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synopsis 
The relativistic material energy-momentum tensor in polarized media, which 

contains bulk terms, fluctuation terms and correlation terms, is studied especially in 
the no~lr~lativistic limit. On this basis explicit forms of the exert-momentum and 
angular momentum laws are given. Contributions quadratic in the polarizations are 
proved to be contained in the correlation terms. For this reason a redefinition of 
the field and material part of the total energy-momentum tensor may be intro- 
duced. 

$ 1. I;ntrodz&iort. In the preceding paper l) the total macroscopic energy- 
momentum tensor T@ of a polarized medium in the presence of electro- 
magnetic fields has been derived in terms of atomic parameters. It satisfies 
the conservation law of energy-momentum 

a$?@ = 0 (tc=O, 1,2,3) (1) 

and it is symmetric 

The conservation law of angular momentum 

ZJ&~TBY - x@Tw) 

follows from (1) and (2). 

(2) 

=; 0 (3) 

A part of T@, which contains explicitly the macroscopic fields and po- 
larizations, was called the macroscopic field energy-momentum tensor TX; 
one has 

where the second contribution was called the macroscopic material energy- 

*) Articles I-III appeared in Phyaica 37 (1967) 284,297; 39 (1968) 28. 

- 41 - 
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momentum tensor T;“111,. It consists of two contributions 

T:&, = T;:,, + T$,,, (5) 

where the first arose from the averaging of the atomic material tensor TV&, 

and the second from (part of) the atomic field tensor t$. They were found 
to be 

Tap (m)l = <tg> = 

= ,cfU~Ufl - &l,ad$3y(.ZWy) + &-2(UaByDUy + UflPyDUy) 

+ ?py(Z~yUfi + ZIsyuq 

+ s CPt;(@! - UcJ@) - &@l$ay(ufq) + gl,“dp,(c$wy) 

+ &c-~{z@Iz.Q~ - UaDUy) c$’ + (‘u~DIzQ~ - WDU,) q} 

+ @y{o;y(u~ - US) + cfy($ - W)}] /y”(l ; R, t) dVi, (6) 

TUB (m)s = <$> - TX = 

= c-2Fay J (u@; - UWs) ml,,ffe”(l ; R, t) dV1 

- c+Fya j (t&B, - UJW) WZ;~~‘;“~( 1; R, t) dV1 

- C-4Fya J (zQ&zc~c - UGJWyUt) ~$ff”“(l ; R, t) dV1 

+ s WQ, - tflyefP”g@ + c-2&f~Ymyr - mTy/2ys) 24; 

- c-%$@~f2yCm&~} cyt(l, 2; R, t) dV1 dVz, (7) 

where p”;, z$ and Dlut are the mass density, four-velocity and four-acceler- 

ation of atom 1, A:, = SF + c-221~ul~, a;la . 1s the atomic internal angular 
momentum density, fro and hTB the atomic fields due to atom 1, and rn;fl 

the atomic polarization tensor. Furthermore $‘, Ua and DUa are the bulk 

mass-density, four-velocity and four-acceleration respectively, A; = ~7; + 

+ ~-2UaU0, Z@ the bulk ’ t m ernal angular momentum density and F@ the 

macroscopic field. The retarded one-point distribution function ct(l ; R, t) 
is defined in such a way that rt(l ; R, t) dV1 is the probability that a sphere 
shrinking with the speed of light towards the space-time point R, t encounters 

an atom with certain values of its position, velocity, acceleration, etc., and 
of its internal parameters within the element dV1. Finally cyt(l, 2; R, t) is 
the retarded two-point correlation function. 

Introduction F” = - +T$ we may write (l), using (4), as 

a Tap -For B (m) - f (8) 

which shows that Fa is the ponderomotive force density (including the 
Lorentz force) exerted by the field on the medium. Similarly (3) becomes 
with (4) 
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which is the balance of angular momentum. It may be written alternatively 
as 

xQ,T& - xO,T~,& + Tf;) - T$, = x~FB - xflFa + T;; - T& (10) 

The purpose of this paper is to investigate and discuss the content of the 
material energy-momentum tensor T"@ cmj given above, in particular the 
expressions asT$, and T$) - Tf:, which occur in the laws (8)-( 10). 

9 2. The tensor T$,,. The part of the material energy-momentum tensor, 
which arises from the atomic material energy-momentum tensor, was called 
T”@ cmjl and given in (6). It consists of bulk terms and of fluctuations terms, 
due to the fact that the atomic velocities and accelerations may be different 
from their mean (bulk) values. In the laws (8)-(10) the expressions aaT$,, 
and T$,, - TfIjl occur. The first of these becomes, with (6), 

aBTgjl = a,{&‘uw + ~-mym,) uq 

+ c-%;‘{(DIz+) tif - (DU,) Ufl}] ffet (1; R, t) dT/r. (11) 

Here the bulk part consists of the four-divergence of the mass density times 
the dyadic product of the macroscopic four-velocity components of the 
medium, and a relativistic correction term involving the macroscopic 
internal angular momentum density LW. Similarly the fluctuation part 
contains a term with the mass density and a relativistic correction. Since 
p”; and aFY contain as a factor d(R1 - R) with RI the position of atom 1, 
one may use the ordinary distribution function fr(l ; t) instead of the 
retarded distribution functionr). 

