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Synopsis

The relativistic material energy-momentum tensor in polarized media, which
contains bulk terms, fluctuation terms and correlation terms, is studied especially in
the nonrelativistic limit. On this basis explicit forms of the energy-momentum and
angular momentum laws are given. Contributions quadratic in the polarizations are
proved to be contained in the correlation terms. For this reason a redefinition of
the field and material part of the total energy-momentum tensor may be intro-
duced.

§ 1. Introduction. In the preceding paper?!) the total macroscopic energy-
momentum tensor 7% of a polarized medium in the presence of electro-
magnetic fields has been derived in terms of atomic parameters. It satisfies
the conservation law of energy-momentum

9T =0  (x=0,1,23) (1)

and it is symmetric
To8 = Tha, 2

The conservation law of angular momentum
Oy(x2T8Y — x8T ) = 0 (3

follows from (1) and (2).

A part of T%8, which contains explicitly the macroscopic fields and po-
larizations, was called the macroscopic field energy-momentum tensor 7¢;
one has

T8 = T + Tiny @

where the second contribution was called the macroscopic material energy-

*} Articles I-1IT appeared in Physica 37 {1967} 284, 297; 39 (19'68) 28.
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momentum tensor T74,. It consists of two contributions
(- B
Tom = Tt + T (5)

where the first arose from the averaging of the atomic material tensor £eh,
and the second from (part of) the atomic field tensor 2. They were found
to be

T?rﬁ)l = <t((11ﬁ)> =
— FURU? — JA*A80,(ZUY) + 3e-2(UEBYDU, + USS=vDU,)
+ 30y(Z*US + ZBvU9)
+ [Pl in] — UsUP) — 345.4%.0,(o%u}) + 3A74%8,(0UY)
+ $c2uiDyury — UsDU,) of” + (wfD1uy, — USDU,) 027}
+ bo{oT(ul — UP) + ofus — US))) (15 R, ) AV, ©

Time = <& — T =
= ¢ 2F % | (ufu, — UBUS) myyefit(1; R, ¢) AV,
— ¢ 2Fye [ (ufuy — UBUE) mi?fi(1; R, t) AV,
— c4Fy, | (eululure — UsUBUYUL) mfe(1; R, ) AVy
+ [P, — Yhyefy'g®8 + 2l (f5 mays — m§Tfaye) 45
— 4 uiuiulfoyemSiure} %1, 2; R, £) AV, dVy, (7)

where pf, u§ and Dyu$ are the mass density, four-velocity and four-acceler-
ation of atom 1, 4%, = 635 + c~2ufu1s, 0 is the atomic internal angular
momentum density, f2f and A2f the atomlc fields due to atom 1, and m#
the atomic polarization tensor. Furthermore ¢*, U# and DU# are the bulk
mass-density, four-velocity and four-acceleration respectively, 45 = 6% +
4 ¢72U*Up, Z*8 the bulk internal angular momentum density and F»6 the
macroscopic field. The retarded one-point distribution function £(1; R, #)
is defined in such a way that fi**(1; R, ¢) dV is the probability that a sphere
shrinking with the speed of light towards the space-time point R, ¢ encounters
an atom with certain values of its position, velocity, acceleration, etc., and
of its internal parameters within the element dV;. Finally ¢}**(1, 2; R, ¢) is
the retarded two-point correlation function.
Introduction F* = —83T%, we may write (1), using (4), as

0T, = F, ®)

which shows that F* is the ponderomotive force density (including the
Lorentz force) exerted by the field on the medium. Similarly (3) becomes
with (4)

Oy(x*T (ny — #°Ty) = x*FP — x0F> + T¢h — Tfp, ©)

(m)
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which is the balance of angular momentum. It may be written alternatively
as

x93, T8, — %80, T, + T8 — T — xaFs — xfFa 4 T — TP (10)

(m) —

The purpose of this paper is to investigate and discuss the content of the
material energy-momentum tensor T¢h  given above, in particular the
expressions 9785, and T3, — T, Wthh occur in the laws (8)—(10).

§ 2. The tensor TE5 . The part of the material energy-momentum tensor,
which arises from the atomic material energy-momentum tensor, was called
T, and given in (6). It consists of bulk terms and of fluctuations terms,
due to the fact that the atomic velocities and accelerations may be different
from their mean (bulk) values. In the laws (8)—(10) the expressions 857%?

(m)1
and T¢, — T, occur. The first of these becomes, with (6),

0T, = da{g" UsUS - c-2Z5v(DU,) U#}
+ 25 | 6 (usuf — USU®)
+ ¢ 26%{(Dyury) uf — (DU,) UBY £ (1; R, t) dVy. (11)

Here the bulk part consists of the four-divergence of the mass density times
the dyadic product of the macroscopic four-velocity components of the
medium, and a relativistic correction term involving the macroscopic
internal angular momentum density X#*8. Similarly the fluctuation part
contains a term with the mass density and a relativistic correction. Since
p% and ¢%” contain as a factor 6(R; — R) with R, the position of atom 1,
one may use the ordinary distribution function fi(1; #) instead of the
retarded distribution function?).

