
MOLECULAR PHYSICS, 1977, VOL. 33, No. 1,245-254 

Form-factor representation and multipole expansion of the 
retarded interatomic dispersion energy 

by M. A. J. M I C H E L S  t and L. G. SUTTORP 

Instituut voor Theoretische Fysica, Universiteit van Amsterdam, 
Amsterdam, The Netherlands 

(Received 6 August 1976) 

Dispersion-relation methods are used to derive a form-factor representa- 
tion for the retarded dispersion energy of two hydrogen atoms that are 
described by relativistic electron theory. By expressing the electromagnetic 
form factors in terms of atomic transition matrix elements the complete 
multipole expansion of the interatomic dispersion energy is obtained. The 
long-range asymptotic limit of the successive multipole interactions is given 
explicitly. 

1. INTRODUCTION 

The retarded dispersion energy of a pair of atoms is due to the exchange of 
two virtual photons. The evaluation of the associated Feynman diagrams may 
be carried out either by straightforward integration over the photon momenta 
or by making use of the analytic behaviour of the atomic two-photon vertex 
functions. In the latter approach the atomic properties enter through the so- 
called electric and magnetic form factors, the introduction of which has the 
advantage that in the course of the calculations the explicit symmetry between 
electric and magnetic phenomena can be maintained [1-7]. The form-factor 
representation for the dispersion energy obtained in this way remains rather 
formal, however, as long as the form factors are left unspecified. The purpose 
of the present paper is to show how this formal representation may be written 
in a more transparent way by making a complete expansion in terms of atomic 
multipole matrix elements. The function giving the dependence of each 
multipole contribution on the interatomic separation will be cast into the form 
of an integral that may be recognized as a generalization of the well-known 
Casimir-Polder integral [8] ; crucial for this step is the derivation of a differential 
operator that generates squares of modified Bessel functions. Finally, the 
long-range asymptotic limit of the successive multipole interactions will be 
discussed. 

2. FORM-FACTOR REPRESENTATION OF THE DISPERSION ENERGY 

In the following we will study the interaction of two hydrogen atoms of which 
the nuclei are held fixed while the electrons are described by the relativistic 
Dirac theory. Furthermore, at the interatomic separations considered, the 
overlap of the electronic wave functions is assumed to be negligible. 
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The dispersion energy of two atoms may be obtained from the scattering 
matrix Sfi for a transition between initial and final states i and f of the system. 
In fact, the scattering matrix will have the general form 

Sfi = 6~i- 2~i~(E~ - El)Vti, (1) 

with a delta function showing energy conservation. The dispersion energy is 
found by diagonalizing the part of the matrix Vfi that is due to the exchange of 
two photons between the atoms [7, 9] ; in particular, by taking the trace one 
gets the average of the interaction energy over the atomic ground states. 

The two-photon-exchange process may be represented by two Feynman 
diagrams, with non-crossing and crossing photon lines respectively. The rules 
for evaluating these diagrams lead to an interaction energy V that depends on 
the difference R=R b-R~ of the position vectors for the nuclei of the atoms 
a and b. Its Fourier transform, defined by 

1 V(R) = ( - ~ ) ~ / d Q  exp ( iQ.  R)F(Q), (2) 

is the dispersive two-photon-exchange amplitude. As a function of the total 
photon-momentum transfer Q this amplitude reads 

i 
F(Q) = 2(2~r) 4 / &k d4k ' V.('.(k, k')Vb, ~,.( - k, - k') 

8(kO+k'~ 
• (3) 

(k~ +i0)(k'* + i0) 

When the eigenstates of the atomic hamiltonian and the corresponding eigen- 
values are denoted by s and E~, with s o labelling the states of the g-fold de- 
generate ground level, the two-photon vertex function occurring here may be 
written as 

x' r 
L k ~ ( 1 - i 0 ) - k  ~ 4 k = ( l - i 0 ) - k  0 j" (4) 

The prime at the summation sign indicates that from the intermediate states s 
ground-level atomic states are to be excluded; furthermore k~ is the energy 
difference E~-E~, o. The symbol P~(k) in the numerators of (4) stands for 
the one-photon vertex function 

P~o~(k) -- - e <% ]7~ ~ exp ( - ik .  r)  - gOt, Is), (5) 

with r the position of the electron relative to its nucleus and g~V the metric 
tensor, which is chosen as diag (1, - 1, - 1, - 1). 

