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synopsis 

From the atomic conservation laws of energy-momentum the corresponding macro- 
scopic laws are derived with the help of a covariant averaging procedure. The total 
energy-momentum tensor is found as a statistical expression in terms of atomic 
quantities. It may be split into a field part T$ (CC, /? = 0, 1, 2, 3) containing the 
macroscopic fields and polarizations, which in the rest frame reads : 

(E A H)I 
-EiDl - HiBJ + (+E2 + )B2 - it2.B) .@ 

(i, j = 1, 2, 3) 

and a material part T$, which forms the relativistic generalization of the usual energy 
and momentum expressions. 

§ 1. Introdwtiort. In the papers I and II of this seriesl) the energy- 
momentum and angular momentum conservation laws for systems con- 
sisting of atoms, molecules or ions, carrying electric and magnetic dipoles, 
have been derived from microscopic theory [cf. $2.) 

In this paper we shall derive the macroscopic conservation laws by an 
averaging procedure using covariant distribution functions (!j 3). In this way 
the total macroscopic energy-momentum tensor Wf is found as a statistical 
average of atomic quantities (§ 4). It turns out to contain a “field” part T$, 
which depends only. on the macroscopic fields, polarizations and velocities 
(3 5) and a “material” part T$) (5 6). From these results the ponderomotive 
force and torque, which the electromagnetic field exerts on matter, is derived 

(5 7-43) * 
The field energy-momentum tensor T$ found here is similar to expressions 

obtained by Lorentzs) and by Einstein and Laubs) for the electric 
dipole case, but is essentially different from the expressions proposed by 
Minkowski*) and Abrahams). 

*) Articles I and II appeared in Physica 37 (1967) 284, 297. 
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$2. The atomic equatiom. The energy-momentum conservation laws on 
the atomic level have the following form 

a&@ = 0, (1) 

where the total energy-momentum tensor of the system t@ is the sum of a 
material and a field part 

w = tg, + t;$. (4 

The material energy-momentum tensor is given in paper II 1) by 

t$, = 5 p$& - * z &@J(&$) + 

) Qc-2 2 (z@$D&, + zLj$J;W&,) + Q c &(a$%i + $‘z$), (3) 
k k 

where pi is the sum of the rest mass density and the internal kinetic and 
Coulomb energy densities of atom k, multiplied by c-s, ui the four-velocity 
of atom k, AEs = g@ + c-%$u~ (g 00 = -1, gtg = 1, i = 1,2,3), D& its 
four-acceleration and cgD the atomic angular momentum density (called 

Ok +CM in II). The field energy-momentum tensor is 1) 

t;T = c {f;‘hk$ - $fkwfi’“g”’ + 
k,l,k#l 

+ c-2%&fpymkye - m;Yf& u; - c-42d$&&,em~u~~~, (4) 

where fip is the electromagnetic field due to atom k, rnft@ the polarization 
tensor due to atom k and hi5 = fifi - mLB. 

The total energy-momentum tensor (2) is symmetrici) 

t&B = taa. (5) 

The atomic energy-momentum conservation laws will yield the corre- 
sponding macroscopic conservation laws with the help of a covariant 
averaging procedure. 

$3. Retarded distribution ficnctions. Macroscopic quantities are averages 
over a number of atoms situated in a macroscopically infinitesimal region, 
which still contains a sufficient number of particles, such that the principles 
of statistical mechanics may be applied. As (3) and (4) show, the quantities, 
which will be averaged are sum functions of one-particle and two-particle 
dynamical quantities which depend on the retarded values of the atomic 
positions, the atomic internal coordinates and time derivatives (“fluxions”) 
of these variables. In order to take retardation into account we introduce a 
one-point “retarded distribution function”s) 

r”(l ; R, t) E p;et(R1, Ril’, . . . . 51, :I”, . . . . R, t), (6) 

