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synopsis 
The relativistic first law of thermodynamics for polarized media is derived from the 

conservation law of energy-momentum. The nonrelativistic second law for these 
systems is obtained from equilibrium statistical thermodynamics and generalized to 
the relativistic case. The entropy balance equation is then derived from the first and 
second laws. 

5 1. Introduction: the energy-momentum conservation laws. The conser- 
vation laws of energy and momentum for systems in which the relative 
atomic motion is nonrelativistic within the correlation domain have the 
form 

a@-;! + F$$,) = 0, (a = 0, 1, 2,3), (1) 

where a field energy-momentum tensor 

T,“, = FbyH$ - $F,FY”g*8 + 

+ c-=U~(FaW,,, - iVPF,,) u” - c-~UYJW~F,M”~U, (2) 

has been introducedi). The corresponding material energy-momentum 
tensor p$, was given as a statistical expression in terms of characteristic 
atomic parameters 1). The laws (1) will form the basis of the thermodynamic 
considerations of this paper. 

5 2. The relativistic first law of thermodynamics. If the conservation law 
(1) is multiplied by the macroscopic four-velocity U,, which was definedi) 
as the average atomic velocity, one gets the equation 

(3) 
The material energy-momentum tensor, which in the local momentary 

*) Articles I-IV appeared in Physica 37 (1967) and 39 (1968). 
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rest frame has equal time-space and space-time componentsr), may be 
written as 

5!$) = c-~U~U~(Q’C~ + e;) + c-s(U”Ifl + IaUP) + Paa, (4) 

where a scalar energy density eh, a heat flow four-vector Ia and a pressure 
four-tensor Paa are introduced. They are defined as 

eJ = c-YJ,U$$, - e’c2, (5) 

Ia = -U&?&A; = -A;Ff&,,U,,, (6) 

PC@ = A;A{ym,. (7) 

Here A; stands for S; + c-2U%?_Jp and Q’ is the rest mass density in the rest 
frame, which obeys the conservation law 

&&‘Ua) = 0. (8) 

Since in the rest frame U” has the form (c, 0, 0, 0) the four-vector Ia and 
the four-tensor Paa are purely space-like. 

The expressions (2) and (4) will be introduced into the law (3). The 
polarization tensor M@, which occurs in (2), is split into two parts 

where 
M(l)@ = -c2(U”UyM~fl + UW,,M”$ 

MG%S = A”P{Mw. 

From these definitions the properties 

A”A@MW= = 0 Y E 
UaMG%B = 0’ 

(10) 

(1’) 

(12) 

(13) 

follow. Therefore in the rest frame the only non-vanishing components of 
M(l)@ are space-time-like, while M(2)@ is then purely space-space-like. 
Thus (in the rest frame) M(l)@ and M(2)@ represent the electric and magnetic 
polarization respectively. 

The first term of (3) becomes with (2), (8)-(11) and the Maxwell equations 

U,asT$ = -c-l UaF@Jo + +F&‘D(v’M(l)afl’) - &M$“DF”fl’, (14) 

where J” is the macroscopic four-current, v’ = (Q’)-l and D = U&a@. The 
dash denotes quantities in the local rest frame; for arbitrary antisymmetric 
tensors A@ and B@ one has 

A&D@6 = AaBDB@ + 2c-2 Ua(AapBfly - B,,A@v) DU,. 

The second term of (3) becomes with (4) and (8) 

U,a,q$ = -@‘De’ - (a,Ia + C-2IaDU,) - PWaUB, 

(15) 

(16) 
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where e’ = v’eQ is the energy per unit rest mass. The law (3) reads with (14) 

and (16) 

@‘De’ = - (a,Ia + c-2 IaD U,) - PW,Up - c-WaF@ Jg $ 

+ +F;,$D(v’M(l)@‘) - @l$‘DF@ ‘. (17) 

This is the first law of relativistic thermodynamics for polarized media. It 
gives an expression for the change in time of the energy e’. The right-hand 
side contains in the first place the divergence of the heat ‘flow Ia together 

with Eckar t’ss) relativistic correction, and a term with the pressure tensor 
P@. Furthermore terms with the electromagnetic field F@, the four- 
current density J” and the polarizations M(l)@ and A&s)@ occur. 