Considering the atomic velocities and accelerations as sums of a bulk term
and a fluctuation

= U* + 4, (12)
Dyut = DU* 4 Dy*ul, (13)
one may write (11) as
25Ty = Ople" UsUB 4 c-25=/(DU,) U}
+ 85 § [P (U%d] + 45U8 + d3af)
+ ¢ 201{(DU,) 45 4 (D17u1y) UB + (D1 "ury) B} f1(1;8) AV, (14)

It is of interest to study also the nonrelativistic approximation of (11).
In (11) the atomic mass density p{ consists of the rest mass density p; and
the mass density dp; corresponding to the internal Coulomb and kinetic
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energies of the atom:
PL = p1 + dpi. (15)
The macroscopic rest mass density ¢’ and the macroscopic four-velocity U=
are defined by
§puifr(1;8) AV = o'U%,  with  UsUs = —c?, (16)
where the velocities have components #§ = (yic, y1v1) and U% = (yc, yv).
From the cases « = 0 and « = ¢ = 1, 2, 3 of (16) one obtains

§ piya(vt — vf) f1(1;4) AVy = O. (17)

This formula contains the atomic rest mass density in the R, ¢{-reference
frame

p1 = piy1, (18)
of which the average ¢ — the macroscopic rest mass energy in the R, {-frame
— is

e =fph(l;8) dVi =g, (19)
as follows from (16) for « = 0. It satisfies a conservation law
dogc + V+(ev) = 0, (20)

as follows from the atomic conservation law d(p;#}) = 0. Similarly we
define

Op1 = dpiy, @1)
do = [ dpafit(1;¢) dV 1. (22)

In the nonrelativistic approximation we write y; ~ 1 + 3v?/c2 in (11)
with (15), (16), (18), (19), (21) and (22). This yields »

9T (o = do{(0 + d0) ¢ + [ dp10tfa(1; ¢) AV}
-+ V-{ch -+ j{ plvl(vl + 6p1vlc} f]_(l t dV4l, (23)
26T, = Golovic) + V.§ proavifa(l; ) dVy, (24)

where terms up to order ¢! and c? have been included in (23) and (24) re-
spectively. With a splitting of the velocity into a bulk and fluctuation part

vi=v+0 (25)
and with (17)-(22) one obtains
9T tmy = do(3ev? + dgc? + [ kpad3fa(1;¢) AV)
+ ¢V . [(3ev? + doc?) v
+ [ 3p1(®3v + 2090101 + D3D3) + Opadic?} f2(1;2) dVu], (26)
9Tty = dolevic) + V {ovv! + [ proadifa(l; 8) dVa} (27)
The right-hand side of (26) contains the time derivative of the bulk kinetic
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energy density, the internal atomic energy density, the thermal kinetic
energy density and furthermore a space derivative of energy transport terms.
The right-hand side of (27) contains the derivative of the bulk momentum
density and a space derivative of the sum of the bulk momentum transport
and the kinetic pressure tensor.

The other expression, which occurs in the laws (8)-(10), is T3, — T ..
Its value follows from (6):

Ty — T = —4:420,(Z%U)
— [ {4548 05(0F07) — A2A%0, (YUY} (15 R, 1) AV (28)
In the nonrelativistic approximation up to order ¢0 the space-space compo-
nents of this expression are
Tgnn — Him)l =
—c0pZk — V(0¥ 4 [ D10%f1(1;8) dVy) (4,7, Bk =1,2,3 cycl), (29)
where 2% = X (4,4, k = 1, 2, 3 cycl.) and where (25) has been used.

§ 3. Thetensor T, The part T¢h,, (7) of the material energy-momentum
tensor arose from the atomic field energy-momentum tensor. It contains
three velocity fluctuation terms, in which one might introduce the splitting
(12), and a correlation term. In the latter the retarded solutions ofjthe atomic
field equations for the atomic fields f## and A$# should be inserted, as well
as the expressions for the polarization tensor w3 in terms of atomic para-
meters. In this way the relativistic expression (7) can be completely specified.

In the laws (8)-(10) the tensor TG, occurs only in the expressions
0pTeh and T8, — Tk, which we shall now investigate. The first of these
expressions may be rewritten if use is made of the lemmal), according to
which averaging and space-time differentiations of a physical quantity «
commute:

dp<ay = {0pa), (30)

and of the field equations?2) for the partial atomic fields /3’ and A% = ff —
— m2f:
el = ¢y, (31)
e + fY + fF =0, (32)
where 73 is the atomic four-current, due to atom 4. Then one obtains from (7):
05T, = Bplc=2Fv [ (bl — UBU®) myyea(1; 8) AV
— ¢ 2F ¢ | (ubu, — UsUe) m¥f1(1; £) AV
— cAFy, | (Wiululus, — UsUBUPUY) mif(1; 1) AV
+ §{e2ul(f5 m1ye — M7 oye) wy — cuululfoyemfue}
(1, 2; R, £) dVy dV3]
— [ {518 + $(8%f2py) mi"} (1, 2; R, £) AV1 AV, (33)
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Since the atomic polarization tensor m2? contains a delta-function, we could
use the ordinary distribution function 71(1; ).

