107) that causes the proper magnetostriction one obtains 
now with (117-118), again up to order f32, 

-}M'Mj+y1aM23'j+¾Sz(M2bij+2MiMj-5Mi23'i)+½SiM2• (124) 

The first three terms together form the dipole-dipole contribution, which is 
often called the classica! magnetostriction 1, while the last term represents the 
exchange interaction contribution. The lattice sum S2, which is a purely 
geometrical quantity, may easily be computed. The Iattice sum S3 contains 
the partial derivatives of the exchange quantities vk1 with respect to the 
components of the deformation tensor; only rough estimates can be given 
for its magnitude. 
From the expression (124) for the pressure that causes the proper magneto 

striction one may calculate the corresponding strains along the standard Iines 
of elasticity theory (for the field free case, since (124) is a contribution to the 
Helmholtz pressure tensor). Then one obtains expressions for the conven 
tionally defined" magnetostriction constants. The results, generalized for the 
proper Iattices, are not in agreement with experiments. The reason for this 
is that effects due to spin-orbit coupling have not been taken into account". 
The preceding treatment was meant only to give an introduction to the 
theory of magnetostriction. 

V sph 1 
S2 = - I (1-Srx;)--, 

N R 4nR3 

V sph ov(R) 
S3 = --- I--, 

N R 01) 

(122) 

1 N. Akulov, Z. Physik 52(1928)389; R. Becker, Z. Physik 62(1930)253; F. C. Powell, 
Proc. Cambr. Phil. Soc. 27(1931)561. 
2 E.g. R. Becker and W. Döring, Ferromagnetismus (Springer-Verlag, Berlin 1939) p. 
270ff. 
3 V. for instance: J. H. Van Vlcck, Phys. Rev. 52(1937)1178; C. Kittel, Rev. Mod. Phys. 
21(1949)541. 
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APPENDIX I 

The Hamilton operator f or a set of 
cornposite particles with spin 

The Hamilton operator fora set of nuclei and electrons with spin in the c-
2 

approximation has been given in (IX.37). We introduce new canonical vari 
ables with the help of the transformation formulae (VII.A45) and (VII.A46). 
(Here the non-relativistic central point Rk is employed, not the centra! point 
Xk, since the Jatter is nota canonical variable.) The Weyl transform of the 
Hamilton operator then becomes 

{ 
p2 J-1 2 J-1 , p4( )1 

Hop(l, ... , N; t) +t L ~ + _L Pki - . L Pki Pkj -c-2 I ___l<_i,___{_1 
k 2mk ,=1 2mki ,,;=1 2mk , 8mk, J 

+ I ekieu [i-- Pdp)·T{Rk/q)-Rlj(q)}·Plj(p)] 
ki,lj(ki*-ljJ 8nlRk;(q)- Rlj(q)I 2mki =» c2 

+ I' t?_lc_~euh [{Pk;SJJ /\o) ·Vk;-2 {~/p) /\a) ·vki] 
ki,lj(ki*-lj) 4mki c2 m« f mi, J 

1 

,,, ekieljh
2 

( V )·( V ) 1 + L., _.:.:.~- aki/\ ki a1j /\ ki 
ki,lj(ki*-lj) 8mki mlj c2 4n1Rk;(q)-Ru(q)I 

,, ek;eljh2 ~(R R ) H (1 N· ) L., -------u ki- lj + e , ···, , t • 
ki,U(ki * 1n 8mf i c2 

-c-1 {Pk;(p) - pk} ·A (R ) e k, t 
111ki mk 

-c-1{Rki(q)-Rk}·VkAe(Rk, t). { Pk;(P) - pk}] 
l mk; mk 

,, ek;h • {B (R ) Pk;(p) ( )} - L. --aki O k,t - -- /\E0 Rk,t . 
k,i 2mk;c 2mk;c 

A different form for the Weyl transform of the Hamilton operator is ob 
tained, if one splits off the kinetic energy 

I {½mk;(atPxk;)2 +¾c-2mk;(a1Pxkt}, 
k,i 

(A2) 

(A3) 

which, according to the derivation of the energy Iaw in chapter IX, section 
6b, may be written in semi-relativistic approximation as: 

I (½mkvf +tk)+2c-2 L L ekieljrk;·vl31prk;)-Vki --
1 

k k,lCk*-lJ i,j 4njXk;-Xljl 

-2c-2 I ekJkï'vi31Prk;)·Ec(Xki, t), (A4) 
k,i 

4nlRk;(q)-Ru(q)I 

(Al) 

where we introduced the abbreviations vk = atPxk and tk (IX.82). The 
kinetic energy may be expressed in terms of the canonical variables intro 
duced above. Then one finds for (A3) up to terms of order c-2 and bilinear 
in the charges: 

f p2 J- 1 2 f- 1 4( )} L _k + L Pk; _ L Pki"Pkj_ -c-2 L Pk; P_ 
k,i l2mk i=1 2mki i,j=1 2mk ; 8mÏ; 