Considering the atomic velocities and accelerations as sums of a bulk term 
and a fluctuation 

one may write (11) as 

21; = ua -j- a;, (12) 

D& = DUa + DI-ti;, ('3) 

asT~~~l = a,{&'UW + c-?W(DU,J US} 

+ ad IAIU af + qus + zqq) 

+ c-%;y{(DUy) df+ (D I%,) Ufl+ (Dl "mv) df'}lfl(l ;t)dVl. (14) 

It is of interest to study also the nonrelativistic approximation of (11). 
In (11) the atomic mass density p”; consists of the rest mass density pi and 
the mass density 8~; corresponding to the internal Coulomb and kinetic 
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macroscopic rest mass density Q’ and the four-velocity Ua 
are defined by 

j p;uP;fl(l ; t) dV1 = Q’U”, with U’YUa = -c=, (16) 

where the velocities have components U; = (yrc, yrur) and 77" = (rc, p). 
From the cases a = 0 and a = i = 1,2, 3 of (16) one obtains 

j p;yl(v”l - ui) fr(1 ; t) dVl = 0. (17) 

This formula contains the atomic rest mass density in the R, t-reference 
frame 

Pl = PiYl, (18) 

of which the average Q - the macroscopic rest mass energy in the R, t-frame 
- is 

e = j ph(l ; t) dl/‘l = e’y, (19) 

as follows from (16) for a = 0. It satisfies a conservation law 

ao@c + V l (@U) = 0, (20) 

as follows from the atomic conservation law a,@;@) = 0. Similarly we 
define 

6pi = +iyi, (21) 

6~ = J GplfP,et(l ; t) dVr. (22) 

In the nonrelativistic approximation we write yr w 1 + !&/cs in (11) 
with (15), (16), (18), (19), (21) and (22). This yields 

%J$‘Lr = a0Ne + Se) c2 + j &w:h(l; 4 dh} 

+ P4evc + f {4pl~~(~/c) + hw} fl(l ; 4 dV11, (23) 

a&$r = aO(e@c) + P.s pmv~/l(l; t) dV1, (24) 

where terms up to order c-1 and co have been included in (23) and (24) re- 
spectively. With a splitting of the velocity into a bulk and fluctuation part 

V1 = V + 81 (25) 

and with (17)-(22) one obtains 

%J~&i = %(8eu2 + @c2 + j ip&fl(l ; t) dV1) 

+ C-V. [(Seo2 + &c2) v 

+ j {+PI(~~~ + 20&h + @I) + dpAc2} fl(l ; t) dV11, (26) 

w$,l = aO(eW + c7.{euu2 + j plh%(l; 4 dvl}. (27) 

The right-hand side of (26) contains the time derivative of the bulk kinetic 



THE RELATIVISTIC ENERGY-MOMENTUM TENSOR IN POLARIZED MEDIA. IV 45 

energy density, the internal atomic energy density, the thermal kinetic 
energy density and furthermore a space derivative of energy transport terms. 
The right-hand side of (27) contains the derivative of the bulk momentum 
density and a space derivative of the sum of the bulk momentum transport 
and the kinetic pressure tensor. 

The other expression, which occurs in the laws (8)-(lo), is T$,, - Tfit,,. 
Its value follows from (6): 

q;,, - T&, = -Ll,“Llp,(_LwP) 

- j {d~,d~,~,(cr;~~;) - d,“df&(@.D’)} ct(l ; R, t) dVr. (28) 
In the nonrelativistic approximation up to order co the space-space compo- 
nents of this expression are 

T&I - %,I = 

-c&P - I’. (u.P + j 8&( 1; t) dVr) (i, j, k = 1, 2, 3 cycl.), (29) 
where Bk = D (i, j, K = 1, 2, 3 cycl.) and where (25) has been used. 

5 3. The tensor T$&. The part T$j2 (7) of the material energy-momentum 
tensor arose from the atomic field energy-momentum tensor. It contains 
three velocity fluctuation terms, in which one might introduce the splitting 
(12)) and a correlation term. In the latter the retarded solutions ofithe atomic 
field equations for the atomic fields ffp and /zFB should be inserted, as well 
as the expressions for the polarization tensor rnFB in terms of atomic para- 
meters. In this way the relativistic expression (7) can be completely specified. 

In the laws (8)-(10) the tensor TTLj2 occurs only in the expressions 

WXN and T&S - TfEjst,,, which we shall now investigate. The first of these 
expressions may be rewritten if use is made of the lemmar), according to 
which averaging and space-time differentiations of a physical quantity a 
commute : 

%<a> = <&a), (30) 

and of the field equations2) for the partial atomic fields fgB and @ E fj$ - 

- m;tp: 
ag$ = c-y;, (31) 

aafp + aof;’ + aYf;fl = 0, (32) 

wherejiis the atomic four-current, due to atom K. Then one obtains from (7) : 

aeT$,, = &[c--2Fay j (Z&S; - WV) ml,Jl(l ; t) dVi 
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Since the atomic polarization tensor rnTB contains a delta-function, we could 
use the ordinary distribution function fr( 1; t). 

