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synopsis 
The difference of the relativistic energy-momentum tensors of a substance with 

and without fields is derived for the case of thermodynamic equilibrium and linear 
constitutive relations. It may be looked upon as the field part of the total energy- 
momentum tensor. The remainder is then the corresponding material part. The 
negative divergence of the field tensor is the ponderomotive force corresponding to 
pressure and internal energy defined at zero fields. It constitutes a relativistic generali- 
zation of the Helmholtz force. A comparison with the tensors of Minkowski and 
Abraham shows that these cannot be justified from a microscopic point of view. 

9 1. I&rod&ion. The relativistic second law of thermodynamics for 
a neutral polarized fluid was obtainedr) in the form 

T’Ds’ = De’ + $‘Dv’ - &F;gD(v’M(l)“fl’) + $v’M$)‘DF@‘, (1) 

where the time derivative D = d/dt’, the temperature T’, thespecific entropy s’, 
the specific energy e’, the pressure $‘, the specific volume V’ = ($)-I, the 
electromagnetic field F& and the polarizations M$” and M$)’ are measured 
in the permanent local rest frame, indicated by primes (T’, p’, F,$ and 
M$)’ are equilibrium quantities). The polarization tensors M$’ and M$) 
are defined in terms of the total polarization tensor Mao and bulk velocity 

U, by 

M$’ = -c-2(U,WMrp + U,WMa,,), (2) 

ML;’ = A;A;M YE’ (3) 

where Aa0 = gas + c-2 U,Uo. Furthermore the parameters T’, 9’ Fig and 
&I$” are equilibrium quantities. The energy e’ and the pressure $’ form part 
of the material energy-momentum tensor F$, which in equilibrium and in 

*) Articles I-V appeared in Physica 37 (1967) and 39 (1968). 
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the local rest frame reduces to 1) 2) 

where ei is the energy density e’e’ and U is the unit three-tensor. 

material energy-momentum tensor occurs in the energy-momentum 
servation laws 

where T$, is the field energy-momentum tensor, which in the local 
frame has the form 

T”$; = 
&E’s + &B’z E’ A H’ 

E’ A H’ __E’D’ _ H’B’ + (93’2 + @‘2 - B’*M’)U ’ 

(4) 

The 

con- 

(5) 

rest 

(6) 

The preceding formulae furnish the basis of the following discussion on 
the difference between the energy-momentum tensors for systems with and 

without external fields. 

5 2. The free energy for systems with linear constitutive relations. In this 
paper we shall limit our discussions to isotropic media with linear con- 
stitutive relations, i.e. substances in which - in equilibrium - the polari- 
zations are proportional to the electromagnetic fields 

P’ = K(V', T’) E’, 

M’ = ~(v’, T’) B’, 

or, in covariant notation, 

M(i)@ = ,+,‘, T’) c-s(U”U,,FY0 

M(2)@ = ~(v’, T’) A;@ FY&. 

The time derivative of the specific free energy 

f ’ = e’ - T’s’ 

reads according to the entropy law (1) 

(7) 

(8) 

F&y UJP), (9) 

(10) 

(11) 

Df’ = -p’Dv’ - s’DT’ + &F&D(v’~WW) - $v’M~;” DFO. (12) 

This relation may be integrated at constant v’ and T’. With the help of (2), 
(3), (9), (10) and the identity valid for arbitrary antisymmetric tensors Aao 
and B&b: 

A@‘DB;; = AaflDBaB + 2c-2ULX[A@BBy - B@Agy) DUy (13) 

one then gets the relation between the equilibrium values of the specific free 
energy f’ with fields and fb without fields (but at the same values of the 
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specific volume ‘u’ and temperature T’) : 

f’ = f; - ~v’K-lM$)MU)a@ - @‘#A{Fap?=, (14 
or, in three-dimensional notation, 

f’ = f;, + $/K-lp’2 _ 1 &xB’~. (15) 

The pressure follows from the specific free energy by differentiation with 
respect to the specific volume at constant T’, v’iV(l)@’ and F&b’. One obtains 
using (9) and (10) 

+ &J’ ; c-‘=F&W,,F”Y + iv’ $ F,oA;AtFy (16) 

where $6 = -i?fb/lW is the pressure in the absence of fields. This formula 
may be written in three-dimensional notation as 

p’ = p; + &Et. p’ + $B’ . M’ + &E’zv’ 2 + QB’W $. (17) 