$ 3. The second law of thermodynamics in nonrelativistic approximation. 
In this section we shall derive the nonrelativistic second law for dipole 

substances from equilibrium statistics with the help of the canonical 
ensembles). In the following section a relativistic second law will be intro- 

duced as a generalization of the nonrelativistic law. 
The system, which in general is not uniform, will be considered as the 

union of a number of cells, each of which contains on the one hand a large 
number of atoms (or molecules), so that the principles of statisticalmechanics 
may be applied, but is on the other hand sufficiently small to be considered 
macroscopically uniform. The shape of the cells will be chosen ellipsoidal 
since then uniform external fields produce uniform polarizations. The bulk 
velocity in the cell will be taken equal to zero. Furthermore the system will 

be supposed to have a correlation length which is small compared to the 
dimensions of the cell. This is the case in fluid systems to which we shall 

confine our discussion. Finally we shall consider only substances in which 
the mechanical effects due to the atomic angular momenta are negligible. 

From the expression (A 9) with (A 5), (A 6) (v. appendix I) for the 
Hamiltonian H of the atoms k with electric dipole moments ,~k and magnetic 
dipole moments ZQ contained in a cell the macroscopic energy follows by 
averaging : 

<H> = <K> + 42 2 
ektekf 

ki,i,i#i 4nlrki - ml > 

( 

1 

+ ik Z~+Z~k*&kiUZ*ht, 
, 3 4njRnc - RzI > 

1 
- 4 c ~k*&,vZ*&, 

k,l,k#Z 47~ I& - Rzl > 
- <z pkmEle) (Rk)>, (18) 

k 

where K is the kinetic energy. One can write this alternatively using the 
one-point distribution function fl(R1, ~1; t) and the two-point distribution 
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functions fz(R1, R2, 1~1, ~2; t) and h(R1, R2, ~1, VZ; t), as 

<H> = (K) + 4 C C - ek’ek’ 
k i i i+i 47~ kkt - rkjl > , 7 > 

+ 4 s( Yl’r’;(,p2*PR, --- 
1 

- 
452 I& - R2I > 

fz(R1, R2, ru1,puz; WWR2d,wIy2 

1 - 
47cIR1- R2l > 

fz(&, R2, ~1, ~2; t) dR1 dR2 dvl dv2 

- s ,w*E(~)(RI) fl(Rl, ~1; 4 dR1 dpl, (19) 

where the volume integrations are extended over the cell. Introducing the 
correlation function 

cz(R1,Rz,trl,~“z;t) =fzV’h,Rz+~p2;t) -fl(Rl,trl;t)fl(Rz,luz;t) (20) 

and a similar function v1 and vs, one gets for (19) 

<H)=<K>+$ Z 
ekiekj 

k i,Li#j 472 Irk2 - rkj] > 

+ jj (p14’~~42%~ 4n,R11_ R2,)c2(R~.R2 pl,pCzz;t) dRldRzdpldp2 

*SC 

1 
- t’l*v&vZ’v& 

4nlR1- R2l > 

cz(R1, R2, ~1, ~2; t) dR1 dR2 dvl dv2 

+ -kc” - MM): 
s 

v&t, 4iz;R11_ R2, dRr dR2 - VP*EW, (21) 

where V is the volume of the cell and where 

R = J yifi(R, ~1; t) dpi, (22) 

M = j vlfl(R, ~1; 4 de (23) 

are the macroscopic polarizations, which are uniform over the cell. Since the 
system in the cell is assumed to be uniform the correlation functions 
c2(R1, R2, ~1, ,m; t) and cz(R1, Rz, ~1, ~2; t) depend on RI and Rz only 

through their difference s = RI - Rs; in the third and fourth term of 
<H> we shall write cs(R + is, R - is, pl, ,u2; t) and cs(R + i&s, R - 

- &s, ~1, v2; t) where R is an arbitrary position within the cell. As is shown 
in appendix III one has for the integral in the fifth term: 

s V&VA* l 
47~ IR1- R2l 

dRi dRz = -V 
s 

V,Vs -& ds, (24) 
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where s is the position vector measured from the centre of the ellipsoidal 
cell. The right-hand side contains the defiolarization tensor 

