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synopsis 
The literature on the relativistic energy-momentum tensor in polarized media falls 

apart in treatments based on microscopic first principles and considerations starting 
from macroscopic postulates. Only papers of the first category, such as Lorentz’s 
and Einstein-Laub’s, can be considered as derivations, whereas treatments of the 
second category, such as Minkowski’s and Abraham’s, based on ad hoc assumptions, 
do not give unique results. 

9 1. Ilztrodzlction. In this paper the literature on the energy-momentum 
tensor in polarized media will be discussed in connexion with the results 
of the present series of articles. The history of the derivation of the energy- 
momentum laws from microscopic theory started with Lor en t z’s electron- 
theoretical treatment published in 19041). Independently Einstein and 

Lauba) used similar considerations to obtain an expression for (part of) 
the energy-momentum tensor. The results of both Lorentz and Einstein- 
Laub came near to the expressions found from the statistical treatment 
based on microscopic theory, as will be shown in this paper. 

In the subsequent literature little attention was paid to the papers of 
Lorentz and Einstein-Laub. Most of the discussions focused on the proposals 
put forward by Minkowskia) and Abrahama), which were suggested by 
arguments of a macroscopic nature based on ad hoc postulates, but not 
derived from the first principles of microscopic physics. 

After a brief survey of the results obtained in the preceding papers of the 
series (3 2), a discussion is given of previous work based on microscopic 
considerations ($3 3, 4). Work of a macroscopic nature is reviewed in 8 5. 

5 2. Kinetic and macroscofiic results derived from microsco$c theory. From 
the energy-momentum conservation laws valid for a set of charged point 

*) Articles I-VI of this series in Physica 37 (1967) and 39 (1968). 

- a4 - 
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particles conservation laws for a system consisting of dipole atoms (or other 
stable groups of point particles) have been deriveds). These laws, valid at 
the “kinetic level” of the theory, have the form 

a&@ = 0, .W = $7 + tg,. (1) 

Here the atomic field energy-momentum tensor is given by (11.26) as 

where f$ is the atomic field tensor due to atom k, rnib its atomic polarization 
tensor, hEB s fiB - rnb and z$ its four-velocity. Furthermore the atomic 
material energy-momentum tensor is, according to (II. 36), 

tap (m) = z Pk k k ruad - * z o;,o~,a,(a;cti;) k 

+ +c-2 z (~$$‘D~u~~ + { ;? zs (T Dmy) + 4 Z a,(@,B + @N:,, (3) 
k k 

where pi is the mass density of atom k, Af = g@ + c-~z@& Dkti;Z its four- 
acceleration and ~2~ its internal angular momentum density (called cias in 
article II). The total atomic energy-momentum tensor is symmetric: 

t”B = toor, (4) 

as follows from the conservation of angular momentum. In the classical 
model chosen here self-forces and relativistic contributions to the intra- 
atomic fields, which keep the stable groups together, are not considered. 

With the help of covariant averaging macroscopic conservation laws have 
been obtainede) : 

asTao = 0, T@ = T$ + T$,. (5) 

Here the macroscopic field energy-momentum tensor is according to 
(111.42) : 

TUB = FwJH~ - IF 
(f) ‘Y z Ye 

F YE g a/9 + 

+ c-Wfl(FayMye - MavF,) UE - c-WWU~Fy&i=~Uc, (6) 

where Faa is the macroscopic (Maxwell) field tensor, AL!@ the macroscopic 
polarization tensor, H@ s F@ - Maa and Ua the macroscopic four- 
velocity. The field tensor (6) reads in the rest frame (denoted by primes) 

Tap = 
( 

&(W + B’s) E’ A H’ 
(f) E’ A H - E’D’ - H’B’ + (4E’2 + 9B’2 - M’ l B’) U > * (7) 