The nonrelativistic approximation of (33), including terms up to order
¢t in 24T (5, and terms up to order ¢ in 85T(5,, (¢ = 1, 2, 3), will now be
studied. Then expressions for the atomic current, polarization and field are
needed up to order ¢® only. For atoms carrying charges eg, electric dipoles
W and magnetic dipoles*) vy, the atomic charge density pf = ¢~147, current
density jx = (11, 7%, 75), electric and magnetic polarization vectors py =
= —(md!, md?, mY3) and my = (m2®, md', ml?) are of the form

pf = exd(Ry — R), (34)

1k = exxd(Rx — R), (35)
pr = urd(Ry — R), (36)
my = vid(Rx — R). 37)

These quantities are the sources of the atomic field equations (31), (32) of
which the solutions are — up to order ¢ —

1

ex = (—exf + M.VV)W_—R’C—I, (38)
T(R — R
R N = "

where T(s) = U 4 ss/s2 with U the unit tensor.

We consider now the velocity fluctuation terms in T, (7). We shall call
the sum of these three terms T%,,. With (25), (36) and (37) and E =
= (F01, F02 F03) one finds for its divergence in the nonrelativistic approxi-
mation

06Tty = — W+ [ (91)c) B+ psfr(R, v, poa; ) dvy dpes, (40)

0T, =0 (1=1,273), (41)

where terms up to order ¢! and ¢ have been included in (40) and (41)
respectively, and where f; is the ordinary (non-retarded) distribution

function. The other term of (7) is the correlation term which we call T ..
Its divergence is -

06T 00 = — 8o | P1-eace(l, 2;8) dV1dV 2
_c——lV.j vipi-exce(l, 2;8) dVy dV,
— J (¢ Y1 ez — p1-doez — mi-Gobg) ca(1, 2;¢) dV1 dVy, (42)
05T (an = — § {pies + (Viex)-p1 + (Pba)-ma} o(1, 2;9) dV1 AV
(=12 3), (43)

*) The electric and magnetic dipole moments are considered as parameters of order ¢°, which
characterize the atom, just as the atomic charge.
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again up to order ¢! and ¢ respectively, and where ¢ca(1, 2; ) is the ordinary
(non-retarded) correlation function. With (34)—(39) these expressions become

33T?};)22 = 50J{M1~V(82 U V) } (R — Rl) Ca (1, 2; If) dV1 dVg

1
47|R — Ry

+ . J‘vl{ﬂl Viea — pa-¥V) — }»5(R Ri)ca(1,2;8)dV1dV,

1
47 lR Ry
1
+ ¢l Jelez (vl‘V m)ﬁ(R — Ri)ea (l, 2; t) dV1d¥V,

*‘C_]‘j\{(elvlo V”zn V — ollge V”l' V) 5(R Rl) Cg(}. 2 t) dVl dVg

47 |R— Rl}

. 1
__C—IJ\{Ml.V(”z.va.V — H2'V) m}é(R — Rl) 02(1,2;t) dVid¥V,

T(R—R
—-%c‘lf{(m P)GanP —veFranP): TR’—_R%}

8(R — Ry) co(1, 2;8) AV dVs, (44)

5 1
08T (myzs =J6162(W am R — Rzl)a(R Ry)es(1,2;8) V1AV

1
J.{V"(elyz V —espp1+ V) — yym {R R, }6(R R,) 02(1 2;5dvVydV,

1
— J((Viy1-Vﬂz-V m)(?(R — Ry)ee(1,2;8)dV 1 dV,

T(R — Ry)

J{V‘(Vth(VzAV ‘IR Ry

}6(R — Ry)co(1,2;8)dV1dVs.  (45)

Both these expressions contain in the integrands a delta function and a
correlation distribution function. The integration over one of the particle
coordinates can be carried out, e.g.:

Ia(R - Rl) 02(1, 2; t) de =
=c2(R1 = R, R, v1, 3, ¢1, €2, th1, U3, !:‘1, !"2» V1, v2, P1, ¥2; 1), (46)

(Due to integrations correlation functions with a smaller number of variables
will also occur in the following). The right-hand side will be written as
ca(R, R — s, 1, 2; t) where the relative coordinate 8 = Ry — Rg has been
introduced, and where the arguments 1 and 2 in ¢g now indicate the atomic
parameters, apart from the positions. Let us consider systems where the
correlation function diminishes rapidly if s becomes of the order of a distance
over which the macroscopic properties change appreciably. This situation
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is frequently realized in fluid systems. It is formally expressed by neglecting
terms of order s2 and higher in the Taylor expansion of the correlation
function:

co(R, R —s,1,2;8) =co(R+ s, R — 15,1, 2; )
— }s-Ves(R + 3s, R — 3s, 1, 2; 9), (47)

where F = 9/0R. This formula constitutes the Irving-Kirkwood approxi-
mation3). With this relation and the conservation law for correlation
functions