L(a) = - F,F, & ds, s 
which depends on the (uniform) deformation tensor E: of the ellipsoidal 
In this way (21) becomes 

<H> = <K> + 4 C IX 
ektekj 

k i,i,i#f 47C\rki - rkj\ > 

- iv 
SC 

rl.F_#2*V& 
> 

c2(R + is, R - is, ~1, ~2; t) ds d,w dp2 

+ iv 
> 

c2(R + $-s, R - is, VI, v2; t) ds dvl dvz 

+ :VL(a) : (PZ-’ - MM) - VP.E@). (26) 

Terms of this energy expression occur in the nonrelativistic energy law 

(25) 

cell. 

(IV.55-56), of which the left-hand side reads, using (IV.20) and (IV.67): 

(a/at) (qij - @) + V~(CTy~~ - @CW), (27) 

where the energy density FF$ - $2 s e; (5) (for neutral atoms with 
negligible angular momenta and ZJ = 0) was given by 

ei = Bt+ + 
s 

8m&fl(R ~1; t) de 

- 9 
S( 

rd7J42*v,-& 
> 

cz(R + &s, R - is, ~1, ,u2; t) ds dpl dp2 

- 8 
s( 

T(S) 
(vl~VJ(v2~P;):- 

%?CS I 
cz(R + j&s, R - &, ~1, ~2; t) ds de dv2, (28) 

where T(s) = U + s/s2 (U is the unit tensor). With the help of (1V.A l), 
(1V.A 2), (1V.A 13), (IV.70) and (23) the last term of this expression may 
be transformed into : 

3 
s( 

1 
vl’vp2.~,- 

47cs > 
c2(R + is, R - is, vl, ~2; t) ds dvr dvs - #M2, (29) 

where the first term has the same form as the electric dipole term in (28). 
Comparing (28), (29) with expression (26) one has: 

<H> = V{e; + +L(B) : (PP - MM) - P.E@) + 9M2}. (30) 

The canonical ensemble, which describes the cell in equilibrium, is given 
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by the distribution function 

(F--H)/kT’ f=Ce , (31) 

where H(q, p) is given by (A 10) and where C is a constant (depending on 
the number of atoms). The free energy 

F = <H> - TS (32) 

of a one-component system*) is a function of the independent variables : 

the deformation tensor q, the external fields E(e) and B(e) and the temper- 
ature T: 

aF 
dF = y d;+ &. dE@) + -&a dB(@ + $ dT. (33) 

The partial derivative aFIaT gives the entropy: S = --aFlaT. From 

(31) and (A 10) it follows that 

(aF)/aE(e))?tl,Bc”,,~ = -<c yk> = -VP, 
k 

(aF/aB@) Et,, B(C), T = -<c vk> = -VM. 
k 

(34) 

(35) 

From (32) and (33) one proves that 

(aFl+ E@),B(C), T = (a<H>/a&ce,,Bc.l,s . (36) 

From a consideration of the work exerted on the system (see appendix II), 
it follows that the last formula may be written as 

=- 
E(C),B@, T 

(37) 

With (A. 10) this becomes, SinCe one has Pki = Bk = mklik: 

= -<z mkfikdk) 

W),B(‘), T k 

1 
+ c Brcv~,Pk’~rz,~~‘v~,, 

‘h\Rk - Rzl > 

+ c Rkv&‘k’v&‘Z*vzz, ’ 
‘in\& - Rzl -> ’ 

(38) 

where use has been made of the fact that E(e) and B(e) are uniform over the 
cell. Using distribution functions just as in the derivation of (21) one gets 

*) The generalization to mixtures consists merely in adding a term containing the chemical 
potentials and the composition parameters to the right-hand side of (33). 
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for (38) 

XC- 

f 
nz~vlulfl(Rl, VI; t) dR1 dvl 

E(e), BW,T 

+ Rl~B~~l.~B,rz*~~*~~~~~_~ s( > cz(R1, R2, ,ul, 1~2 ; t) dR1 dR2 d,a dp2 

s( 

1 
+ R1F7~lW7~,~2d7~a 

4n IR1--R21 > 

cs(Ri, R2, vr, v2; t) dRi dRz dvi dvz 

1 
+ R1W’&, 

4nlR1- R2l 
dRi dRs : (PP + MM), (39) 