The symbols Pk;(p) and Rk;(q) stand for the right-hand sides of (VII.A46). 
The quantity H

0
(l, ... , N; t) represents the external field terms in (IX.37). If 

the external potentials are expanded around Rk and only first derivatives are 
retained, one gets 

He(l, ... , N; t) =Lek {cpe(Rk, t)-c-1 Pk ·Ae(Rk, t)} 
k mk 

+ L eki [{Rk;(q)-Rk}·Vk {cpc(Rk, t)-c-1 Pk ·Ac(Rk, t)lj 
k,i ni; 

L ek;e1jPk;(p)·T{Rk;(q)-Ru(q)}·Plj(p) 
ki,Zj(ki*-Zj) 8nmki m1j c2jRk;(q)-Rlj(q)I 

"' ek; eu h { ( ) } 1 L. ---2 PlJ P /\ aki ·Vki ----- 
ki,Zj(ki *-ljJ 2mki mlj c 4nlRk;(q)-Rlj(q)I 

-c-1 I ekipki(p)-A0{Rk;(q), t}. (A5) 
k,i 

By employing the identity that follows by equating the expressions (A4) and 
(A5) one finds for the Hamiltonian (Al) with (A2) in semi-relativistic 
approximation: 

~?0 
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H0r{l, ... , N; t) :.± I (½mk vf + vk·gk+ tk+ uk) 
k 

+ I I ekielj {1 +½c-2(8tPXk}T(Xki-X1J(l\pX1j)} 
k,Z(HtJ i,j 8nlXk;-Xljl 

+2c-2 I I ekieljrkï'vié\prk;)-Vki 1 
k,t(k*ll i,j 4njXki-Xljl 

'\' '\'' eki eu h (à X ) ( V ) + L, L, ---2 tP ki • (J'ki /\ ki -· 
k,l(k*Z) i,j 2mk;c 4njXk;-Xljl 

'\' '\'"ekieljh2( V)( V) 1 + L, L, 2 (J'ki/\ ki• (J'lj/\ ki -- 
k,l(k*l) i,j 8mki m1j c 4n1Xki- Xljl 

1 

D CH. X 

+ H~(l, ... , N: t), (A6) 

where we introduced Xki and 81rXki instead of Rki and Pki respectively and 
moreover the abbreviations gk (IX.69) and uk (IX.78). The external field 
terms represented by H~ ( 1, ... , N; t ), are found to be, upon Taylor expansion, 

H;(l, ... , N; t) = Lek cpc(Xk, t) 
k 

+ I eki rk;-Vk cpe(Xk, t)- I' _!_ki h_ (J'ki·{ Be(Xk, t) 
k,i k,i 2mki C 

-c-1(81PXki)AEe(Xk, t)}-2c-2 I ekirki°vk(à,Prk;)·Ee(Xk, t), (A7) 
k,i 

where only terms up to first derivatives of the potentials have been retained. 
For uniform and time-independent external fields the potentials may be 

chosen as 
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dipole moments such as defined in non-relativistic theory and denoted by 
a bar. Since however the difference between Xki and Rki (and hence between 
X; and Rk) is of order c-2, it follows by inspection of the various terms in 
(A9) and of the definitions (IX.65) that the difference between the two kinds 
ofmultipole moments is significant only in the second term of He(l, ... , N; t). 
The orbital electric dipole moment µf;lrb which is defined as L edRki-R,J 
may be related to the semi-relativistic dipole moments. For the case of 
neutra! atoms (ek = 0) one finds from (IX.65) with (IX.38, 61) in semi 
relativistic approximation: 

-(1) (l) J. (1) _ -1( (1) J. (l) ) pk 
µk,orb µk.orb + 2µk.spin C Vk.orb.+ z Vk.spin /\ 

mk 

+vf;pin·Be + 2c- 1(vi;j,b /\ vk)·Ee}- 

523 

(AlO) 

The term H~(I, ... , N; t) that is given in (A7) may likewise be written in a 
different way, if one introduces the potentials (A8) and the multipoles 
(IX.65). One finds then 

H'(1 u. ) - - "' { X ·E ( «i., -t <1l )·E C ' ••• , 1v' t - L, ek k e + µk C vk /\ vk e 
k 

(All) 

cpc(R) = -R·Ee, Ae(R) ½Be AR. (A8) 

Then the external field term He(l, ... , N; t) given by (A2) becomes 

'1 · ) - - "'f R · (E J. -i pk B) He( , ... ,N,t - L,1ek k e+zc A e 
k \ mk 

-<1J • (E i .-1 pk B) i -1(8 <11 )·(B R) +µk,orb c+zC - /\ e +zC tPµk,orb eÁ k 
mk 

(1J ·B (1J • (B 1 -1 pk E) 1 (ll ·E} + Vk,orb e + Vk,spin e -zC - /\ e + ·2µk,spin e • 
mk 

(A9) 

Here we introduced the electric and magnetic orbital and spin dipole 1110- 
ments, defined in (IX.65) with the choice Xk for the privileged point. In the 
first instance we encounter here dipole moments containing Rki and Rk, i.e. 