The nonrelativistic approximation of (33), including terms up to order 
c-1 in apTFAj, and terms up to order co in a~r$,~ (; = 1, 2, 3)) will now be 
studied. Then expressions for the atomic current, polarization and field are 
needed up to order co only. For atoms carrying charges ek, electric dipoles 
pk and magnetic dipoles*) vk, the atomic charge density pi = c-$$, current 
density jk = (& ji, j$), electric and magnetic polarization vectors Pk = 
= -(mjt.‘, mi2, mz3) and mk = (mi3, rn$‘, rn:‘) are of the form 

These 
which 

p,$ = ekd(Rk - R), (34) 

jk = ekVkd(Rk - R), (35) 

pk = ,d(Rk - R), (36) 

tnk = Vkd(Rk - R). (37) 
quantities are the sources of the atomic field equations (31), (32) of 
the solutions are - up to order co - 

ek = (-ekv + pk. vv) 
1 

4n IR - R&l ’ 

T(R - Rk) 
47~ IR - Rkl 

‘7 (39) 

where T(s) = U + ss/s2 with U the unit tensor. 
We consider now the velocity fluctuation terms in TTA,, (7). We shall call 

the sum of these three terms TTA,,,,. With (25), (36) and (37) and E = 
= (PI, FOZ, P3) one finds for its divergence in the nonrelativistic approxi- 
mation 

%T$&r = -I’. j (@l/c) E~~rfl(R, ~1, PI; t) dvl dpul, (40) 

aTQ =o @ Cm) (i = 1, 2, 3), (41) 

where terms up to order c-r and co have been included in (40) and (41) 
respectively, and where J1 is the ordinary (non-retarded) distribution 
function. The other term of (7) is the correlation term which we call T$,,,. 
Its divergence is . 

+T$& = - a~ 1 pl*ea(l, 2; t) dV1 dV2 

-c-lV*J vlpl.e2c2(l, 2; t) dV1 dV2 

- j (c-lj,.es - pro &es - ml. &bs) ~(1, 2; t) dV1 dVs, 

&J$2z = - j {pfei + (Pe2) -PI + (Pb2) - ml) ~(1~2; t) dVl dV2 

(i = 1, 2, 3), 

(42) 

(43) 

*) The electric and magnetic dipole moments are considered as parameters of order co, which 

characterize the atom, just as the atomic charge. 
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again up to order c-1 and co respectively, and where cs( 1,2 ; t) is the ordinary 
(non-retarded) correlation function. With (34)-(39) these expressions become 

a,T;$,22 = a0 y1*V(e2 - p2*17) - 
1 

4n lR - Rzl 
8(R - RI) c2 (1,2; t) d’T/‘r dVs 

+ c-V* 
si 

t”l.t7@2 - pz*v) - 
1 

Ul 
452 jR - R2/ I 

6(R-Rr)cs(1,2;t)dVrdVz 

+ c-1 
s ( 

e1e2 u1.v 
I 

45% /R - RsI > 
6(R - RI) c2 (1,2; t) dVr dVz 

(w* vp2*v - ez~2°Pp1*v) 6(R-R1)cs(l,2;t)dVldVs 

S(R - R1) 41, 2; t) dV1 dVs, 

RI) c2( 1,2; 4 dV1 dV2 

(44) 

aeT$,,,, = ele2 s ( I 
V2 ~~- 

,4x IR - R2t ) 

S(R - Rl)cs(l,2;@dVldVs 

11 

1 
- Vi(elp2*C7 - ezpl*v) __-- 

431. /R - R2l I 
6(R - RI) 4 1,2; t) dV1 dV, 

- 
S( 

(r794147p2+ 4~,R1_R21)~(R-~~)c2(~,2;~)dVId~2 

+Q c7”(Q A c7)(v2,4 v’): T(R - R2’ 
47cjR -R2j 

6(R - RI) cs(l,2; t) dVr dVs, (45) 

Both these expressions contain in the integrands a delta function and a 
correlation distribution function. The integration over one of the particle 
coordinates can be carried out, e.g.: 

j 8(R - RI) c2(l,2; t) dR1 = 

= cs(R1 = R. Rs, 01, ~2, el, es, ~1, PZ, iirll, ji(2, VI, ~2, $1, $2; t). (46) 

(Due to integrations correlation functions with a smaller number of variables’ 
will also occur in the following). The right-hand side will be written as 
cs(R, R - s, 1, 2; t) where the relative coordinate s = RI - Rs has been 
introduced, and where the arguments 1 and 2 in cs now indicate the atomic 
parameters, apart from the positions. Let us consider systems where the 
correlation function diminishes rapidly if s becomes of the order of a distance 
over which the macroscopic properties change appreciably. This situation 
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is frequently realized in fluid systems. It is formally expressed by neglecting 
terms of order ~2 and higher in the Taylor expansion of the correlation 
function : 

c2(R, R - s, 1, 2; t) = c2(R + &s, R - is, 1, 2; t) 