As is shown in appendix III one has for the integral in the fourth term: 

s 1 
J’W&JR, 

4nlR1- R2l 
dR1 dRe = - $JJ’ 

s 
WJ,17s & ds, (40) 

where s is the position vector measured from the centre of the ellipsoidal 
cell. The right-hand side contains the tensor of the fourth rank: 

(41) 

Introducing into (39) the relative coordinates s and using the uniformity of 
the distribution functions, one gets 

E(e),BW, T s 

- JV w#l*v#uz*vs & 
) 

cz(R + is, R - is, ~1, ~2; t) ds dpldp2 

- iv 

K 

sc7svl* vp2*r7s 
1 

- 
42z.s 

c2(R + is, R - +s, VI, ~2; t) ds dvl dvz 

-~VK(E) : (PP + MMj. (42) 

Apart from a factor (-V) terms of the right-hand side occur in the non- 
relativistic momentum law (IV.58-59) of which the left-hand side is 

c-l(a/atj !Fg, + vifFy& (43) 

where the pressure qi, = Pfi for the dipole substance in rest (U = vl - 
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- fil = 0) is 

P = 
s 

ml~l~lfi(R, ~1; t) dul 

+* 
SC 

SP;~1*Qz*& 
> 

cz(R + is, R - is, ~1, ~2; t) ds dylQ42 

4 

T(s) 
- 

w&Q A V,,)(p2 A F.J : -g--g 
I 

c4R + +s, R - $s, VI, ~2; t) ds dvi dvs, 

(44) 

where the effect of atomic angular momenta have again been neglected. 
With the help of (1V.A 3). ‘1V.A 4), (1V.A 13), (IV. 70) and (23) the last 
term of this expression may be transformed into : 

ts( 
(Wp 1 l I7p2 l vs --& 

> 
c2(R++s, R-+s,vl,v2; t) dsdvidvs+$MsU. (45) 

With the tensor (44)-(45) the expression (42) becomes: 

aF 

k> ac 
= -V{P + OK : (PP + MM) - *MsU}. (46) 

EC’),B@), 2’ 

With (34), (35) and (46) the total derivative (33) of the free energy gets 
the form: 

dF = -V(P + *K(E) : (PP + MM) - &MsU} : d; - 

- vP*dE@J - VM.dB(e) - S dT, (47) 

where cis the transposed tensor of E. From this expression with (30) and 
(32) one gets for the specific entropy s = S/M (with M the mass in the cell) : 

T ds = d{e + @L(e) : (PP - MM) + &vM2} + 

+ v{P + *K(E) : (PP + MM) - $MsU} : dg- E(e) .d(vP) + vM*dB(e), (48) 

where e is the specific energy veh and v = v/M the specific volume. For the 
(ellipsoidal) cell the Maxwell fields E and B are 

E = E(e) - L(r)*P, B = B(e) - L(e) - M + M. (49) 

These relations permit us to express the external fields in terms of the local 
fields E, B, P, M and the deformation tensor E. Equation (48) becomes then: 

T ds =de+vP:d&--_*d(vP)+vM*dB 

+ d{&L(e) : (PP - MM) + &M2} + &{K(e) : (PP + MM) - MsU} : dS 

- P.L(e).d(vP) + vM*d{L(+M - Mj. (50) 
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Since U : de is equal to v-1 dv the second and third lines are: 

d{&L(e) : (PI’ + MM) + &(K(e) : (PP’+MM)} : d; 

- P*L(E).d(vP) - MeL(e) 

As shown in appendix III one may prove the identity: 

$ {V--%(E)} = -v-lK(e), 

so that the expression (51) vanishes. The relation (50) becomes now: 

T ds = de + VP : dz - E.d(vP) + vM*dB, (53) 

where now only local quantities occur. The differential relations, such as 
(53), should be understood as relations between time derivatives. For that 
reason we shall write from now on D, which stands for d/d& instead of d. 
(We note that De is equal to Vu, where v is the velocity). 