which depends on the position RI of an atom, its velocity R$l), its acceleration 
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Rls), higher fluxions Rjn), the dipole moments indicated by the symbol 51, 
and their fluxions ti@. Moreover, R and t indicate the reference point. The 
function (6) is defined in such a way that 

ff”“(1 ; R, t) dRr dRil’ . . . dli”’ (7) 

is the probability (normalized to the number of particles N), that a sphere, 
contracting with the speed of light towards the point R at time t, encounters 
an atom 1 with values of the fluxions R(s) in an interval dR$@ around Rf) 
and fluxions E(S) in an interval d[$@ around 618). In an analogous way a two- 
point retarded distribution function 

fPzet(l, 2; R, t) = ct(R1, . . . . @‘, R2, . . . . @,“‘; R, t) 

is defined such that 

(8) 

%“(I, 2; R, t) dRr . . . d@’ dRs .., d&$’ (9) 

is the probability, normalized to N(N - l), that the contracting sphere 
encounters an atom 1 with certain values of the fluxions R$@ and lp) and a 
different atom 2 with certain values of R&@ and E$@. From this definition it 
follows that g” vanishes if RI = Rz. The two-point function is related to the 
one-point function by means of 

j fP2et(l, 2; R, t) dRs . . . d@,“’ = (N - 1) et(l; R, t). (10) 

The retarded distribution function may be related to the ordinary distri- 
bution function. A one-point ordinary distribution function 

fr(1; t) z fl(R1, Rp’, . . . . Q”); t) (11) 

can be introduced by defining 

fr(l ; t) dR1 dR$l) . . . dE$m) (12) 

as the probability (normalized to N) of finding an atom in the volume 
element dR r dR $1) . . . d5$@ around the point RI, Ril) . . . Ef@ at the time t. 

Similarly a two-point ordinary distribution function 

fz(l, 2; h, t2) = fz(R1, R;l), . . . . 5irn!“,; tl, t2) (13) 

can be defined by writing the joint probability (normalized to N(N - 1)) 
to find an atom in the element dRr dR{r) . . . dE$m) around RI, R$l), . . . . . ., Eirn) 
at time tl, and another atom in dRz dR&r) . . . dEAm) around Rz, R$l), . . . . E&m) 
at time t2 as: 

f2(1, 2; tl, tz) dRr dR!l) . . . dQ”J dR2 dR$r) . . . dQ@. (14 

From the definitions one finds that the retarded distribution functions are 
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proportional to the ordinary distribution functions at retarded times: 

rt(l;R,t)=Klfl l;t- ‘R;R1’ > , 

Et@, 2; R, t) = KlK‘& 1, 2; t - IR ; R1’ , t - IR ; R2’), 
( 

(16) 

K{=l- 
Ril’.(R - Ri) 

clR - R4 
(i= 1,2). (17) 

With the help of the retarded distribution functions we can define 
averages of sum functions such that the retardation is taken into account. 
For physical quantities which are sum functions a = & a&; R, t) of one- 
particle retarded dynamical quantities 

cr(k; R, t) = cr(Rk, Ril), . . . . Rp’, t/c, . . . . @‘; R, t) (18) 

we have the avarage: 

<a> = J a( 1; R, t) ffet( 1; R t) d’CI’1, (19) 

where dV1 is the element dRr dR!l) . . . dR{n) d& . . . dtim). Similarly for 
quantities which are sum functions a = &E,kZ1 a@, I; R, t) of two-particle 
retarded quantities 

a(& 1; R, t) 3 a(Rk, . . . . tp’, Ri, . . . . 51(m); R, t) (20) 

the average is 

(a> = J a(1, 2; R, t) gt(l, 2; R, t) dVl.dVz. (21)’ 

If the quantity (20) is independent of I, then in (21) the integration over the 
coordinates 2 can be carried out according to (10). One obtains thus an 
average of the type (19). 