The specific entropy follows from the specific free energy by differentiation 
with respect to the temperature T’ at constant v’, v’M(r)~@ and F@‘. One 
obtains using (9) and (10) 

af 
sb + 6 c-w a/c 

s’= -aT’= 
__ F.$PUyFaY 
aT’ 

F,oA$4~F~&, (18) 

where si, = -afblaT’ is the entropy in the absence of fields. The energy 
density ei = e’e’ follows from (1 I), (14) and (18) : 

e; = eho + &FaSM(lbS - $FagMMaP 

+ &-2T’ $ F&PUyF”~ f )T’ $ Fcx,yAv{F~&, (19) 

where eJa = e’ei, is the energy density at zero fields. Formula (19) reads 
alternatively 

ek = e$, + &E’. p’ - JB’ . M’ + QE’2T’ $ &t 
f $B’2T’ p, 

aT’ (20) 

In formulae (17) and (20) expressions have been obtained for the energy 
density ek = e’e’ and the pressure fi’, occurring in the material energy- 
momentum tensor (4). These relations show the dependence of ei and *“on 
the fields. 
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3 3. The energy-momentum tensor in media with and without fields. In the 
absence of electromagnetic fields the energy-momentum tensor for an 
isotropic fluid system in equilibrium [cf. formula (4)) reads in the local rest 

frame 

( 

eh0 + e’c2 0 

0 > pbu * 
(21) 

In the presence of electromagnetic fields the energy-momentum tensor 
is equal to the sum of a material and a field part, which in equilibrium (in 
the rest frame) are given by (4) and (6). For the case of linear constitutive 
relations it follows from (17) and (20) that the difference of the tensor with 
field and the tensor without field is equal to 

_ E’D’--_H’B’ 

in the rest frame. (Here D’ = E’ + P’ and H’ = B’ - M’). The expressions 
(21) and (22) together form the total energy-momentum tensor in the 
presence of fields in the local rest frame of the equilibrium system under 

consideration. Hence the part (22) contains the complete effect of the 
switching-on of the fields. In view of this property expression (22) may be 
considered as a field energy-momentum tensor T$’ and (21) as its corre- 
sponding material energy-momentum tensor T$i (the dash indicates the 

rest frame). These tensors read in arbitrary frames 

T$ = FayH!, - tFyeHy&g@ + c-2U~(FayMy6 - M~YF,,,) Us 

+ &--2UQ3 C-2T’ --& F,,U&U,FYC + 4T’ -$- F,,A;A;F@ 
> 

, (23) 

TUB Lml = ~-2UaUfl e,o ( ’ + $6) + da+%,. (24) 

These tensors were derived for isotropic fluid media in equilibrium using 
linear constitutive relations. They will be further specified in the next 
section. 

§ 4. Indzaced difiole and $ermanent dipole substances. The field energy- 
momentum tensor (23) contains derivatives of the electric and magnetic 
susceptibilities K and x. These may be expressed in K and x themselves if the 
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dipole character of the medium is further specified. First we consider 
irtd%ced difiole szlbstances obeying Clausius-Mossotti laws of the type 

while K and x are independent of the temperature T’. With these laws 
expression (22), which is the rest frame form of (23), becomes 

&E’.D’ + +B’.H’ E’A H 
T@@’ = 

[fl 
-E’D’ _ H’B’ * (26) 

E’A H ‘ + (&E’s + *B’s - B’. M’ - iP’2 + QkP)U I 

It may be noted that whereas the combination &Et. D’ + QB’. H’ subsisted 
in the energy density, it disappeared from the diagonal elements of the field 
pressure tensor *). 

As a second example we treat fiermanent dieole substances with sus- 
ceptibilities obeying Clausius-Mossotti laws in their density dependence 
and Langevin-Debye laws in their temperature dependence : 

K 1 x 1 

K + 3 Npp 3_2XNr v’T (27) 

With this behaviour the tensor (22) becomes 

‘@‘2+@‘2-_B’.M E’A H’ 

TUB’ = -_.BP’z+gw 
[fl -E’D’-I-J’H’B’ . (28) 

E’A H +(&E’2+$B’2-B’.M’-&P’2+$+f’2) u 

In this expression no polarization energy of the type BE’* P’ - $B’. M 
occurs. Instead -QP’2 - B’.M’ + j&f’2 appears together with &E’2 + 
+ $B’2 in the energy density. The expression for the energy density has the 
same form as part of the diagonal elements of the field pressure tensor. 