- $s.Vc2(R + Js, R - is, 1, 2; t), (47) 

where p = a/aR. This formula constitutes the Irving-Kirkwood approxi- 
mations). With this relation and the conservation law for correlation 
functions 

(apt) c2(R + gs, R - as, el, e2, ,e, ~2, ~1, ~2; t) = 

= - J {g(e + U2)‘I7 + (Ul - u2)*17s + rci1*&, 

+ b247,, + +l*vrl + +249 

c2(R + is, R - is, we, el, e2, PI, ,442, b1, ,k ~1, %,h, $2; 4 

dvr dvz dj& d,& d+l ds;s, 

one obtains for (44) 

(48) 

CZ(R + is, R - is, en es; t) ds 

ce(R + is, R - is, el, ,UUZ; t) ds d,us 

cz(R + +s, R - is, ~1, ~2; t) ds dpul dp2 

(Ul A V7,)(V2h V5):--- c2(R + as, R - is, WI, v2; t) ds dvl dvz 1 
. (vl + v2) cs(R + is, R - &, VI, ~2, el, e2; t) ds do1 dv2 

+z {spz*~,(vl+vz)*~,-(al+U2)l(2*~,--sira~,~~ 

S[ 1 
c2(R + gs, R - is, VI, VZ, el, 4.42, b2; t) ds do1 dv2 db2 

+ 
S[ 

{q4147,p2+7,(~1+ UZ)‘V, 

- (VI+ 02) pl*F#2’I7, - wl4?~2*K& 1 
c2(R + &s, R - &s, VI, v2, yl, ~2, j42; 4 ds dul dv2 dpl dp2 db2 
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+ 
f [ 

{ - 01* v#)(v2 * v#)(e + 02) l v, - (Ul + UZ)(Vl A F,)(v2 A v,,) 

T(s) 
+ 24Vl A v,)(i)2 A K)}: 32ns 1 
cz(R + is, R - is, VI, 2~2, VI, ~2, $2; t) ds dvr dvs dvr dvz d-irz 

> 
, (49) 

where the sum over ei (and e2) indicates that in a mixture the stable groups 
(atoms, molecules, ions) of which the various components consists may carry 
different charges. The right-hand side contains the time derivative of the 
correlation part of the energy density and the divergence of the correlation 
part of the energy flow. The energy density consists of four terms arising 
from charge-charge, charge-electric dipole, electric dipole-dipole and magnetic 
dipole-dipole interactions. Contributions of the same origin appear in the 
energy flow. 

Expression (45) becomes 

w-g,,, = v * cz(R + is, R - is, el, e2; t) ds 

+ z f ( svlru247,~ 
> 

c2(R + is, R - is, el, ~2; t) ds dy2 

+ sv:p1*v,p2.v, & 
> 

c2(R + is, R - ts, ,w, ~2; t) ds dtcl dp2 

si 

T(s) 
- w:(vl* Vs) (v2 * Vs): 16ns 

1 

cs(R+&, R-_Bs, VI, ~2; t) ds dvl dvs 1 . (50) 

The right-hand side is the divergence of the correlation part of the pressure 
tensor. It consists again of four terms: a charge-charge contribution, which 
in ionized systems usually overshadows the other terms, a cross term due 
to charge-electric dipole interaction, an electric dipole-dipole term, in which 
the London-Van der Waals potential pressure is contained, and finally a 
magnetic dipole-dipole term. 

Let us consider now the difference T$,, - T[&. According to (7) it can 
be written as 

T”” cmja - T$& = Fyc j (A;,,Afc - A;AK 

-Af,,A;t + AcA@) wzlsc 14;““(1; R, t) dvr 

+ J A&,&E@%l,t - m32et) cFt(l, 2; R, t) dvl dVz. (51) 

Here again the nonrelativistic approximation of the space-space components 
is interesting. Up to order co one finds 

7&z - qzn,2 = s @ 1 A es + ml A k~)~cs(l, 2; t) dV1 dV2, (52) 
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where i, j, k = 1, 2, 3 and cyclically and where the polarizations and 
fields are given by (36)-(39). I nserting these expressions gives the result: 

c2(R + s, R, el, ~2; t) ds dru2 

cz(R + s, R, ~1, ~2; t) ds d/e dp2 

c2(R + s, R, VI, vz; t) ds dvl dv2. (53) 

The three terms are due to charge-electric dipole, electric dipole-dipole 

and magnetic dipole-dipole interaction respectively. 

In this section we derived the nonrelativistic expressions (40), (41)) (49), 

(50) and (53). F rom these formulae it can be inferred that actually it suffices 

that the relative atomic motion is nonrelativistic within the correlation domain, 
i.e., for values of IsI such that cs(R + is, R - Qs, . . . ; t) and cz(R + s, R, . . . ; t) 
are appreciably different from zero. 