The quantities (7) and (9) are Lorentz invariant, since they are defined as 
probabilities that a light wave front encounters particles. Therefore the 
covariant character of the averages (19) and (21) is the same as that of the 
corresponding microscopic quantities (18) and (20) respectively, 

Since the atomic quantities occurring in the equations of § 2 contain space 
and time derivatives, we are interested in the averages of quantities like 
&a, where a is an atomic quantity of the type just discussed. We want to 
prove a lemma according to which 

<%a> = %<a>, (22) 

i.e., space-time differentiation and averaging commute. If a is a sum 
function a = &l,kZI a@, I; R, t) of two-particle retarded quantities, the 
left-hand side of (22) reads for the case of time differentiation (,D = 0, 
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a0 = a/act) : 

lim 1 
dt+o At 

At, . . . . Rp) + 
dRi”) 

dt At, Rz + 
dRz 

__- At, . . . 
dt 

dRk”) 
. ..) Rp + ___ dt At; R, t + At - a(R1, . . . . Rp), Rz, . . . . R&n); R, t) 

ngt(R1, . . . . R{n+l), R2, . . . . Rp+l); R, t) dVT+l dV;+l, (23) 

where for brevity’s sake the internal variables E have not been written down. 
Because a is a retarded quantity, the time derivatives appearing here are 
given by 

dRf’ Rp+l’ 

dt =- 
(i= 1,2), 

Ki 
(24 

which depend on the higher order fluxion Ry+l) (i = 1, 2). Since Rp+l) has 
to be considered as an independent variable, we had to introduce a distri- 
bution function, which contains the independent variables RI, . .., Rjn), 
Rp+l), R2, . . ., Rp, R.p+l). (The index n + 1 of the volume elements 
indicates integration over these variables). From the conservation of particle 
number and the relation connecting distribution functions of different 
dimensionality : 

j gt(R1, . . . . Rl”+l), Rs, . . . . R $n+l) ; R, t) dR!W dRkn+l) = 

= gt(R1, . . . . Ri”), Rs, ..a, R&n); R, t) (25) 

it follows that (23) can be written in the form: 

lim’1 
‘~t-co At s 

{a(R1, . . . . Rp, R2, . . . . Rip); R, t + At). 

.gt(R1, . . . . Ri*), R2, . . . . R&n.“‘; R, t + At)--cc(R1, . . . . Rin), Rz, . . . . R.$@); R,t). 

.gt(RI, . . . . R$@), Rz, . . . . Rin); R, t) dV; dV;. (26) 

In this expression one recognizes the right-hand side of the lemma (22), 
which is thus proved for ,u = 0. The case ,U = 1,2,3 for the space differenti- 
ation can be treated in an analogous way. The lemma is valid also for one- 
particle sum functions, as follows from (10). 

5 4. Averaged energy-momeshm conservation laws. With the help of the 
lemma (22) averaging of the atomic conservation laws (1) leads to the 
macroscopic conservation laws : 

a$--@ = 0, (27) 
where we have written 

Tae = <t%. (28) 
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According to (5) this tensor is symmetric: 

Tw’? = TM. (29) 

Just as the atomic energy-momentum tensor W (eq. (2)) was the sum of a 
material and a field part, the macroscopic tensor can also be looked upon 
as the sum of a material and a field contribution: 

Tag = T$, f T;$. (30) 

This splitting will not be performed simply such that TTfj is the average of 
t$,, but in a different way for reasons that will appear in the following. 

Let us consider the average (28) of (2): 

~0 = <$$ + t$>, (31) 

where tF& and tc{ are given by (3) and (4). The latter formulae show that 
t$, is a sum function of one-particle atomic quantities, and t$ a sum 
function of two-particle atomic quantities. According to (3), (4), (19) and 
(21) the tensor (31) can be written as: 

Tao = l {p”;z&f - ~d&4$+,(d,su~) + &--+@r~“D~ti~, + z&“D~u~,) 

+ @,($yaf + @‘a:)) et(l ; R, t) dVl+ j Cf:Yhf.y - &&P 

+ r2 a4E(f;Y mlys - myYfzyc) ZG: 