(9/2t) ca(R + s, R — s, e, €3, ph1, M2, V1, ¥2;8) =
= — [{}(vr + v2) -V + (01 — v2)-F, + p1-V,
+ p2eV,, + V1V, + 92-7,}
ca(R+ 38, R — 35,01, 03, €1, €2, M1, M2, 1, P2, V1, V3, V1, V2 8)
doy dvs djiy djes A9y Ay, (48)

one obtains for (44)

€31,€e3 8768

e1é
05T 3, = 80[ > j 12 Co(R + 35, R — }s, 1, e2; #) ds
41
-2 (MZ'V, z;t—s‘) c2(R + 35, R — 15, e, 23 8) ds dpe

1
-J(m-V,Mz-V, —8—;;) ca(R 4+ 4s, R — is, puy, Mo; t) ds dpuy dus

T(s)

~J{(v1 AV )wan V’):_ias—} ca(R+ 35, R — 15, vy, v2;8)dsdv; dvz]

1 eiesT(s
n ?V-< 5 '[ 9T (o1 -+ 02) ca(R + s, R — s, 01, 00,01, ;1) d o dog

* EJ [{"‘2”7’("1 +02) W, — (014 0) eV, — sfaa-V ) 's%]
CZ(R + %s’ R - és, vl: 02, 61, MZ’ ,“'2; t) ds dvl dv2 di‘z
+j[{sm- V.2V, (v1+ v2)-F,
. 1
— (01 + v2) p1+V 2V, — 251V, p2-V,} -lé—ns_]

ca(R + 3s, R — §s,v1, v, 41, o, ;) ds dvy dva dps dpuadjes
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+ f [{ —$M1AV)(v2aV,) 01+ v2)F, — (1 + 02} (V1A V,)(v2 A V,)

+2s(iaV,) (924 V,)}: :2(;)9]

Cz(R + 35, R — 15,01, 03,91, v3, V2; t) ds dvy dvs dvy dvs dfiz), (49)

where the sum over ¢; (and e2) indicates that in a mixture the stable groups
(atoms, molecules, ions) of which the various components consists may carry
different charges. The right-hand side contains the time derivative of the
correlation part of the energy density and the divergence of the correlation
part of the energy flow. The energy density consists of four terms arising
from charge-charge, charge-electric dipole, electric dipole-dipole and magnetic
dipole-dipole interactions. Contributions of the same origin appear in the
energy flow.
Expression (45) becomes

357‘%&)22 = V'I:—e% f( sV:

+ E (SV,,Mz -V, —) c2(R+ s, R — }s,e1, uo2;t) ds due

)62(R+§S R———S ey, 82,t) ds

+f(SVsM1 V.-V, )02(R+ 38, R — s, po1, po;t) ds dps dps

T(s)
16as

—J{sVﬁ(ul AV)(vanV,): }cz(R-l—%s, R—13s,v1,v2;¢) dsdy; dvg]. (50)
The right-hand side is the divergence of the correlation part of the pressure
tensor. It consists again of four terms: a charge-charge contribution, which
in ionized systems usually overshadows the other terms, a cross term due
to charge-electric dipole interaction, an electric dipole-dipole term, in which
the London-Van der Waals potential pressure is contained, and finally a
magnetic dipole-dipole term.

Let us consider now the difference Tgh ), — T% 5. According to (7) it can
be written as

Tome — Topye = Fre § (45,48 — AzAe
—Aﬁ AaC —+ ApA“C) Mgt fret‘(l ' R, t dV;
[ A A (frmres — mPfae) A1, 2; R, 8) AV, dVs. (51)

Here again the nonrelativistic approximation of the space-space components
is interesting. Up to order ¢9 one finds

Y‘gn)z — T{:'nﬂ = j (P1rex+ myna ba)* ca(1,2;8) AV, dV s, (52)
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where 4, §, k=1, 2, 3 and cyclically and where the polarizations and
fields are given by (36)—-(39). Inserting these expressions gives the result:

T?;n)z - P(:n)z =

k
=X (Mz AV, %) c2(R+ s, R, e1, p2;t) ds dus

1 k
+ I(Ml' V:”z A V.g E) CZ(R + s, R; Ml: ”2; t) ds d”l d,‘"z

— J(vz A [V, A {(vl AV, Te) }])k c2(R+ s, R, vy, ve;t)dsdvyidve. (33)

8ns

The three terms are due to charge-electric dipole, electric dipole-dipole
and magnetic dipole-dipole interaction respectively.

In this section we derived the nonrelativistic expressions (40), (41), (49),
(50) and (53). From these formulae it can be inferred that actually it suffices
that the relative atomic motion is nonrelativistic within the correlation domain,
i.e., for values of |s| such that co(R + 45, R — %5, ...; f)and ca(R + s, R, ... ;)
are appreciably different from zero.