Fluid systems are (by definition) isotropic in the absence of polarization. 
Futhermore the polarization vectors P and M will be parallel to E and B, 
and functions of the density Q = v-r, the specific entropy s (or temperature) 
and the fields E and B respectively. Now (53) can be integrated at constant 
o and ~4). This yields the energy e in the form 

e = ea + de, (54) 

where ea is the energy at zero polarization, which depends only on e and s, 
while de is a function of Q, s, E2 and B2, or of Q, s, Ps and B2. Therefore De 
contains only the trace of Da which is equal to j7*u = -_e-~DQ. From (53) 
it follows now that in the equilibrium state of the fluid the tensor P reduces 
to a scalar pressure p, multiplied by the unit tensor. In this way (53) becomes 

TDs = De + #Dv - E*D(vP) + vM*DB, (55) 

which is the nonrelativistic second law (Gibbs relation) for (one-component) 
polarized fluids. 

5 4. The relativistic second law. In the preceding section the nonrelativistic 
second law (55) has been derived for fluid systems in equilibrium. This law 
contains the specific energy e and the pressure p which are connected to 
quantities appearing in (27) and (43) : 

e = v~~~~ - cs, (56) 

p = C?& = F& = $n&. (57) 

All quantities occurring here are defined in the local rest frame; we shall 
mark them from now on by primes. 
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Since no statistical derivation of a second law for relativistic systems 
(with interaction) in equilibrium is available, we postulate in analogy with 
the nonrelativistic law (55) : 

T’Ds’ = De’ + ~‘Dv’ - E' . D(v’P’) + z/M - DB’ (58) 

as the relativistic second law (,,Gibbs relation”) for neutral polarized fluids 
locally in equilibrium. The quantities with primes are defined in the local 
permanent rest frame in which the system is locally at rest all the time. (The 
permanent rest frame is a succession of Lorentz frames, not a Lorentz frame 
itself). The derivative D stands for Uaa, where Ua is the local macroscopic 
four-velocity; it is the time derivative d/dt’ in the local rest frame. Since E’ 
and B’ form the tensor F&, and P’ and M’ the tensor M& we may rewrite (58) 
with the help of (9)~(11) as 

T’Ds’ = De’ + P’Dv’ - $F~,D(v’MWO’) + $v’jl$)‘DFO’ (59) 

This is the relativistic second law in covariant form. 
From the combination of the first and second laws the relativistic entropy 

balance equation for a neutral (and current-free) polarized fluid may be 
obtained. In fact from (17) and (59) it follows that 

Q’Ds’ = -i3a,Sa + ~7, (60) 

where we introduced the entropy flux 

Sa 3 la/T (61) 

and the entropy source strength 

1 
or-- 

T’ i ( 
- Ia $ aaT’ + c-2DU, 

> 
- (Paa - P’W) a,UB 

1 
. (62) 

The entropy flux (61) is equal to the heat flow la divided by the temperature. 
In the entropy production (62) contributions from heat conduction and 
viscous phenomena occur. 

Concluding remarks. The relativistic thermodynamical laws obtained here 
will be used for the further study of the energy-momentum tensor in polarized 
media. In particular it will be shown in the next paper that a material 
energy-momentum tensor for switched-off fields and a corresponding field 
energy-momentum tensor may be found from thermodynamical con- 
siderations. 

APPENDIX I 

The nonrelativistic Hamiltonian for a dipole system. The Darwin-Lagran- 
gian for a system of charged point particles ki (grouped into atoms, or other 
entities, numbered by k; the index j = 1, 2, . . . , f labels the constituent 
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particles) with charges ek$, positions Rkt and velocities &i which move in an 
external field with scalar and vector potentials v(e) and A(e), reads 

, (A 1) 

where, with a and b arbitrary vectors, 

T(a, b) = U + 
(a - &)(a - b) 

la-b12 * (A 2) 

If the last two terms of L are expanded in powers of r&i = &a - Rk, where 
Rk is the centre Of gravity ~,!=,??ZkiRki/~$=, mk6 Of atom k, one obtains up 
to second order in rk$ (but discarding electric quadrupole moments 
3 xi=, %?$k#ktrki) and up to zeroth order in c-1: 

+ 2 ,LCk’Ete)(Rk) + x Vk’Bce)(Rk), (A 3) 
k k 

where pk = Cz ek#k( and vk = $ & ekirkt A r/&/C are the electric and 
magnetic dipole moments (the atoms carry no nett charge) and where E(e) 
and B(e) are the external electric and magnetic fields. This Lagrangian 
contains only terms of order c 0, if the c-1 in the magnetic dipole moment 
vk: is not taken into account; the magnetic dipole moment is considered as 
a characteristic atomic parameter on a par with the electric dipole moment. 