- c-4 zb~z&~f2y8m~%~~} gt( 1, 2; R, t) dV1 dVs. (32) 

From this total tensor we want to split off a macroscopic field tensor TX, 
which depends on the macroscopic electromagnetic fields and polarizations. 
These fields F@, H”fl = F@ - ill@ and polarizations M@ are defined as 
averages of the atomic fields f@ = xk fi”, hafl = & h;Z” and polarizations 
ma@ = z:k mi’: 

FaO = j fTBe”( 1; R, t) dV,, (33) 

H@ = j h;@et( 1; R, t) dV1, (34) 

Ma0 = j rn;@e”( 1; R, t) dVr. (35) 

These macroscopic fields and polarizations occur in the “noncorrelated” 
part of the second integral in (32). In fact one can write the two-point 
distribution function gt(l, 2; R, t) as the sum of the noncorrelated part 
rt(l ; R 4 i32; R, t) and a correlation function cyt(l, 2; R, t) defined as: 

@(I, 2; R, t) = et(l, 2; R, t) - et(l; R, t) rt(2; R, t). (36) 

If one splits Et in this way, the second integral of (32) becomes: 

j f;‘ff”t(2; R, t) dV2 j h,!yff”t(l ; R, t) dV1 

- 4 j flr@(l ; R, t) dV1 j fX” (2; R, t) dV2 gao 
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- ~-4u3@f2~&341C) et (1, 2; R, t) dir, dVa. (37) 

Now the macroscopic rest mass transport Q’U~ is defined as the average: 

e’Ua = J &;rt(l ; R, t) dl/‘r, (38) 

where pi is the rest mass density of an atom (cf. I (23) 1)) in the rest frame 
(indicated by a dash) and zdy its four-velocity. Imposing the usual condition 
for a velocity: 

UaU, = --C-2 (39) 

we have determined the bulk rest mass density Q’ by (38). Furthermore one 
can write the atomic velocity as 

u; = ua + 22; (40) 

where 4; is called the velocity fluctuation. With this splitting and formulae 
(33)-(35) the expression (37) becomes : 

FW?, - &FreFyy3 + c--W@(F~YM~~ - MayF,,) UC 

- c-WWCJYF~~MW~ 

+ c-2 5 (z&e, - UW) rn~,,~~(l; R, t) dV1 j f;“rt(2; R, t) dVs 

- c-s j (I&; - UW) P$“P;“~(~ ; R, t) dV1 f fzycfrlt(2; R, t) dVz 

- c-“J (zi;z1~ti~z~~~ - UWWWc) n$Et( 1; R, t) dVr j fzrert(2; R, t) dV, 

+ J tfz”%$ - tflvefi’“p + c- 2 B aYm~ye - mTYf2ya) ui Hl(fi 

- c-%$&l(f2yem~g;iU15) crt( 1,2; R, t) dVr dV2. (41) 

This expression shows that in the total tensor T@ a part T$ occurs, which 
depends on the macroscopic fields and polarizations 

Tab = Far@ 
V) .y - $F,wFy”g”@ 

+ c-WB(FaYMy, - MayFya) Up - c-WWKJ~FyEM~W~. (42) 

Thus in a straightforward manner the macroscopic field energy-momentum 
tensor has been found. Then from (30) and (32) with (41) the statistical 
expression for the material energy-momentum tensor also follows: 

Ty$ =‘f @“;ti;uf - +A~~A&~,,(u$u:) + ij~-~(z+$‘Dm, + “~a;‘~my) 

+ ~~y(o~%~ + @‘u;)) fl”“(l ; R, 4 dV1 

+ (the velocity fluctuations and correlations of (41)). (43) 
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Before discussing this expression we shall rewrite it. In the first integral 

the velocities UT will be split according to (40). Futhermore we also write 

D& = DU” + D1”u;, (44) 

where DUa is the bulk acceleration 

DUa EC UQJJ~, (45) 

and where the last term of (44) is called the acceleration fluctuation. Finally 
the average total mass density &’ and the average internal angular momentum 
density Za@ are defined by: 

et’ = j p”;fyt( 1; R, t) dVr, (46) 