$4. The energy-momentzlm and angular momentum laws. In the first 

member of the energy-momentum conservation law (8) with (5) we can 

now substitute (14) and the divergence of (7). The second member was 

foundr) to have the form (III. 59-61) 

Fa = c-lFa@J,g + +(@Fey) MB7 

-c-~Q’D{v’(F~YM~~ - MayF,,) U&j + c-4e’D(v’UaUeFsyMv&U,), (54) 

where F@ is the field tensor, J” the four-current density, M@ the polarization 

tensor, v’ = (@‘)-I and D = Ufiae. 
The nonrelativistic energy law is given by (c times )the component a = 0 

of (8) with (5), (26), (40), (49) and the nonrelativistic approximation of (54) : 

(a/at)(+ev2 + &c2 + S +m&fl(R w t) dvl + G) 

+ V. [(j&J@ + &2c2) u + 1 {z lrnl ( flfv + 2u.fiiirr + $&) + 6mrc2&} 

fr(R, ~1; t) dui -[j W~yifr(R, ~1, ~1; t) dvi d,ur + C,,l = 

d(vP) dB 
= J.E + @En,, -,,*M+u.(~E).P+v.(~B)*M, 

where d/dt is the substantial time derivative (a/at) + v. j7 and where the 
quantities C, and C,, are abbreviations of the correlation integrals : 
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c1 =e*:. s 6162 

8ns 
c2(R + is, R - is, el, eg; t) ds 

- xJ(P2*8, &) cz(R + is, R - is, 61, ~2; t) ds dp2 

- rl*VsP2~V, & > cz(R + is, R - & ~1, ~2; t) ds d,w dpz 

- 
SI 

T(s) 
(Vl A VJ(v2 A VJ: 16ns 

1 

c2(R + is, R - Qs, VI, ~2; t) ds dvl dv2, (56) 

cr, = z 
s 

eiesT(s) 
1 6~~ . @I+ ~2) CL@ + is, R - is, 01, ~2, el, a ; t) ds dul de 

e1, es 

+ z 
S[ 

(s*E”247&1+~2)47,- (Ul+V2)~2.vg-s~2.vr~~ 1 c2(R + is, R - Ss,vl,v2,el,~2,~2;t)dsduldu2d~uzd~2 
+ {~~l~v,y2~v,(~l+~2)~v~ f [ 
-(w+v2) ~“1~v~slu2~v,--2~~l*v~~2’v~} &J 

cz(R + is, R - is, ~1, ~2, ~1, ~2, +2; 4 ds de dv2 d,w dp2 db2 

+ 
S[ 

(-S(Vl * V,)(vz A Vs)(Vl + v2)*Vs 

- (v1+ v2) (Vl A VJ (v2 fi Vs) + 2qv1 A V,) ($2 A V,)): 
T(s) 

-jyj& 1 
cz(R + is, R - $s, VI, v2, vl, ~2, C2; t) ds dvl dvs dvl dvs dS2. (57) 

In (55) use has been made of the definitions pi = rnld(R1 - R), with ml 

the rest mass of atom 1, and ~$1 = 6mi d(R1 - R). (In the nonrelativistic 

case Q = Q’ according to (19) and also ‘u = ~-1 = (@‘)-I = v’). The first 

member contains the time derivative of the energy density, which consists 

of the bulk kinetic energy density, the bulk internal atomic energy, the 
thermal agitation energy and four potential energy terms, including contri- 

butions due to the atomic charges and dipole moments (v. (56)). Furthermore 
in the left-hand side the divergence of the energy flow appears. The right- 

hand side contains the work performed (per unit of time and volume) by 

the Lorentz and ponderomotive forces. 
The nonrelativistic momentum law follows from (8) for 0: = 1, 2, 3 with 

(27), (41), (50) and the nonrelativistic approximation of (54). This law 
becomes, if only terms of order co are included, 

(a/W(ev) + V- (WJ + S mW,fl(R ~1; t) de + Cl,,) = 
= eeE + (V&-P + (l-)-M, (58) 
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where the abbreviation C,,, is introduced 

cs(R + is, R - is, el, e2; t) ds 

+ 5 
SC 

d7#2*V, $ 
> 

c2(R + is, R - is, el, ~2; t) ds dp2 

svsPd7.P2.v& > cz(R + is, R - is, ~1, ~2; t) cis dyl d,uz 

T(s) 
- W,(e * V,) (y2 * v,,1: 16ns cs(R+&, R-&s, ~1, ~12; t) ds dvi dvs. (59) 

The first two terms of (58) form together the product of mass density Q and 
the acceleration dv/dt, where d/dt is the substantial time derivative. The 
other terms at the left-hand side are equal to the divergence of a pressure 
tensor, which consists of the kinetic and four potential terms (see (59)).The 
right-hand side contains the Lorentz and ponderomotive force (ee is the 
macroscopic charge density). The term (VE) l P is called the Kelvin force, 
found already in a statistical theory of the static, electric dipole case 4). 

The angular momentum law (10) with (5) is found explicitly if one 
substitutes the expressions (14), (7), (28), (5 l), (54) and also 

T;? - Tg = A~&(FWk?;” - MyW;“), (60) 

which follows from the form of Tap tfj, given by (111.42). The nonrelativistic 
approximation of the space-space part of (10) (CL = i; @ = j; i, i = 1, 2, 3) 
contains (277, (29), (41), (50), (53) and the nonrelativistic approximations 
of (54) and (60). 