The macroscopic material energy-momentum tensor qk, has been given 



86 S. R. DE GROOT AND L. G. SUTTORP 

as a statistical expression in terms of atomic quantities7). It gets a simple 
form if the relative atomic motion within the correlation domain is non- 
relativistic and if dynamical effects due to the internal angular momentum 
of the atoms are disregarded. Then thermodynamical considerationss) lead 
to an equilibrium expression valid for a neutral, polarized fluid: 

FB (m) = ,-2UHY”(e& + @‘C2) + A@$‘, (8) 

where ek is the energy density, Q’ = (v’)-1 the bulk rest mass density and 
p’ the (isotropic) pressure, all measured in the local permanent rest frame. 
The latter quantities appear in the second law (Gibbs relation) for a neutral, 
polarized fluid : 

T’Ds’ = De’ + p’Dd - &F&D(v’M(~)~~‘) + $M$)‘v’DF”“‘, (9) 

where D is the time derivative d/dt, T’ the temperature, s’ the specific 
entropy, e’ = v’ek the specific energy, F& the electromagnetic field and 
M$)’ and M$)’ the polarizations (which in the rest frame represent the 
electric and magnetic polarization respectively). The relation (9) may be 
written as: 

T’Ds’ = De’ + p’Dv’ - E’aD(v’P’) + v’M’.DB’. (10) 

This law was derived (with the help of the canonical ensemble) in the 
nonrelativistic case and was then generalized to the relativistic case. 

The total energy-momentum tensor may be split in a different ways) 

where a material energy-momentum tensor has been introduced of the form 

T;!] = c-2 .?JGJ~(e~o + Q’c~) + A@&); (14 

in contrast with (8) it contains an energy density eCo and a pressure pi, 
defined for the system without fields, but at the same temperature and densi- 
ty. The corresponding field tensor TE;{ reads for the case of a substance 
which obeys linear constitutive relations (cf. (VI. 23)) : 

T$, = FWl$, - ;F,,Hyy”a + c-VJ~(FaWys - M”yFye) UE 

+ &,Aafl c-2 v’ $ F,UW,FY’ + &I’ ; F,A;A;F@’ 
> 

+ &-2UaUB c-257’ & F,,U”U,FYS _t &T’ $ F,,A;A;FS” , 
> 

(13) 

where K and x are the electric and magnetic susceptibilities, v’ the specific 
volume and T’ the temperature in the rest frame. In the rest frame this 
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tensor reads 

Tao = [fl 

E’ A H 

+ E”T’+ + B’zT’; 

_ E’D’ _ H’B’ 

++ E’. D’ + B’. H 

E’ A H ax + E’W $ + B’W avl 

(14) 

The ponderomotive force density is defined as the negative divergence 
of the field energy-momentum tensor. With the field tensor T$ from splitting 
(5) one has the ponderomotive force density Fa = -i?asT$ corresponding 
thus to a material energy-momentum tensor T$) which contains an energy 
density and a pressure defined for the system in the presence of fields. The 
space components (0~ = 1, 2, 3) of this four-force read for uniform and 
constant velocity in the rest frame 

F’ = (~‘I?)., + (V’B’).,, + &,(P’ A B’ - M’ A E’). (15) 

This constitutes a generalization of the Kelvin force density. 
If the field tensor is defined as in the splitting (11) one gets a pondero- 

motive force density 9~ = -abT$, corresponding to a material tensor 
T@ cml, which contains an energy density and a pressure defined for the 
system in the absence of fields. Its space components read for uniform and 
constant velocity in the rest frame 

9’ = --gE’2~‘K _ p’ (iv’ ; E’2) -#‘2v’~ - +v’$ B’2) 

+ %{(K + x) E’ A B’}. (16) 

This is a generalization of the Helmholtz force density. 