Instead of the dependent position coordinates Rk and r&Z, independent 
generalized qkj are now introduced by means of 

qkl = Rk, Qkg = rki (i = 2, 3, . . . f). (A 4) 

InVerSiOn gives with the help of xi=, mk(rk( = 0: 

Rk = qkl, 
f mkj 

rkZ = qki - 621 x i=1Gqk5 (i= 122, . ..f). (A 5) 
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The kinetic term in L becomes with &( = Rk + rk$ and (A 5) : 

where mk = cf=, mki. Furthermore the dipole moments become with (A 5) 

With the help of (A 5-8) the Lagrangian (A 3) is found as a function of qkg 
and eki. With the use of the canonical mOmentap& = aL./aiki one finds the 
function 

H(qt 4, = ~pkt’~k2 - L = 
ki 

If the $kf are expressed in the canonical coordinates one gets for (A 9), 
neglecting terms of order c- 2, the Hamiltonian function 

p;1+ c f: k 
( 

&,&PL - -&j2Pki9k5) 

+gz z 
ekiek5 

+ fr k ,%,, ~k’&,l~Z’&,, -. 
1 

k i,i,i#l 4n(rki - rk5\ , , 4niqkl - qZl/ 

+ 3 
1 

I: vk * v&Z * &,,, __-___ 
k,l,k+l 4dqkl - qZl/ 

- z pk’Ete)(qkl) - 5 vk’Bte)(qkl). 

(A 10) 

This expression - in contrast with (A 9) - is symmetric in the electric and 
magnetic dipole moments pk: and v&. 
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APPENDIX II 

The pressure tensor in an anisotropic medium. In order to prove the 
equality of the right-hand sides of (36) and (37) we start with the virial 
theorem 

(A 11) 

for equilibrium. We write this first as 

( & (QklPkl) + 
> ( 

k'., &@ac) = 0. 
> 

(A 12) , I . 

The second term contains the.internal coordinates ~ka (v. (A 4)) and their 
canonically conjugate momenta pki. Therefore it vanishes in the adiabatic 
approximation5), according to which the atoms are in a pure state as far as 
internal coordinates are concerned*). The first term may be transformed 
with the use of Hamilton’s equations, so that (A 12) becomes 

>> s 
+ <F q&d(R - qd> dQ = 0, (A 13) 

where H is the Hamilton function of the system and wherefkrb(R - q& di2 

is the force exerted on atom k by an element of the wall Ctn situated at R. 

Now with the notation f(R) for the average force (per unit surface) exerted 
by the wall on the system, (A 13) becomes 

-$T~pkl- qkl+&- 
>> s 

+ Rj(R) da!2 = 0. (A 14) 

Let us choose the centre of the ellipsoidal cell as the origin of the coordinate 
system. Then for a uniform strain characterized by the tensor BE the dis- 
placements 6R at the position R as compared to the displacement BRo at 
the origin is given by 

6R - dRo = Rude. (A 15) 

Since the macroscopic velocity of the cell as a whole had been taken as 
zero, we have SRo = 0, so that (A 15) becomes 

6R = RsSe. (A 16) 

With this relation the second term of (A 14) contracted with the tensor BE 
becomes : 

S&J Rf(R) d.12 = j 6R j(R) dl2, (A 17) 

*) If the average is performed with the help of the canonical ensemble one arrives directly at 
(A 12) without the second term 6). 
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which is the work exerted by the wall on the system. If the displacement is 
performed adiabatically and at constant external fields E(e) and B(e), the 
right-hand side becomes 6(H), where <H) is the average Hamiltonian of the 
cell. Then (A 17) gets the form 

s EW,B(‘),S 

(A 18) 

If this is substituted into (A 14) one gets the result 

u f?H 
Ix--- 
k apkl 

Pkl - Qkl 
E)) + (G?)EceI,B.,, = O* (A 19) 

The coordinate ski is the position Rk (A.4) ; denoting similarly its canonically 
conjugated momentum Rki by Rk we may write: 

which is used in section 3. 