APP. II DEFORMATIONS AND FREE ENERGY 525 

APPENDIX II 

Change of free energy under deformations 
fora spin particle system 

The free energy F* follows from the partition sum (VII.A58). The Hamilton 
operator H:1r, contains a wall potential u::, that depends on the position of 
the boundary, so that it changes under deformations. The change of free 
energy is therefore given by (VII.A63) or, in terms of the Wigner function 
of the canonical ensemble and the W eyl transform uw of the wal! potential, 
by 

<5J* = Sp J c5Uwp(l, ... , N)dl ... dN. 

The wall potential is a sum of functions u-;:1 which depend on X; given in 
(IX.68) with (IX.38, 39). It is to be understood in the same fashion as for 
instance (IX.47): 

uw= I u';'(xk) = I {ut(Rk)+(xk-Rk)·\\ uf(Rk)}, (AB) 
k k 

where Xk-Rk is of the order c-2• The wall potential U-;:1(Rk) is a function 
which is zero if R; is situated in the interior of the system, increases rapidly 
at the position of the wal! and becomes infinite outside. 
If the position of the wall changes according to (VII.A60), one may use 

as a new partial wal! potential U-;:1 ( Rk) the old wall potential u; with argu 
ment {V-óE(Rk)}·Rk, as in (VII.A61). Then the new wall potential uw' is 

uw'= L ut[{V-óE(Rk)}·Rk] + L (Xk-Rk)-Vk uf[{V-öE(Rk)}·Rk]. (A14) 
k k 

Hence the change of the wall potential is 

se" = - I [Rk·<5i(Rk)·vk uf(Rk)+(xk-Rk)·Vk{Rk·<5e(Rk)·Vk ut(Rk)}] 
k 

(A15) 
or, performing the differentiation in the second term, 

so" = - I xk·<5e(Xk)·vk ut(xk) 
k 

(Al2) 

(A16) 

up to order c-2• Substituting this result into (A12) one gets for the change of 

the free energy: 

<5J* = -Sp J { ~ Xk·öe(Xk)·Vk U';'(Xk)}p(l, ... , N)dl ... dN. (A17) 

This expression bears a strong similarity to the non-relativistic form (VII. 
A65), the sole difference being that R; is replaced by X; (and a spur added 
since the Wigner function and the quantity in front of it are matrices). 
To bring the right-hand side of (Al 7) into a more convenient form, we 

proceed in a way analogous to that followed in non-relativistic theory. Since 
the canonical ensemble is stationary, one has the identity 

a J 0 = -::;- Sp L Pk·öE(Xk)·Xkp(l, ... , N)dl ... dN, 
et k 

(A18) 

because the Wigner function is time-independent. With the use of the relation 
(9) one may write this identity in semi-relativistic approximation as: 

o = sp J t o,r{Pk·<5E(Xk)·Xk}p(I, ... , N)d1 ... dN 

-spf I [cvk uw}óE(Xk)·Xk+ ~ {( I ½huk;)/\ v, uw}·Vk 
k n½C i 

{Pk·öE(Xk)·Xk}] p(l, ... , N)dl ... dN. (A19) 

The first term contains the Poisson bracket of Lk Pk·öE(Xk)·Xk with the 
Weyl transfonn of the Hamilton operator without wall potential, while the 
second comes about as a result of the wall potential part of the total Hamil 
tonian. It contains the force - \\ uw, which the wal! exerts on atom k. 
Combining (A17) and (AI9) we find for the change of the free energy under 
deformation 

<5J* = -Sp I f o,r{Pk·öE(Xk)·Xk}p(l, ... , N)dl ... dN 

+spf I ~ {( I ½huk;)/\ (Vk uw)}·Vk{Pk·öE(Xk)-Xk} 
k mkc , 

p(l, ... , N)dl ... dN. (A20) 

This result may be compared to (VII.A68) with (II.A51) of the non 
relativistic theory. In the first place the central point Xk instead of R; appears. 
Furthermore a second term occurs here in the expression for <5.F*. However 
this term is proportional to the surface of the system, since the order of 

<;'JA 
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magnitude of the factor of öE can be estimated by writing the product of the 
Compton wave length h/mkc of the composite particle, the pressure times 
the surface of the walls and c-1 times the average velocity (-Pdmk) of the 
composite particles. The first term of (A20) is proportional to the volume of 
the system as is shown in section 5b of this chapter. Since in the thermo 
dynamical treatment given here surface effects have been neglected through 
out, one may write for (A20): 

s.r: = -spf I è,p{Pk·öe(Xk)·Xdp(1, ... , N)dl ... dN. 
k 

s.r: = A :be 
with the tensor 

A = -Sp J ~ è,p(XkPk)p(l, ... , N)dl ... dN, 

which is the expression (89) of the main text. 

(A21) 

In the case of uniform deformations be one finds from this expression 

(A22) 

(A23) 