It may be of interest to consider separately the balance equation of 
intrinsic angular momentum, which follows from (8) and (10) 

Tf;) - T& = T$ - Tf;, (61) 

where (5), (28), (51) and (60) must be inserted. The nonrelativistic approxi- 
mation to this equation is obtained with the help of (29), (53) and the 
nonrelativistic limit of (60). Its space-space components (a = i, /? = j; 
i, i, k = 1, 2, 3 cycl.) become 

c&P+ V. VP+ 
( J O1a;/r(l;t)dvl > 
SC 81 k -r, p2AV,- 

4n.5 > 
cs(R + s, R, el, ~2; t) ds drs 

e1 

> 
k 

cz(R + s, R, PI, ~2; t) ds dpldp2 
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= (P A E + kf A B)k (k = 1, 2, 3). (62) 

The first two terms form Q d(vX)/dt where d/dt is the substantial time 
derivative. The third term is a fluctuation term corresponding to the 
second term. The fourth and fifth terms are correlation terms of the same 
structure as the first term at the right-hand side; the sixth term of the left- 
hand side is related in the same way to the last term at the right-hand side. 

5 5. Quadratic fiolarization contributions to the correlation integrals. In the 
nonrelativistic energy-momentum laws time derivatives and divergences of 
correlation integrals occur, which are given by (49) and (50). These equalities 
will now be written as 

&z&s = aoc, + c-V&f,, (63) 
. . 

W&2 = VA&. (64) 

where the quantities C,, Cir, C$, (i, j = 1, 2, 3) are the abbreviations (56), 
(57) and (59). No time derivative occurs at the right-hand side of (64) as a 
consequence of the nonrelativistic approximation, according to which the 
momentum conservation law is considered up to order co. 

Let us now define a tensor 

which in the local rest frame reduces to the array 

( CI c-lci 
II 

c-lCi 
II > cg, * 

(65) 

(66) 

The tensor defined as 
p&J 

(112) = T”@ (?a)1 + T~L)21 + q%22 (67) 

can be looked upon as the material tensor for a system of which the relative 
atomic motion is nonrelativistic within the correlation domain, since then 
the energy-momentum conservation laws have the form 

a,@$, + T;:) = 0, (68) 

as follows from the treatment of the preceding two sections. From now on 
we limit ourselves to the study of systems of the kind described above. 

The correlation integrals C,, Cir and C& contain the correlation functions, 
which are defined in terms of the one- and two-point distribution functions : 

cz(R + is, R - iis, 132; t) = fz(R + is, R - is, 1, 2; t) 

- fl(R + is, 1; t) fl(R - is, 2; t). (69) 
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If s = 0 the function fs vanishes as a consequence of its definitionr), which 
means that then cs is given in terms of the product of two one-point distri- 
bution functions only : 

cz(R, R, 1, 2; t) = --fl(R 1; t) fl(R, 2; t). (70) 

Hence the correlation integrals contain in fact a noncorrelated part. For 
this reason we shall write the correlation integrals as sums of a principal 
value, obtained by excluding from the integration an infinitesimally small 
sphere around s = 0, and a contribution from the small sphere. Let us treat 
as an example the following integral, which occurs in (56) : 

I= 
K 

r1*F, /42*p, & 
. ) 

cz(R + is, R - Qs, 1, 2; t) ds d,ur dps. (71) 

With the identity (see appendix) 

(72) 

where U is the unit-tensor and 6(s) the three-dimensional delta function, 
and the property (70), one gets for the integral (71) : 

I = 9 
SC 

P1.V.r2.F& 
> 

cz(R + is, R - is, 1,2; t) ds d,ur d,us + &P2, 

(73) 
with the (nonrelativistic) electric polarization vector 

R = j &l(R, 1; t) dpl. (74) 

In this way all correlation integrals occurring in p$)s2 can be treated (see 
appendix). The result is 

C, = PC, - BP2 - $Mz, (75) 

C;r = PC;, - {&,R*j (3@1+ 8p1& + 3C.p1U) f1(R, 1; t) dul dpl 

f&M. j (~&IQ - 2~~01 + 3Or+U) fl(R, 1; t) dur dvl 

+ +PP.v + &Pzv + *MM-v - &M%}$ (76) 

cii = c3iq-y 
III III - (;PP + &P’LU + QMM - QMW)ij. (77) 

These expressions show that terms quadratic in the macroscopic polar- 
izations P and M are contained in the correlation part of the material 
energy-momentum tensor (67). In the local rest frame of the system (v = 0) 
these quadratic terms form an array 

-4P2 - +M2 0 

0 > -+PP - &PW - +MM + QMW * (78) 
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We now define TzB as the tensor, which in the rest frame reduces to (78). 

(One may check that then in the nonrelativistic approximation the velocity 

terms of (76) are obtained). This tensor, which in covariant form reads 

T:” = +A;At(MV,M&C + &‘&MCrlMc’l + &-2 g~~MNJvM&J~) 

- &W”Ufl(MysM?‘& + 3c-2MWJ,MyCU~), (79) 

will be used in the next section. 