§ 4. The energy-momentum and angular momentum laws. In the first
member of the energy-momentum conservation law (8) with (5) we can
now substitute (14) and the divergence of (7). The second member was
found?) to have the form (III. 59-61)

Fo = c1Fes] + }(0F97) My,

—c20'D{v' (Fo*Mye — M®VFye) U} 4- ¢4’ D(v'U*UPF,M7eU,),  (54)
where Fo8 is the field tensor, J* the four-current density, M*#the polarization
tensor, v’ = (')~ and D = U¥0g.

The nonrelativistic energy law is given by (¢ times )the component « = 0
of (8) with (5), (26), (40), (49) and the nonrelativistic approximation of (54):

(9/2t) (Jov? + Sgc? +- [ dm1dtf1(R, v1; ) dvy + Cy)
F V. [(3ov? + 0c?) v + | (3ma(630 + 20-D1Dy + 6261) + dmichy)
f1(R, v1;8) doy —|f D1E- paf1(R, vy, p1;8) dvadps + Cpy] =

dwP) dB
((;)t) — M+ 0-(VE)-P +v-(VB):M, (55)

= J.E + oE-

where d/df is the substantial time derivative (9/éf) + v-¥ and where the
quantities C; and Cy; are abbreviations of the correlation integrals:
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e1e
C, =3 1€2

e1, €3 JTS

Cg(R + %S, R — %S, €1, €2, t) ds
€1
— eZ (yg-V, E) co{R + s, R — 1s,¢1, ua; t) ds dus
1
— J(ﬂl'VsMr V, —8;) Co(R+ 38, R — }s, 1, u2;t)ds dps dus

T
= [{mnpawenv: T R+ e R e vy soig dsanyave, (59

T
CII = 6161'26 \(:') . (1)1 + Uz) Cz(R =+ %S, R — %S, V1, Vg, €1, €2, t) ds dv; dous
e1,éa 7T
. e
+ X [{s'auz'Vs(vl + UZ)'V_, — (vl -+ 02) ‘Mz-Vs — 3,“2'7,} 8—7.::8]

c2(R + 45, R — %5, 01, 03, €1, o, fi2;¥) ds dvy dvs dps dpes
+J|:{S‘u1'V,MZ'V,(UI‘FUZ)'V,@

167:ts
ca(R+ 38, R — 15,01, 02, p1, Mo, fita; 1) ds dvy dva dpey dpes dpes

+ J[{—s(vl A Vs) (Vz A Vs) (I)]_ + 1)2) * Vg

. 1
—(v14-v2) 1-V -V, —25u1-V 2V} :I

T(s
—(O1+ 02) (1A V) (W2 A V) + 2501 A V) (B2 A V,)}: 32(73]
c2(R + 45, R — 15,01, 03, v1, V3, ¥, %) ds dvy dva dvy dva dvs. &)

In (55) use has been made of the definitions p; = m16(Ry — R), with m,
the rest mass of atom 1, and dp; = dm1 6(R1 — R). (In the nonrelativistic
case p = @' according to (19) and also v = g1 = (¢')~! =v'). The first
member contains the time derivative of the energy density, which consists
of the bulk kinetic energy density, the bulk internal atomic energy, the
thermal agitation energy and four potential energy terms, including contri-
butions due to the atomic charges and dipole moments (v. (56)). Furthermore
in the left-hand side the divergence of the energy flow appears. The right-
hand side contains the work performed (per unit of time and volume) by
the Lorentz and ponderomotive forces.

The nonrelativistic momentum law follows from (8) for « = 1, 2, 3 with
(27), (41), (50) and the nonrelativistic approximation of (54). This law
becomes, if only terms of order ¢? are included,

(2/08)(gv) + V- (ovv + [ madad1f1(R, v1;t) dvy + Coyy) =
— ¢°E + (VE)-P + (VB)-M, (58)
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where the abbreviation Cyyy is introduced

CIII=_Z (V, ;16) c2(R+ 48, R — 1s,e1,e2;t)ds

[
+ § (W,,uz-V, 4—;8> ca(R+ 38, R — §s,e1, pro;t)dsdus

1
+ f(SV,M1- V.oV, E;) ca(R 4+ s, R — 1, 1, pa; 8) ds dpr due

T
— Hsy,(m V)wanV,): léii}cz(R-l-%s,R—%s, vy, ve:8)dsdvy dve. (59)

The first two terms of (58) form together the product of mass density ¢ and
the acceleration dv/d¢, where d/d¢ is the substantial time derivative. The
other terms at the left-hand side are equal to the divergence of a pressure
tensor, which consists of the kinetic and four potential terms (see (59)).The
right-hand side contains the Lorentz and ponderomotive force (p¢ is the
macroscopic charge density). The term (FE)-P is called the Kelvin force,
found already in a statistical theory of the static, electric dipole case4).

The angular momentum law (10) with (3) is found explicitly if one
substitutes the expressions (14), (7), (28), (51), (54) and also

T — TG = A340(F"M° — MYF), (60)

which follows from the form of Tg‘f;, given by (I11.42). The nonrelativistic
approximation of the space-space part of (10) (« =4; 8 =74;14,7 =1, 2, 3)
contains (27), (29), (41), (50), (53) and the nonrelativistic approximations
of (54) and (60).