3 3. Disczlssion of treatmeats based on microscopic theory. In this section 
theories using microscopic concepts will be considered. Lor en t zl) dealt 
with the problem of the electromagnetic forces in a medium using the methods 
of his electron theory. Although the treatment of matter is rather sketchy, 
since both a clear atomic picture and adequate statistical methods were 
lacking at the time, he nevertheless arrived at results for the electric dipole 
case which as far as the field terms are concerned are in agreement with 
(7). In fact Lorentz found for the field momentum density (times c) and flow 

E’ A B’, -E’D’ - B’B’ + $(E’2 + B’2) U. (17) 
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As for the material terms no explicit expressions for the pressure are given, 
except for a contribution -+P’P’ - &P’W. The latter term may indeed 
be found if the principal value part is split off from the potential pressure7). 

Independently Einstein and Laub3) derived the field momentum 
density and flow for an electric and magnetic dipole substance. The magnetic 
terms were obtained by an argument of analogy only. They found the ex- 
pressions 

E’ A H’, -E’D’ - H’B’ + (&E’2 + gB’2 - B’.M’ + g!rq u. pa) 

The electric terms are the same as those in (7), but an extra magnetic term 
&W3 is present in the scalar part of the field pressure. The material terms 
are not considered at all, so that the validity of the field expressions (18) 
cannot be assessed. G anslo) disputed the correctness of Einstein and Laub’s 
arguments, as Pauli mentions in his reviewlr). However Gans’s critique 
concerned only the splitting of the total force density into a Lorentz force 
density (acting on the charges) and a ponderomotive force (acting on the 
polarizations); this splitting is arbitrary since only total forces can be 
measured (v. also article III, 3 7). 

In the meantime purely macroscopic proposals*) had been put forward 
by Minkowski3) and soon afterwards, by Abrahamd). Their field tensors 
became the subject of many discussions, amongst which treatments based 
on microscopic theory. For the discussion of the latter it will be convenient 
to have at our disposal the explicit expressions for these tensors. Minkowski’s 
field energy-momentum tensor reads in the rest frame 

TUB’ 
( 

&(E’*D’+B’.H’) E’ A H’ 
(f)M = D’ A B’ - E’D’ - H’B’ + &(E’. D’ + B’*H’)U > 

1 (19) 

while Abraham’s tensor is 

+(E’. D’ + B’.H’) E’ A H’ 
TUB 

(fL4 = 

( 
-_B(E’D’ + D’E’ + H’B’ + B’H’) 

> 
f (20) 

E’ A H’ + ij(E’*D’ + B’eH’) U 

In a later paper Abrahami3) remarked that the derivation of the expression 
for the energy-momentum tensor should be based on microscopic theory, 
but he limited himself to a discussion of possible approaches. D all e n b ac h l3) 
tried to follow an electron-theoretical line, but he did not give a proper 
derivation, since the material part of the energy-momentum tensor is not 
considered. He ends up with Minkowski’s field tensor by generalizing 
electrostatic arguments. Frenkelld) starts from microscopic considerations 
but since he believed that covariance includes form invariance, he was not 
able to arrive at a conclusion, as he states explicitly. 0 t t 15) would prefer a 

*) For their discussion see section 5. 
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microscopic starting point, but arrives at his result (the Minkowski tensor) 
with ad Izoc arguments of a macroscopic nature. Marx and Gyorgyil6) 
follow the same line as Einstein and Laub and advocate Abraham’s proposal. 
Since the material tensor is not considered, a unique result cannot be found 
from such a method. Rancoit ar7) uses some microscopic concepts, but 
gives no derivation on this basis since in his treatment several arguments 
of a macroscopic origin are used. His final result however is the correct 
expression (7). 

The averaging is performed in a rather loose way by all authors quoted 
in this section: sometimes averaging is performed over small (time or space) 
regions, sometimes the averaging is not even specified. 

The ponderomotive force in nonrelativistic approximation has been derived 
from a microscopic basis by Mazur and de Grootls) for an electrostatic 
dipole system and extended to higher multipoles by Kaufmanls). 