$ 6. A redefinition of the field and material parts of the energy-momentum 

tensor. As shown in the preceding section the material energy-momentum 

tensor contains a part T,“@, which depends quadratically on the macroscopic 
polarizations P and M. The field tensor TtT consisted of terms quadratic in 
the fields (E and B) and of terms which are bilinear in the fields and polar- 

izations. In view of this situation one might introduce a new splitting of the 

total energy-momentum tensor Pfl = T$, + T$ as it occurs in (68), 

Tao = T;$ + T;$,, (80) 

with a new field tensor 

T”@ _ (f*) - T;; + T,“O> (81) 

which depends quadratically on the fields and polarizations, and corre- 

spondingly a new material tensor 

T”” - q;, - TzB. Cm*) - (82) 

The new field energy-momentum tensor, which according to (81) is the sum 

of (111.42) and (79), reads 

Tab Cf,j = FayH!‘, - $F,,EFyEg@e 

+ c-‘Wfl(FayMyB - MayFya) UE - c-WWJWYF~~MW~ 

+ sA;A:(MY,M&C + &gy~MS,MQ + $+‘gy~MNT~M&J@) 

- &-WW~(My,My~ + 3c-2MW~MyCU~). (83) 

In the local momentary rest frame this field tensor reads - in three- 

dimensional notation - 

TUB (f*) = 

I 

@2 + 4B2 _ @‘2 _ @f2 EAH 

-ED-HB-+PP--MM t (84 
EAH + (SE2 + &Hz -&P” - $-,M2) U I 

where D = E + P en H = B - M. The field tensor T$, corresponds to a 

material tensor (82), in which nonrelativistically only bulk materials terms, 

fluctuation terms and principal values of correlation integrals occur. In 
fact the energy law - up to order c 0 - (55) becomes with the help of the 
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equalities (75)-(76) 

(a/a4(W + &F2 + J @d’4fl(R, ~1; 4 dul + BC,) 

+ r l [(&2 + 6@C2) v + J {gml(qu + 2V l o,e, + gel) 

+ 6w281) fl(R, VI; t) dul - j thE*/.~fl(R, ~1, yl; t) dvI dpl 

-&-p*j (3&m + Q4101+ 3ir1*/41U) fl(R, ~1, ,ul; t) dul d,ul 

-T&M*! (3b’1- 2v161+ 3d1.vlU) fl(R, 01, VI; t) dul dvl 

+ @%I = 

d(vP) = J.E + eE.-F- 

+v*(VE).P+U.(FB).M+P~(~PP.U+~P~~+~MM*U--~M~U), 

(85) 

where the principal value of the correlation integrals C,, and CII are given 

bY 

PC, = c s 6162 ~ 
8n.s 

cz(R + is, R - &s, el, e2; t) ds 
e1,ea 

c2(R + is, R - =&s, el, ~2; t) dsdpz 

--B pl*Vs p2*8.& 
> 

cz(R + is, R - is, ~1, ~2; t) ds dpl dp2 

n*vs VZ’VS & 
> 

c2(R + is, R - is, VI, v2; t) ds dvl dvz, (86) 

9w,, = z e1y6+;) s . (~1 + v2) c2(R + $s, R - is, UI, 2~2, el, e2; t) ds dul de 
e1, ea 

+ z 
s[ 

{sy2*V,(u1+~2)47,- (Vl+Va)~2~~*-Sjla~~}~] 

c2(R + is, R - as, VI, VZ, el, ,m, b2; t) ds dvl dvz dp2 d,kz 

+ 9 

S[ 

(sp147,p2477,(v1 + U2)‘P, - (m+ u2) ccl*v,rU2’~, 

- 2srd7,i247,~7& 1 
c2(R + &s, R - is, VI, 02, ~1, j.42, b2; t) ds dvl do2 @l d/42 d/i2 

+ B 

s 

{sv1’v,~2*v,(~1+ V2)‘Vs + 
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1 
+ (vl+tr2)Y1'~,Y2.c7~-2~~l.F,:02*~,}~ 

163c.s 1 
c2(R + as, R - &, VI, vg, VI, v2,92; t) ds dvl dvz dvl dvs driz. (87) 

Similarly the momentum law (58) becomes up to order co with the help of 
(77) : 

(a/at)(p) + V-(QUV + ~~dAf~(R n; t) dvl + PC,,,) = 

= pE+ (vq*P+ (~H).M+~{(C7*P)P+P*~P+ 

+ (I-y-P + (V*M) M+ M-rM+ (mq*W, 

where the principal value of the correlation integral Crrr is: 

(88) 

BC,,, = - I; 
el, es s we= c2(R + &s, R - &s, el, e2; t) ds 

+ 5 SF* ,UZ* Fs --& 

> 

CL@ + is, R - is, el, ,m; t) ds dp2 

+p sV,rA7,/424’& cz(R+~s,R--s,1Ul,trz;t)dsd~ld~uz 
> 

+ 9 sV~v14',~2*V,& 
> 

cz(R+&, R-$s,vl, v2; t) dsdvldv2. 