L’@ = J @rt(l; R, t) dI’r. (47) 

The material energy-momentum tensor (43) may now be written with 
the help of (33), (40)-(42) and (44)-(47) as: 

Tap cmj = &‘UaUfl - +A,“A&JTW?LJy) + i&-2(U~ZflyDU, + Ufl.PyDUy) 

+ 

+ 

+ 

+ 

+ 

- 

- 

+ 

- 

where the tensor A”, is defined with the bulk velocity Ua: 

A; = S; + C-WWB. (49) 

In this way the expressions (42) and (48) are obtained for both the field 
and material parts TX and T$) of the symmetric total energy momentum 
tensor T@. They were not simply the averages of the atomic tensors t$ 
and t$, which together form the total atomic energy-momentum tensor tab. 

In the following sections the physical content of the macroscopic field and 
material energy-momentum tensors will be discussed briefly. 
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5 5. The macroscofiic field energy-momenttim terzsor. In the local momentary 
rest frame the field energy-momentum tensor (42) reads - in three-di- 
mentional notation - 

= 
( 

8E2 + 8B2 (E A H)i 
(E A H)f -E*DJ - HeBr + (-&E2 + &B2 - M. B) gU > ’ 

(50) 

where TyA is the field energy density, CT:;) the Poynting vector, c--lq;) the 
field momentum density and T;, the field (“Maxwell”) pressure. 

For substances that are isotropic as far as the polarizations are concerned 
the vector D is parallel to the field E, and H parallel to B (in the rest frame). 
Then the tensor (50) is symmetric, and therefore the field energy-momentum 
tensor is symmetric in all Lorentz frames. For an anisotropic system the 
energy-momentum tensor is asymmetric in general. 

For electric dipole substances (M = 0) the results for 7’$‘) and q!, were 
given already by Lorentzs) and by Einstein and Laubs) on the basis 
of electron-theoretical arguments. Minkowski’sJ) and Abraham’ss) tensors 
differ essentially from (50) : both have for T$ and in the bracket of 7$, the 
expression +E l D + iBe H, Minkowski writes for T$ the vector D A B and 
Abraham symmetrizes Minkowski’s TFA. (For a discussion and for later 
literature see article VII of this series). 

The simple expression (50) is valid only in the rest frame. The general 
expression (42) contains the local velocity tr = j3c at the reference point 
(R, t). Its components read in three-dimensional notation: 

TF; = 8E2 + QB2 + P-E - y2/3.(P A B - MA E) 

-f(P--/hM).C%(E+/3AB), (51) 

Ty;) = {E A H - y73.(P A B - MA E) p 

-~4(&-/3AM).522*(E+/3~B)/?)f (i= 1,2,3), (52) 

T$ = {E A H - y2/.32(P A B - M A E) + y2P A (P A E + M A B) 

-~4(P-/?AM).522.(E+~AB)/3)i (i = 1, 2, 3), (53) 

T& = -EtDJ - HtBJ + (+E2 + aB2 - M. B) ggj 

+ y2{p A (P A E + M A B) - P A B + M A E}* p3 

-y4(P--Ahgn2.(E+pAB)PZP~ (i, j = 1, 2, 3), (54) 

where y = (1 - /32)-’ and Cl2 = U - pp. These expressions show the 
influence of the velocity of the medium. 

5 6. The macrosco@ic material energy-momenhm tensor. The material 
energy-momentum tensor (48) contains as a first term a quantity of which 
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the time-time component is ys$‘cs (and thus e’cs in the rest frame) ; its time- 
space component (the bulk energy transport times c-1) and its space-time 
component (the bulk momentum density times c) are equal to yse’c2/3; its 
space-space components give the bulk momentum transport tensor ys$cspp. 