It may be of interest to consider separately the balance equation of
intrinsic angular momentum, which follows from (8) and (10)

Tl — Tomy =Th — TG (é1)
where (5), (28), (51) and (60) must be inserted. The nonrelativistic approxi-
mation to this equation is obtained with the help of (29), (53) and the

nonrelativistic limit of (60). Its space-space components (« =14, §=7;
i,7, B =1, 2, 3 cycl.) become

coo 2+ Y- ( 2k+Jv101 1 1 i 2) dvl)

- (,uz AV, ﬁ—) c2(R + s, R, e1, u2; %) ds dpus

47s

1 k
—J(,ul-V,.uz AV, Es—) R+ s, R, u1, o t) dsdpr dps
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+ J(Vz A I:V, A {(vl AV,)s T(s) }:l)k c2(R+ s, R,v1,v2;8)dsdvidy,

8mns
= (PAE+ Mna B)k (k=1,2,3). (62)

The first two terms form g d(v2)/d¢ where d/df is the substantial time
derivative. The third term is a fluctuation term corresponding to the
second term. The fourth and fifth terms are correlation terms of the same
structure as the first term at the right-hand side; the sixth term of the left-
hand side is related in the same way to the last term at the right-hand side.

§ 5. Quadratic polarization contributions to the correlation integrals. In the
nonrelativistic energy-momentum laws time derivatives and divergences of
correlation integrals occur, which are given by (49) and (50). These equalities
will now be written as

66T?£)22 = 9oC; + ¢ W:iCi;, (63)
3ﬂﬁ£z)22 = VJC?'II- (64)
where the quantities Cy, Ci;, C¥; (¢, 7 = 1, 2, 3) are the abbreviations (56),
(57) and (59). No time derivative occurs at the right-hand side of (64) as a
consequence of the nonrelativistic approximation, according to which the

momentum conservation law is considered up to order c9.
Let us now define a tensor

gius_ _ ((Tomns T?%zz)
Tn=(aprs i) )
which in the local rest frame reduces to the array
(CI . c_%%) (66)
c1Cy /)

The tensor defined as
T-ng) = T?rﬁ)l =+ T?rﬁ)zl + T‘(’;ﬁ)zz (67)
can be looked upon as the material tensor for a system of which the relative

atomic motion is nonrelativistic within the correlation domain, since then
the energy-momentum conservation laws have the form

%(Teny + T8 =0, (68)
as follows from the treatment of the preceding two sections. From now on
we limit ourselves to the study of systems of the kind described above.

The correlation integrals C;, C; and C¥%; contain the correlation functions,
which are defined in terms of the one- and two-point distribution functions:

AR+ 345, R — 35, 1,2;8) =f2(R+ 35, R — }s,1,2; %)
— (R + 35, 1;¢8) h(R — is, 2; ¢). (69)
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1f s = O the function f; vanishes as a consequence of its definition?), which
means that then cs is given in terms of the product of two one-point distri-
bution functions only:

co(R R, 1,2;8) = —f1(R, 1;8) A(R, 2; 9). (70)

Hence the correlation integrals contain in fact a noncorrelated part. For
this reason we shall write the correlation integrals as sums of a principal
value, obtained by excluding from the integration an infinitesimally small
sphere around § = 0, and a contribution from the small sphere. Let us treat
as an example the following integral, which occurs in (56):

1
I= f(ul.v, #z-V, ——Sm)cz(R + 38, R — §s,1,2;¢) ds dpa dpa. (71
With the identity (see appendix)
1 1
—_— =P — — 306 72
VsVs 47s VsVs 47s 3 (S)’ ( )

where U is the unit-tensor and d(s) the three-dimensional delta function,
and the property (70), one gets for the integral (71):

1
I= Wf(ﬂl-Vsuz-V,—B—s) ca(R+ 45, R —}s,1,2;¢) ds dpy dus 4 3P?,
7T

(73)
with the (nonrelativistic) electric polarization vector

P = j ,ulfl(R, 1;¢) dus. (74)

In this way all correlation integrals occurring in T%,,, can be treated (see
appendix). The result is

C, = PC; — }P? — 1M, (75)
CiI = QC}.I — {gLOP-j (3131.“1 + 8,“]61 + 361-M1U) fl(R, 1 ;t) dvl d,ul
+?10“M'5 (31‘)1111 — 2101 + 3ﬁ1-V1U) fl(R, 1; t) doy dvy

+ 1PP.v + &P + tMM.v — M), (76)
Cir = #Cf; — (PP + #P?U 4 tMM — ;MPU)Y. (77)

These expressions show that terms quadratic in the macroscopic polar-
izations P and M are contained in the correlation part of the material
energy-momentum tensor (67). In the local rest frame of the system (v = 0)
these quadratic terms form an array

—3P2 — 1M2 0 as)
0 —1PP — 4P°U — tMM + }M2U)
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We now define T3 as the tensor, which in the rest frame reduces to (78).
(One may check that then in the nonrelativistic approximation the velocity
terms of (76) are obtained). This tensor, which in covariant form reads

TS — BAZANM MeE + JgveMygMon + do= greMinU, MesU?)
— 3 2UsUB(MyeMve + 3c-2MveU M, U?), (79)

will be used in the next section.