$4. Relativistic dynamics of a comfiosite *article. The problem of the 
derivation of the relativistic energy-momentum tensor from microscopic 
theory contains in its first stage the determination of the relativistic 
equations of motion of a stable group (called “atom” here) of charged 
(spinless) point particles. From the energy-momentum conservation laws 
for an atom carrying a charge, an electric dipole moment and a magnetic 
dipole moments) se) one may deduce equations of motion of the form: 

dGa 
__- = c-leF@UB + Q(%FBy) MBY 

ds 
- c-~ 2 (F”~MayUy), (21) 

dS@ 
___ = G&UP - GWa + A;M”“F$ - A<F~YJ~$ 

ds (22) 

where the abbreviation 

Ga = mUa + c--BSkJJB - c--2A;MflyF,,U& (23) 
. 

is used. Here s is the proper time of the atom, Ua its four-velocity, Ua its 
four-acceleration, e its charge, m its mass (rest mass and internal kinetic 
and Coulomb energies of the constituent particles), .S@ its internal angular 
momentum, M@fi its polarization tensor and F@ the external field. For a 
magnetic dipole atom (21), (22) and (23) reduce to 

dGa 

dS@ 
__ = GaU8 - GsUa + MayF!, - F@yiW?,, 

ds (25) 

where now 

Ga = mUa + c-2Sa6T0 - c-~M@F~~WJ. (26) 



90 S. R. DE GROOT AND L. G. SUTTORP 

These equations are exactly the same as those written down by Frenkelsr) 
for a single particle with intrinsic spin in classical dynamics. 

An important point in the formulation of the relativistic dynamics of a 
composite particle is the definition of the centre of gravity. In the frame 
work of our theory it was sufficient to introduce a definition of an approxi- 
mate centre of gravity which is correct up to the second order in the atomic 
parameters rk(. In this way an explicit construction of the centre of gravity 
could be indicated in a unique way. It is knownss) that an exact definition 
can only be given at the expense of the constructive character: in fact the 
exact definition does not determine the centre of gravity in a unique way. 
If such a definition is nevertheless used atomic equations of motion may 
be derived, which have the same form as those of the present theory, as has 
been shown by Vliegerss). His final results contain an unspecified tensor 
Tao, which is assumed to be symmetric. However its form can be deduced 
from the microscopic energy-momentum laws to be: 

TM(R) = cc s ??a$ 
dRq dR< 

i 
d72 7 6(Ri - R, dTi 

i 

where i, j number the constituents of the composite particle (“atom”), rnt 
the mass of particle i, dR:/dri its four-velocity, RF its position and fifnji the 
intra-atomic field due to particle i. This tensor is indeed symmetric. If 
(27) is inserted in Vlieger’s final expressions one obtains the results of papers 
I and II of this series, if the Darwin approximation is used. 

In the literature the dynamics of a magnetic dipole particle has often 
been discussed. Relativistic dynamics yielded the equation (21) with (23), 
which in the rest frame, in three-dimensional notation and including terms 
of order c-r reads 

Tellegensa) finds a different result, because he uses nonrelativistic 
dynamics. Remarkably enough however he states that formula (28) describes 
the force on a “magnetic-charge dipole” of moment M. 

3 5. Diswssion of treatments based on macroscofiic argzcments. Many 
authors try to tackle the problem of finding the energy-momentum tensor, 
especially its field part, by means of macroscopic ad hoc arguments, instead of 
deriving it from microscopic theory 20). No explicit expressions for the ma- 
terial part of the energy-momentum tensor are given, and often the latter 
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tensor is not even considered. The problem then remains to a large extent 
undetermined. 

Much of the discussion centred on the relative merits of Minkowski’s and 
Abraham’s field tensors (19) and (20). Mink o w s kia) adopted as a guiding 
principle form invariance in all Lorentz frames ; this is however a requirement 
which may not be imposed on the theory. With the help of this principle and 
the expressions for the field energy density, the field energy flow and the field 
pressure due to Maxwell, Poynting and Heaviside he arrived at (19), which 
contains as momentum density C-ID’ A B’. Indeed Minkowski’s field 
energy-momentum tensor has the same form (19), but without primes, ,in 
an arbitrary Lorentz frame. 