Since in (3) with (4) the average is taken over the ground states of both atoms 
the amplitude F(Q) depends only on the square 0, 2 -  - t  of the momentum 
transfer (and hence the interaction energy V(R) only on the internuclear separa- 
tion R =  JR I). The behaviour of F for complex values of t has been studied 
in previous papers [6, 7] ; there it has been shown that the function F is analytic 
in the complex t plane apart from a cut along the positive axis, a branch point 
being present at t=0 .  Consequently complex contour integration may be 
employed to express the interaction energy (2) in terms of the discontinuity 
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across the cut in the following way : 
i oo 

- - -  dt exp ( -Rv ' t ) [F( t+iO)-F( t - iO)] .  (6) V ( R )  = 8~2R So 

In accordance with Cutkosky's rules [10] this discontinuity for t > 0 has been 
found as 

i ~,/t 
F ( t + i O ) - F ( t - i O ) = -  y~ -~ S dk•177 

~,~=+_ 0 

.  a(k, k ' )  . . - k ' )  . C 
• [t([t_k• , (7) 

where ['a(k, k') is equal to the two-photon vertex function (4) for photon 
momenta  satisfying k ~  '~ k~ '2, which corresponds to mass-shell 
photons. The  vertex functions are contracted with complete sets of transverse 
polarization vectors EK#=(0 , *~) and Ea'~=(0 , ca' ). Upon  writing k=�89177 

a k k '  = ~ Q -  • with Q k•  = 0, the product  of contracted vertex functions summed  
over the polarizations becomes a function of Q2=  _ t  and k •  2 only. In the 
integrand of (7) the analytical continuation of this function towards positive t, 
with fixed k•  ~, is to be substituted~. 

Rotation-invariance arguments permit  one to write the contracted vertex 
function for an atom interacting with two mass-shell photons in the general 
form 

E. f'(k, k ') .  E' =k2r CFE(k , t ) - ( r  A k ) .  ( , '  Ak')Fz~(k, t). (8) 

The  functions F~(k, t) introduced in this way are the electric and magnetic 
form factors of the atom ; in the following their series expansions in powers of t, 
v i z  

oo 

Fdk, t)= E F,. m(k)t m, i =  E, M, (9) 
m = 0  

will be employed. 
When (7) with (8) is substi tuted into (6) and the new integration variables 

z -  �89 112, x-~ ( 1 -  4k• 112 are introduced, the dispersion energy becomes 

1 oo 1 
V(R)=-87r3---- ~ 0~ d z z S e x p ( - 2 z R )  [ dx Y~ ~o(x) 

i , j = E ,  M 

x Fia(izx, 4z~)Fsb(izx , 4z 2) ; (10) 

the polynomials ffii occurring here are defined b y  

~bv, E(x) = ffMM(X) = X* -- 2X* + 2, (11) 

r = r = X 4 -  2X'. (12) 

Inserting the series expansion (9) one may rewrite (10) as 

V(R) = _ ~ 1  Y, 4 ~+~b dz z 2~+~b)+5 exp ( - 2zR) 
8 ~'3R ma, mb = 0 0 

1 

• ~ dx ~ ,kr162 (13) 
0 i , j = E ,  M 

J" In reference [7] the formula (59) for the discontinuity across the cut is incorrect, 
the denominator being absent there. 
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When factors ( - 2 z )  in the integrand are replaced by operators (d/dR) acting 
on the exponential, and subsequently the integration over x is performed with 
the help of the auxiliary formula (A 4), the form-factor representation of the 
dispersion energy is found to be 

1 ~ (d'~2<m"+mb) 1 ~ 
V(R)= 16,r3R . . . . . .  0 \-d-R] -Rg So dz exp ( - 2 z R )  

• E Pij(zR)F~,maa(iz)Fj, mbb(iz)' (14) 
i,j=E, M 

where the polynomials Pij are 

P~E(Y) = PM2~(Y) = y4 + 2yZ + 5y2 + 6y + 3, (15) 

P~M(Y) = PM~(Y) = -- y4_  2y3 _ y2. (16) 

It should be remarked that the formula (14) has been obtained previously in 
reference [5]. However in the presentation given there additional dispersion 
relations were used for the form factors without further justification, whereas 
in the above derivation such form-factor dispersion relations are dispensed with. 

In the representation (14) of the interatomic dispersion energy V(R) the 
atomic properties enter through the form-factor coefficients F~, m in an as yet 
unspecified way. A more transparent expression for V(R) may be deduced 
if these coefficients are evaluated in terms of the atomic matrix elements charac- 
teristic for electron-photon interactions. 