§ 6. A redefinition of the field and material parts of the energy-momentum
tensor. As shown in the preceding section the material energy-momentum
tensor contains a part 7%, which depends quadratically on the macroscopic
polarizations P and M. The field tensor T¢4 consisted of terms quadratic in
the fields (E and B) and of terms which are bilinear in the fields and polar-
izations. In view of this situation one might introduce a new splitting of the
total energy-momentum tensor T%8 = T + T, as it occurs in (68),

Tt = T3y + Ty, (80)
with a new field tensor
Sy =T + T (81)
which depends quadratically on the fields and polarizations, and corre-
spondingly a new material tensor

T2, = Tob — T, (82)

(m)

The new field energy-momentum tensor, which according to (81) is the sum
of (II1.42) and (79), reads

Tgh, = FovH', — L F,Fregos
+ c_zUﬁ(FayMye _— M“V.F'ys) UE - C_4Ua'UﬁUyFng€CUC
FAZAB(M M + JgveMeyMen + §o-2gvelMenU, My U?)
— 3 2USUB(MyMve 4 3c-2MveU M, U?). (83)

In the local momentary rest frame this field tensor reads — in three-
dimensional notation —

1E2 B2 — P2 — I M2 ErH
TH) = —ED — HB — PP — MM , (84)
ErH + (3E2 + }H? — P2 — #{M?)U
where D = E + P en H = B — M. The field tensor T(f,,) corresponds to a
material tensor (82), in which nonrelativistically only bulk materials terms,

fluctuation terms and principal values of correlation integrals occur. In
fact the energy law — up to order ¢ — (55) becomes with the help of the
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equalities (75)~(76)

(0/t) (hov® + doc? + [ dmidtf(R, ©1; 1) dvy + PCy)
+ V- [(3ev? + doc?) v + [ {3ma (630 + 20- 9161 + 631)
+ dmac2d1} f1(R, v1; 8) dvy — [ D1E- mafi(R, 01, pa; £) doy duy
—35P - (30141 + 8uady + 3b1+ p1U) f1(R, vy, pa; ¢) dv dpa
— oM. | (301 — 2v101 + 301-v1U) f1(R, v1, v1; £) dv1 dvy
+ '@CII] =

B d(wP) dB oP? M2
=TEdel g g M Ty
4 v.(VE)-P 4 v-(VB)-M+ V. 3PP.v + %P2 + IMM.v — M?v),

(85)
where the principal value of the correlation integrals C;, and Cy; are given
by
€162

gCIZ Z

e1,62 87'53

co(R + 35, R — s, e1,¢e3;¢) ds
~3 (,uz-V, TZE) co(R + s, R — 1s, e1, po; ) ds dpz
1
— 3”[(141-17, Mz- ,a—s—) ca(R+ s, R — §s, p1, 423 8) ds dua dps

1
-+ Qj(vl- V,ve-V, —8;;> co(R+ s, R — s,v1,v5;t)ds dvy dvg, (86)

PCy =% eie ' T(s)

Toars . (01 + 02) Cz(R ~+ %S, R — 1s,v01,03,¢1,62; t)ds dv; des
€1,€3

[ . e
cz(R+ 45, R — is5,01, 03,1, U, f2;t) ds dvy dva dus duz
»

L2\ spr-V 2V, (014 02) ¥V, — (v1+ va) pa-V,p2-V,

o

. 1
— 2su1+V, p2-V,} Ra—z?]
ca(R + s, R — 5,01, va, g1, M3, Ji2; t) ds dvy dva dpn dpadsie

n gf (591-F 201+ v2) -V, +
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1
(014 02) 917,92, — 2017 937} E{]

c2(R+ 35, R — }s, 01,02, v1,v2, 93;¢) ds dvy dve dvy dva dvs. (87)
Similarly the momentum law (58) becomes up to order ¢ with the help of
(77):
(0] 2t)(gv) + ¥ - (ovv + [m1D1D1/1(R, v1;£) dv1 + PCyyy) =
= ¢°E+ (VE)-P+ (VH)-M+3{(V-P)P+ P-JP+
+ (PP)-P+ (V-M) M+ M-V M+ (Y M)-M}, (88)
where the principal value of the correlation integral Gy is:

PCr = — X | sV, 61632 ca(R+ §s, R —}s,e1,¢eq;t)ds

€1,€2 8

14
+ X (SV, uzV, Z;?) ca(R+ 35, R — s, 1, ua;t) ds dus
1
+ P\ sV, w1V, u2-V, — Jco(R+1s, R—1s, us, po;t)dsduydus
8as

1
+ .@J(SV, vV, v2F, §_> ca(R+13s, R—1s,v1,vs;f) dsdy; dv,.
7S (89)

The correlation integrals containing the magnetic dipoles in (86), (87) and
(89) could be rewritten in a form analogous to the correlation integrals with
electric dipoles by application of the identity (A 13) of the appendix.