A b r a h a m4) adopts Hertz’s symmetrized field pressure expression and 
also symmetrizes the time-space and space-time field tensor components 
by writing c-1E’ A H’ for the momentum density. In this way he obtains 
a completely symmetrical field energy-momentum tensor, even for anisotropic 
media. In a later paperi2) he mentions as an argument in favour of this 
symmetry the fact that the microscopic tensor is symmetric. However this 
argument ensures only the symmetry of the total energy-momentum 
tensor, not the symmetry of the field tensor. As a different argument in 
favour of the equality of space-time and time-space components (in the 
rest frame) of the field tensor Planck’s remark that energy transport and 
momentum density are equal (apart from a factor cs) is often quotedss). 
However again such an argument can only be used for the total energy- 
momentum tensor. 

A much discussed argument in favour of the asymmetric Minkowski 
tensor was put forward by Von Laues6). According to this argument the 
energy transport velocity, which is the quotient of the energy flow and the 
energy density, should transform in such a way that the addition theorem 
for velocities is satisfied. The Minkowski field tensor does satisfy this 
criterion, but Abraham’s field tensor does not. However Tang and Meix- 
nerz7) invalidated Von Laue’s argument by showing that it may only be 
applied to the total energy transport and has no physical content for the 
field energy transport alone. (Moreover the criterion had to be amended 
somewhat in order to be valid for the total energy transport). 

Often reasonings which start from macroscopic variational principles 
are considered as derivations of the form of the field energy-momentum 
tensor-z*). In this way Minkowski’s, Abraham’s and other expressions have 
been found. Such arguments are not convincing since they start from 
postulated macroscopic Lagrangians which themselves are not derived from 
first principles. Various other ad hoc macroscopic postulatessg) have been 
put forward in order to justify the choice of a particular form of the field 
energy-momentum tensor 20). 

A somewhat special class of theories is based on thermodynamical 
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considerations. In the framework of a theory by Kluitenberg and de 
Groo taa) a relativistic Gibbs relation and the symmetric character of the 
material energy-momentum tensor were postulated. As a result a field 
energy-momentum tensor is obtained which is symmetric, and which comes 
very near to the expression (7). D e S asr) and M ei x n e r 32) discuss various 
possibilities of the splitting of the total energy-momentum tensor into a 
material and a field part. They rightly conclude that thermodynamical 
view points do not allow to specify the material part sufficiently well; hence 
the field part remains then undetermined. Chu, Haus and Penfieldss) 
postulate a form for the first law of thermodynamics and the symmetrical 
character of the material energy-momentum tensor. Since this starting point 
is equivalent to Kluitenberg and de Groot’s their resulting field energy- 
momentum tensor is also the same, apart from some diagonal terms. 
Chu, Haus and Penfield follow the same thermodynamical reasoning as 
Prigogine and Mazurs4) in order to compare the material pressure in 
systems with and without fields. 

In general it may be stated that the solution of the problem to derive 
the field energy-momentum tensor in polarized media remains undetermined 
as long as macroscopic arguments are used as guiding principles. The 
problem only becomes well-defined if the total (field plus matter) energy- 
momentum laws are considered. This can be achieved if one starts from the 
microscopic conservation laws (v. 3 2). 

This investigation is part of the research programme of the “Stichting 
voor Fundamenteel Onderzoek der Materie (F.O.M.)“, which is financially 
supported by the “Organisatie voor Zuiver Wetenschappelijk Onderzoek 
(Z.W.O.)“. 

The authors are indebted to Dr. J. Vlieger for sending them the manu- 
script of his paper before publication in the journal Physica. 
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