3. MULTIPOLE EXPANSION OF THE DISPERSION ENERGY 

In order to relate the electromagnetic form factors, which occur in the final 
formulae of the preceding section, to atomic matrix elements the definitions (8) 
with (4) and (5) may be employed. If these matrix elements are written in 
terms of atomic electric and magnetic multipole moments, the resulting ex- 
pressions for the form factors enable one to obtain the multipole expansion of 
the dispersion energy, as will be shown in this section. 

In the following it will be convenient to use the spherical tensor formalism 
[11]. The operator occurring in the space part of the one-photon vertex 
function (5) may be expressed then, with the help of Rayleigh's expansion, in 
terms of vector spherical harmonics : 

(-- 1)L--M(ZL + 1)1/2 YL.M'(~,)7OvM" 
M', M" -- M' - M" 

= YL ,  L ' M ( ; ' )  �9 7% (17) 

In particular the transversal space part of (5), i.e. the part perpendicular to the 
wave vector k, can be expanded into matrix elements of the so-called trans- 
versal electric and magnetic multipole operators [7, 9] 

t cLM(S)=_e  [47r (L+ 1)] 1/2 ( L )l /2rL+2s_lYL, 
(2s) ! !(2L + 2s - 1 )!! \-ff-+-lJ L-~M(~')" 7~ 

[4rrL] 1/2 ( L ~ll2rL+2s_tYL, (18) 
- e (2s -  2) ! !(2L + 2s + 1)!! \-ff-+-iJ L+aM(;')" 7~ 



Retarded dispersion energy 249 

[4rr(2L+l)] 1/2 ( L ~11~ L+2~y (19) 
vLM(S)=ie (2s)!!(2L+2s+l)!!  \ -LT ' i ]  " L, LM(r) . 7%', 

of which the parity eigenvalues are ( -  1)L and ( - 1)L+I respectively. Likewise 
the time component and the longitudinal space part of the operator in (5) may 
be related to the longitudinal electric multipoles 

[47r(2L + 1)] a/2 !rL+2,YLM(~.). 
tLL3I(s) = - -  e (2s) ! !(2L + 2s + 1 )! (20) 

For s - 0  the latter reduce to the familiar electrostatic multipoles ; in this case 
the two electric multipoles (18) and (20) are connected by the commutator 
relation 

KLM(O) = i[Hat , I%M(0)], (21) 

where Hat is the atomic Dirac hamiltonian. (In references [7, 9] the multipole 
operators K and u were defined as linear combinations of spherical tensor opera- 
tors ~LM(L ', S); indeed, the latter are proportional to the inner product of 
rL'+~YL, t,M(~ ") and 7~ 

When the electromagnetic form factors F~(k, t) are written as double power 
series in k and t the properties of the atoms enter only through matrix elements 
of the transverse electromagnetic multipole moments (18) and (19); in fact, 
in references [6, 7] it is shown that the coefficients F~. re(k) as defined in (9), 
have the form 

Fi ,~(k)= E' Z k /  ( - k2 )  L+s-m-a 
' N L, S kN 2 -- k 2 -  i0 4mL(L + 1) 

• [aiLk-ZJffg(L, S )+biL~N(L ,  S)~,~, ( i=E,  M). (22) 

Here the atomic states have been chosen as simultaneous eigenstates of the atomic 
hamiltonian Hat and the angular-momentum operators j2, j~ ; the label a has 
accordingly been replaced by N, M, with M the magnetic quantum number 
corresponding to Jz. In (22) the reduced matrix elements s:x(L, s) of the 
operators (18) occur in the combination 

L + I  
~ w(L, S ) = L ( 2 L +  1) ~ KN(L' S)KN*(L' S - s )  ; (23) 

the reduced matrix elements vN(L , s) show up in an analogous sum .#'A,(L, S). 
Furthermore, in (22) the brackets [ ~m, defined by 

/(cos 0)= y, ~f~m(�89 + �89 cos 0) m, (24) 
m 

act on the following linear combinations of differentiated Legendre polynomials : 

t2E L = b M  L = P L + I  it _ P L '  "4- P L - 1  o, (25) 

a~ L = bE L = 2PL". (26) 

From the commutator identity (21) one may prove the relation 

3g'N(L, O)= kN2dlN(L, 0), (27) 

where ~N(L ,  S), on a par with (23), stands for a sum over products of reduced 
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matrix elements I~N(L, s). These matrix elements may be shown to satisfy the 
sum rule [7, 9] 

E' kNt'N(L, s2)= 0, (28) 
N 

which is in fact a generalization of the Thomas-Reiche-Kuhn sum rule. With 
the help of (27) and (28) the coefficients (22) may be cast into the form 

kN ( -- k2)L+S-m_l 

Fi, m(k) = Z'N L, ~S kN 2 -- k 2 - i0 4mL(L + 1 ) 

x ~a,L[dlN(L, S)SS, o-- Jg'N( L, S +  1)] +biL.A/'N(L; S)~m, (i= E, M). (29) 

This expression is the desired multipole expansion of the atomic electromagnetic 
form factors. It may be used now to expand the dispersion energy into electric 
and magnetic multipoles. 