With the “Lorentz fields’” defined by

EL=E + P, BL=B — M, (90)
and the use of (20) the right-hand sides of (85) and (88) get the forms
d(vP) dBL
. L. — . . Ly,
J-E + oE & ” M+ v-(VEL).P
+ v-(VBL).M + V. (}P°P.v + tM°M.v), (°1)
oE + (PEL)-P + (FBL)-M + V- GP°P + tM°M), (92)

where d/d¢ is the substantial derivative and where the symbol o indicates
the traceless part of a tensor: P°P = PP — 1P2U. The law (88) with (89)
contains at the left-hand side the divergence of a pressure tensor, which
consists of a kinetic part and a potential part, which is the principal value
of correlation integrals. The right-hand side of (88) or (92) shows now an
expression for the force density, which includes terms quadratic in the
polarizations.
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The right-hand sides of (85) and (88) are the nonrelativistic approximations
of the components « = 0 and « = 1, 2, 3 of the four-vector

F, = — 0T, (93)

where the field tensor is given by (83). In the local rest frame and for a
system of constant and uniform velocity they read explicitly

F) = ¢-1J.E + EL. 9P — (8,BL)- M, (94)
. =0°E + c1J A B + (VEL).P
+ (VBY)-M + V- (3P°P + {M°M)
+ (P A B) — 8y(M A E). (95)

The terms of order ¢0 in (94) times ¢ and in (95) were already obtained in
the right-hand sides of (85) and (88).

In this section we have shown that it is possible to introduce a different
splitting of the total energy-momentum tensor in a field part and a material
part. Such a redefinition has been performed here by taking principal values
of the correlation integrals. It is obvious that this procedure is by no means
unique since the shape of the small region which is excluded from the
integration over § may be chosen arbitrarily. Therefore the terms in the
field energy-momentum tensor, which are quadratic in the polarizations
are not fixed. In the next papers it will be shown however that thermo-
dynamical considerations permit us to select a field energy-momentum
tensor which corresponds to a material tensor containing a scalar pressure
tensor in the local momentary rest frame.

APPENDIX

While studying the properties of the correlation integrals (§ 5, formulae
(71)—(77)) the following equalities have been employed

i 1
= — 146 Al
ViV; s PV s 10450(s), (A1)
Tin(s Tin(s
eixietmnlV &V m Zti) =2 {8ik181mn[7ka l:;( ) }—%5115(3), (A2)

1 1 1
SiViViVi—— = Psi¥ViViVi —— + — (8us0x1 + 0uxds1 +0adsx) 6(s), (A 3)
47s 4zs 5

Tre(s Tyols
'nq( ) = gbsiVj Exmn Elqum Vp nq( )
47s 47s

+ (B0us0k1 — B04x051 — BOudsr) 8(s), (A 4)

siVj Exmn slqumVp
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where ¢, §, k, I, m, n, p and ¢ may have the values 1, 2 and 3,
Tiy(s) = 045+ si85/52, (A 5)

and where ;5 and ¢y are the Kronecker and Levi-Civita symbols. The
symbol & denotes the principal value of the volume integrals in the sense
that an infinitesimally small sphere around the origin is excluded from the
integration. The proofs of (A 1) and (A 3) are sketched here as examples.
The left-hand side of (A 1) multiplied by a function f(s) and integrated
over the s-space becomes equal to the sum of a principal value and a term
which is obtained after a Taylor-expansion of f(s) around the origin:

Kmm;%>mnu=wﬁnm2%y@ds

1

0) im V;—)ds, (A6

+otim (v Jas @e
Ul(e)

where U(e) is a sphere of radius & around the origin. The integral in the last

term is equal to a surface integral

1 1
S(e) Q

where ny(i = 1, 2, 3) is the unit vector in the direction of § and dQ an
element of solid angle. This expression becomes

— [ nyn; dR/4n = — 1oy, (A 8)
which proves (A 1).
The left-hand side of (A 3) may be treated similarly

J(SiVijVz 2373_> f(s) ds = g’f<sil71|7k|71 ﬁ) f(s) ds

+ 7(0) lim (SiVjVIch —1—) ds. (A9
47s

&e—0

U(s)

The last integral becomes equal to a surface integral after a partial in-
tegration:

1
n — 8 —— 5 s2d0.
f{( 1SV k — Synr) Vi T } s2dQ (A 10)
Performing the differentiations one gets
j (6¢,nknl — 6klninj -+ 3ninjnkm) d.Q/47t (A 1 1)
This yields
3(0us0x1 + Suxdgr + dudsr), (A 12)

which completes the proof of (A 3).



60 THE RELATIVISTIC ENERGY-MOMENTUM TENSOR IN POLARIZED MEDIA. IV

It may be remarked that from differentiation for s 5= 0 one can verify the
identity
Tin(s 1
PeivieimnlV kVm - finls) _ —2PVV;——. (A 13)
47s 4ns
This means that the principal values in (A 2) and (A 4) are essentially the
same as those in (A 1) and (A 3) respectively.
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