APPENDIX III 

On some mathematical identities in connexion with the defiolarization tensor. 

We shall prove in this appendix some relations involving the depolarization 
tensor L(e) and the tensor K(E), which have been defined as: 

V(E) 

(A 21) 

where the integration over s is extended over a volume V(E) of ellipsoidal 
shape, specified by the deformation tensor E [the integrals depend on the 
dimensions of the volume only through its shape). The vector s measures the 
position with respect to the centre of the ellipsoidal volume. 

First we want to prove the relation 

V’(E) 

Vi?,VB* 
1 

4nlR1- R2l 
dR1 dRz = VL(e), 

which has been used in section 3. It is equivalent to the identity: 

(A 23) 

V(E) 

s 1 
9, V&V& - dRi dR2 = 0, 

4nJR1 - R2l 
(A 24) 
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where the principal value sign 8, means that an infinitesimal ellipsoid of 
shape determined by E and with centre RI is excluded from the integration 
over Rz. If scale transformations of the coordinates are performed in the 
left-hand side of eq. (A 24) such that the integration domain becomes a 
sphere and if subsequently a Taylor expansion of the integrand is carried 
out, it follows that it is sufficient to prove identities of the form: 

V 

9’ s (Rr - Rz,“vR”:’ 1 -dRidRs=O (n = 0, 1, 2, . 4nlR1 R2l . .), (A 25) - 

where (RI - Rs)n denotes a polyad of rank n and Vg,‘” a polyad of rank 
n + 2. The integrations have to be extended now over a spherical volume, 
with the exclusion of an infinitesimally small sphere around RI from the 
integration over Rs. The left-hand side of (A 25) is an invariant tensor of 
rank 291, + 2, which is symmetrical in the first n and in the last n + 2 
indices. Furthermore traces taken with respect to a pair from the last 
n + 2 indices vanish identically. Thus the invariant tensor of rank 2n + 2 
may be considered as an element of the direct product space of symmetric 
tensors of rank n and symmetric traceless tensors of rank 1z + 2. Now 
symmetric tensors of rank 1z form a reducible representation of the rotation 
group which contains irreducible representations of dimension 2n + 1, 
2n - 3, . . . . whereas the symmetric traceless tensors of rank n + 2 form an 
irreducible representation of dimension 2n + 5. The direct product contains 
theretore irreducible representations of dimensionality higher than 1 only. 
Since the left-hand side of (A 25) is an invariant tensor which belongs to 
the direct product space it must vanish identically, so that (A 25) is proved 
and hence (A 23). 

In an analogous way one may prove the relation: 

V(E) 

R1h&L2 
1 

4nlR1- R2l 
dR1 dRs = -$VK(E). (A 26) 

Finally we shall prove an identity connecting the derivative of L(e) and 
K(E) : 

; {+L(E)} = --v-OK, (A 27) 

which has been used in 5 3 (formula (52)). S ince au/& is equal to VU, the left 
hand side of this identity may be written as: 

v-1 $L(E) - V_iUL(E). (A 28) 

According to the definition (A 21) of L(r) one has for the variation due to 
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a deformation 6~: 

where dS is a surface element (with normal unit vector n) of the surface 
S(E), which encloses the ellipsoidal volume V(E). Furthermore 6s is the 
deformation at the surface which is given by: 

so that (A 29) gives 

6.9 = S*&, 

V(E) 

(A 30) 

&L(r) = -[&.@,F~-&-)ds. (A 31) 

If this is substituted in (A 28) one obtains after a differentiation in the 
integrand : 

VV(El . 

-+--1 s 1 
WJ’Js - ds; 

47cs 
(A 32) 

according to (A 22) this expression is equal to the right-hand side of (A 27), 
which completes the proof. 
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