Upon substituting (29) into (13) the summations over m v m b can be reduced 
to a summation over one single parameter m ; subsequently we may use then the 
identity 

pa+pb P~+Pb+ 2 
E E = E 

m=0 i , j=E, M m=0 

• E [([sa+AfMa)([Eb+'~fMb)l(l--)tCOS O)2~m' ( 3 0 )  
A=_+I 

which is valid for arbitrary polynomials fin(cos 0), /ib(cos 0) of degree p~, Pb" 
In the resulting formula for V(R) one recognizes products of the rotation matrix 
elements [11] 

d l, _aL( O ) = [ L( L + 1 )]-1�89 - A cos O )( aE L + ,)Lag L) ; (31 ) 

when these products are evaluated with the help of the Clebsch-Gordan series 
and the summation over A is carried out the interaction energy is found to be 

V(R)= Y.' X 8~r a 1 Na, Nb L~, Lb, Sa, Sb, L 

• (3L.+Lb+L, even[~N.(La, Sa)Ss., o-- ~rN.(La, Sa + 1)] 

x [~//u~(Lb, Sb)3S, ' 0 -  J{'Nb(Lb, S b  + 1 )] - ~La+Lb§ odd 

• {[JIN.(La, S,,)Ss., o - X N . ( L a ,  Sa+ 1)]JVx~(Lb, Sb) + (a4-~b)} 

+ ~La+Lt~+L, evendf / 'Na(ga ,  Sa)d~Nb(gb, Sb))FabNL(ZR) �9 ( 3 2 )  

The radial function FabNL(2R) is defined by 

2 
F~bNL(ZR) = - -R  ~m [PL~m I dz z 2m+1 exp ( -  2zR) 

0 
1 (ZX)N-2m 

• ! dx (kN2+Z2X2)(kN2+Z2X2), (33) 

for N - 2 ( L a +  L b + S~+ Sb)/> 2L. The integration over x occurring here can 
be performed with the help of (A 4) ; if first a factor z 2m exp { -  2zR) is replaced 
by [d/d(2R)] 2m exp ( - 2 z R )  one finds in this way 

FabNL(2R) = D(N,  L)L,b(2R), (34) 
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with the differential operator 

L 
D(N, L)= X 

m=O 
acting on the function 

i [  d l "  
[PLata ~ k Ld(2R)  ] (35) 

at) 
/ab(ZR)= -- ]" dz exp ( - 2 z R )  (36) 

0 (kN** 2 + ,~2)(kNb2 + Z2)" 

For the right-hand side of (34) an integral representation can be  derived in 
which all radial differentiations have been performed. To show this let us first 
consider the action of the operator (35) on the exponential exp ( - 2 z R )  in the 
integrand of (36). In fact, from the definition (24) of the bracket symbol one 
gets 

D(N, L) exp ( - 2 z R ) = ~  PL d 2 

where the modified Bessel function of the third kind [12] 

(L+k)! u-k (38) 
KL+l,z(u)=\~-~u ] exp ( - u )  k_~ ~ (2kill(L-k)! 

has been introduced. In Appendix B it is shown that the differential operator 
PL(2d2/dz ~- 1) is the generator of the squares of modified Bessel functions, 
so that the right-hand side of (37) is proportional to [KL+I/~(zR)] 2. One 
may  write therefore instead of (34) with (35), (36) : 

2 oo uN+I[KL+I/2(U)]2 
FabNL(2R)= ~rRN_X ! du (39) (kN 2R 2 + u2)(kNb2R 2 + uS)" 

If this form for the radial function is inserted into (32) the generalization to 
higher multipoles is obtained for the integral representation of the electric- 
dipole dispersion energy as given originally by Casimir and Polder [8]. 