(89) 

The correlation integrals containing the magnetic dipoles in (86), (87) and 
(89) could be rewritten in a form analogous to the correlation integrals with 
electric dipoles by application of the identity (A 13) of the appendix. 

With the “Lorentz fields” defined by 

EL = E + #P, B= = B - $M, (90) 

and the use of (20) the right-hand sides of (85) and (88) get the forms 

W-7 dB= 
J.E + eEL-- - -0 

dt 
dt M + v.(VE=)*P 

+ v.(VB=).M + F’+POP*v + +WM.v), (91) 

pE + (FE=) .P + (VBL) l M + V. (*POP + *MOM), (92) 

where d/dt is the substantial derivative and where the symbol o indicates 
the traceless part of a tensor: POP = PP - +PsU. The law (88) with (89) 
contains at the left-hand side the divergence of a pressure tensor, which 
consists of a kinetic part and a potential part, which is the principal valwe 
of correlation integrals. The right-hand side of (88) or (92) shows now an 
expression for the force density, which includes terms quadratic in the 
polarizations. 
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The right-hand sides of (85) and (88) are the nonrelativistic approximations 
of the components CY = 0 and LX = 1, 2, 3 of the four-vector 

F; = -+T;;B,,, (93) 

where the field tensor is given by (83). In the local rest frame and for a 
system of constant and uniform velocity they read explicitly 

F: = C-U. E + EL l &,I’ - (&J.S~) . M, (94) 

F, = eel3 + c-1J A Z3 + (VEL). P 

+ (jQ3L).M + g.$P”P + *MOM) 

+ +,(P A B) - &(M A E). (95) 

The terms of order co in (94) times c and in (95) were already obtained in 
the right-hand sides of (85) and (88). 

In this section we have shown that it is possible to introduce a different 
splitting of the total energy-momentum tensor in a field part and a material 
part. Such a redefinition has been performed here by taking principal values 
of the correlation integrals. It is obvious that this procedure is by no means 
unique since the shape of the small region which is excluded from the 
integration over $ may be chosen arbitrarily. Therefore the terms in the 
field energy-momentum tensor, which are quadratic in the polarizations 
are not fixed. In the next papers it will be shown however that thermo- 
dynamical considerations permit us to select a field energy-momentum 
tensor which corresponds to a material tensor containing a scalar pressure 
tensor in the local momentary rest frame. 

APPENDIX 

While studying the properties of the correlation integrals (4 5, formulae 
(71)-(77)) the following equalities have been employed 

(A 1) 
1 

VrVj - 
476s 

- @,Qs), 

TznP) B 
&tkZ&jmnvkvm ___ = 

Tzn(s) 

43ts I 
&ikZ&jmnvkvm ___ 

4n.s 1 
- Q&jfw), (A 2) 

%vjvkvZ & = ~%vjvkvZ & + + (‘%$kZ + &k&Z +&Z&k) d(S), (A 3) 

Tn4 (s) 
StVg Ekmn EzpqVmVp ___ 

T?%?(s) 
4n.s 

= 9StVp Ekmn &zpqVm Vp 7 
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where i, i, k, I, m, n, 9 and q may have the values 1, 2 and 3, 

Tzj(s) = &j + w/s~, (A 5) 

and where 6%~ and &(jk are the Kronecker and Levi-Civita symbols. The 
symbol 9 denotes the principal value of the volume integrals in the sense 
that an infinitesimally small sphere around the origin is excluded from the 
integration. The proofs of (A 1) and (A 3) are sketched here as examples. 

The left-hand side of (A 1) multiplied by a function f(s) and integrated 
over the s-space becomes equal to the sum of a principal value and a term 
which is obtained after a Taylor-expansion of f(s) around the origin: 

+f(O) lim J(vtv5-&) dSJ (A 6) 
U(E) 

where U(E) is a sphere of radius E around the origin. The integral in the last 
term is equal to a surface integral 

S~~(V~~)dS=S#~(V,~)S?dn. 
S(E) R 

(A 7) 

where nc(i = 1, 2, 3) is the unit vector in the direction of s and d.Q an 
element of solid angle. This expression becomes 

which proves (A 1). 

- j ngzj dQ/4n = -$3ij, (A 8) 

The left-hand side of (A 3) may be treated similarly 

SivjvkvZ & 
> 

f(s) ds = B > f(s) ds 

+ f (0) lim SC WjVkVZ - 
4L ds > 

* C-49) 
E+O 

U(E) 

The last integral becomes equal to a surface integral after a partial in- 
tegration : 

11 

1 
(n&v& - &jnk) VZ ___ 

4n.s 1 
s2 d.0. (A 10) 

Performing the differentiations one gets 

j (&pknZ - ~klwj + hnjnknl) dQ/4n. 

This yields 
(A 11) 

+(&~kZ + bkdjl + &&k), 

which completes the proof of (A 3). 

(A 12) 
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It may be remarked that from differentiation for s # 0 one can verify the 
identity 

(A 13) 

This means that the principal values in (A 2) and (A 4) are essentially the 
same as those in (A 1) and (A 3) respectively. 
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