For diluted media, where terms quadratic in the susceptibilities may be 
neglected, the tensor (26) for induced dipole substances reduces to**) : 

TUB = 

( 

+E’. D’ + &B’. H E’AH 
lfl E’ A H > -E’D’ - H’B’ + ($33’2 + 4B’2 _ B’.M’)U ) (29) 

while the tensor (28) for permanent dipole substances gets the form 

Tap’ = 
9E’2 + @‘2 _ B’ . M E’A H 

[fl E’A H - E’D’ - H’B’ + (ijE’2 + 4B’2 - B’* M’)U > 
. (30) 

*) The combination @Ya + +B’* - B’.M’ - &P’Z + f&f’* may be written alternatively as 
&E’a + #iY’z - +P’* - +W. 

**) In the approximation used here the combination +E’a + )B’* - B’.M’ is equal to iE’= + $H’a. 
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The tensor (29), derived for diluted induced dipole substances, shows 
some similarity to the tensors proposed by Minkowskia) and Abrahama), 
whose expressions contain the same energy density and energy flow. 
However, Minkowski’s momentum density c-ID’ A B’ is not found, and 
neither is the field pressure tensor -E’D’ - H’B’ + (BE’. D’ + &B’. H’) U 

proposed by both these authors. Thus neither Minkowski’s nor Abraham’s 
tensor may be justified from microscopic theory. 

§ 5. The flonderomotive forces. The energy-momentum conservation laws 
may be written as 

as(T$ + T$) = 0, (31) 

where T$ is the field energy-momentum tensor (23) and T$] the material 
energy-momentum tensor, which was defined as the energy-momentum 
tensor in the absence of fields. The conservation laws can alternatively be 
written as 

aflTg&] = F”, (32) 

where a force density Fa is introduced which is given by 

9~ = -+T$. (33) 

It corresponds thus with a material pressure and internal energy defined 
at zero fields. 

With the help of the field tensor T$ an expression may be obtained for 
the force density Pa. Let us consider explicitly the special case of a medium 
at rest with negligible acceleration. The expression for 9~ may then be 
found from the rest frame formula (22) for T# with the help of the Maxwell 
equations for a neutral current-free medium. The time component (CC = 0) 
turns out to be 

90 = &i?%oK - a0 +T ( ‘+E~)++W&X-- &($T’--$B2). (34) 

The space components (OZ = 1, 2, 3) form the macroscopic force density 

s=-:E2BI-~(?V’~E2)-~~2~~ 

-,(&vr+2)+ ~o{(K+x)EAB}. (35) 

Here the first two terms form together Helmholtz’s ponderomotive force*). 
They have been found before from thermodynamical considerationss), and 

*) Sometimes a magnetic susceptibility 2 is defined by the relation M = jin. Then the third and 

fourth term of (34) become )Hs&f - ?&[T’(a~/XY) Hz] and the third and fourth term of (35) 

become -j$PVz - V[&‘(~~/&J’) Hz]. 
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in a statistical treatment for static electric dipolesa) as the ponderomotive 
force corresponding to a material pressure defined at zero fields. The third 
and fourth terms are analogous magnetic contributions. Finally a term 
appears, which contributes only if the fields vary in time; it may be written 
alternatively as &,(I’ A B - M A E). The part with the magnetization is 
found in the present relativistic treatment of the system; in a non rela- 
tivistic theory only the term with the electric polarization can be derived. 

Conclusion. In this series of articles the relativistic energy-momentum 
tensor in polarized media was derived from microscopic theory by means 
of covariant averaging. The tensor could be looked upon as the sum of a 
material and a field part in various ways. Depending on whether the material 
properties, such as pressure and internal energy, were defined for states 
with or without fields, different expressions were obtained for the field 
energy-momentum tensor. 

These results will be discussed in connexion with the literature on this 
subject in a final paper of this series. 

This investigation is part of the research programme of the “Stichting 
voor Fundamenteel Onderzoek der Materie (F.O.M.)“, which is financially 
supported by the “Organisatie voor Zuiver Wetenschappelijk Onderzoek 
(Z.W.O.)“. 
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