4. ASYMPTOTIC BEHAVIOUR OF THE DISPERSION ENERGY 

In this section we want to study the long-range asymptotic behaviour of the 
dispersion energy for multipoles with fixed parameters La, L b. As is clear 
from (32) with (39), we then only need to consider the operators tzLm(O) and 
vLM(O), which are simply the static electric and magnetic multipole operators. 
For convenience we shall introduce now instead of tzLM(0) the regular solid 
harmonics 

~Lm(r)=rr" ytM(i'), (40) 

while vLM(O) will be replaced by 

~ r M ' "  /' L \~/2 L (rJ=k-~-~) rLYL, LM(~') �9 yoy; (41) 

in fact this choice is tantamount to extracting a common factor from both 
and 

At large interatomic separations R the terms u S in the denominator at the 
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right-hand side of (39) can be neglected, whereupon the integral becomes [13] 

oo [(�89 ( N + Z L +  1 ) ! ! ( N - 2 L -  1 ) "  (42) I du uN+I[KL+I/~(U)]2= lrr (N+ 1) -'-------~ "'" 
0 

The  desired long-range asymptotic form of the dispersion energy for fixed La, 
L b is then found to be 

e 4 

7rkNakNbR2La+gLb+3 

• {Ceven| L~)[[~INa(L~)[2 [ ~ N b ( L b ) [ ~ + ( ~ / ~ ) ]  

-Coad| Lb)[l~/~(L~)[~ [ ~ N b ( L b ) [ ~ + ( ~ / ~ ) ] } ,  (43) 

where the coefficients Ceven~~ Lb) and Codd~~ Lb) are defined as 

(L~ + I )(Lb + I ) [ (La + Lb)! I2 
C~ e"~n/~ Lb) = L~Lb(2L ~ + 2L b + 1 )! '(2L a + 1 )! !(2L b + 1 )!! 

-1  (2L'~+2Lb+2L+I)!I 

x(2La+2Lb-2L-i)!! .  (44) 

For the 3- j  symbols of the type occurring here closed-form expressions exist 
containing factorials [11]. Thus  the asymptotic coefficient C~even/oda(Ln, Lb) 
can be written as a finite sum of terms that are functions of factorials. For the 
lowest-order interactions the numerical values of C~~ LD) are given 
in the table. In p~irticular one recognizes for the electric-dipole dispersion 
energy the well-known coefficient 23/81. 

The asymptot ic  coefficients C%ven/oaa(La, L'b) for La, Lb ~< 3. 

L~ Lb C~176 C~odd 

23 7 
1 1 

81 .81 
59 11 

2 1 200 200 
5591 583 

2 2 
10000 10000 
10582 ~ 286 

3 1 
33075 6615 

210379 611 
3 2 220500 8820 

253374 4202 
3 3 108045 36015 

APPENDIX A 

An auxiliary integral relation 
In the formulae (13) and (33) of the main text integrals of the type 

(x) 1 
Ip- -  ~ dz z "+1 exp ( - 2 z R )  ~ dx F(zx) 

o o 
(A 1) 
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With the new variable y = zx this double integral may 

= S dz z~ exp ( - 2zR) dy F(y), (A 2) 
0 0 

whereupon partial integration with respect to z yields the recurrence relation 

z ,  = ~ I~_~ + ~ dz ~ exp ( - 2zR)Y(z).  ( a  3) 

When this relation is applied iteratively the double integral Ip can be written 
as a sum of single integrals by means of the formula 

~ p !  ~ 
Ip= ~o(p_k)!(2R)~§ ~ Io dzz~-kexp(-2zR)F(z), (A4) 

which is used in the main text. 

APPENDIX B 

An identity for squares of modified Bessel functions 
The modified Bessel functions of the third kind Km+t/~(z ), with positive 

integer m, can be obtained from Kx/~(z ) by means of the formula 

m 12 1 

which may be proved with the help of the recurrence relations for Bessel func- 
tions [12]. Let us multiply this identity by the Hankel coefficient 

(L +�89 m) - (L+m)! / [m! (g -m) ! ]  (B 2) 

and take the summation over m. Since the Hankel coefficient equals 
( -  1 )L+mm!~PL~, with the bracket symbol defined in (24), one gets in this way 

!2 (L+�89 m)(~z)-m-X~K~+x,~(z)=P~. 2 ~-~- 1 (�89 (n 3) 
m = 0  

If on both sides the equation 

L 

lr 112 ~ (L+�89 m)(�89189 ~ (B 4) 
m = 0  

is substituted, which follows by inverting the well-known duplication formula 
[12], we finally obtain the identity 

[KL+x/z(�89 2 ~-~z ~ -  1 [Ka,~(�89 ~ ; (B 5) 

it shows that the differential operator PL(2d~/dz 2-  1) can be looked upon as 
the generator of the squares of modified Bessel functions of half-integer order. 
Of course, once this result has been derived it may be verified independently 
by induction with respect to L. 
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