Furthermore (48) shows a number of terms, which contain the macroscopic 
internal angular momentum density .Z’@, defined by (47). It may be remarked 
that, in contrast with its atomic counterpart ai8, this antisymmetric tensor 
is not purely space-space-like in the momentary rest frame. 

Finally the material energy-momentum tensor contains fluctuation and 
correlation parts, which in the general case are rather lengthy expressions. 
They constitute the relativistic generalization of the usual expressions, which 
are valid if the relative particle velocities within a domain of the dimension 
of the correlation length around the point of observation have nonrelativistic 
magnitudes. This will be shown explicitly in article IV. 

If macroscopic electromagnetic fields are absent, the total energy- 
momentum tensor reduces to an expression, which has the same form as 
(48). However, its numerical value is different, since the distribution 
functions for vanishing fields have then to be employed. 

4 7. The Ponderomotive force. Using (30) we can write the conservation 
law (27) of energy-momentum as 

a TUB - Fa 0 (m) - 9 (55) 

where the force density Fa is given in terms of the macroscopic fields and 
polarizations by 

Fa = -i$T$. (56) 

With the help of the expression (42) for TX and the (macroscopic) Maxwell 
equations : 

a,gHae = c-lJ@, (57) 

aa,, + %F,, + @a, = 0, (58) 

where Ja is the macroscopic four-current density, the force (56) becomes a 
sum of two contributions: 

Fa = F;XL) + F;“,,, (59) 

where the first term is the macroscopic Lorentz force density: 

F;XLl = C-lF”BJB, (60) 
and the second the $olzderomotive force density: 

F&) = &(@Ffl~) MeY - r2e’D{v’(F@M~, - M@@FB~) W’) 

+ c_4e’D(v’UaUsFs,MyrU~), (61) 
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Here use has been made of the macroscopic proper mass conservation: 

a,(@‘uq = 0, (62) 
which follows from the definition (38). Furthermore the specific volume 
v’ = (@‘)-I and the operator D = UQ, have been introduced. 

In the momentary rest frame, denoted by (0), the expression (61) for 
a = 0 becomes in three-dimensional notation 

fmO’= ‘E(0) 
(P) @ 

a(2d-y aB(o) 
* cat(o) 

- M(O) . ~ + 2(E@) A MK')) . a~O)pco), 
cat(o) 

(63) 

where ,0 = v/c. The combination of terms occurring here gets a simple form 
if one introduces quantities defined in a frame in which the medium is - 
locally - at rest all the time. This frame (denoted by a prime) is a saccession of 

Lorentz frames, not a Lorentz frame itself. In fact (cf. I (46), (47)) one has: 

aP’ aP(o) i ado) 
-=--- 

at’ at(o) -2 c at(o) 
A MU’), (64) 

aB’ aB(o) i adO) ~=_---- 
atl at(o) c am 

A E(O). (65) 

With these formulae one obtains from (63) the relation 

FO’O’ - 
a(2w) 

(p) - @'Ill'.- - 
cat! 

M, azr 
.-is’ (66) 

The space part (a = 1, 2, 3) of (61) is the ordinary three-dimensional 
ponderomotive force. In the momentary rest frame it reads (omitting the 
suffixes (0)) : 

F(p) = (W)*P + (PB)*M + e’ao(v’P A B) 

- @o(V’M A E) - &!? A (P A E + b!f A B) + &$(P*E). (67) 

The last two terms represent relativistic effects containing the acceleration. 

In the special case that /3 is constant in time and space, the expression (67) 
in the rest frame simplifies to: 

PC,, = (PE) .P + (VB) .M + ao(P A B) - ao(M A E), (68) 

a result which also follows immediately from (50) and (56) for a = 1, 2, 3. 
Alternatively, with the help of the Maxwell equations, this form may be 
written as : 

= -c-1J A M + P. VE + M*vH + +VM2 + (a,P) A H - (aokf) A E. (69) 

The first term is not absorbed into the Lorentz force in order to maintain 
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form invariance of the latter under Lorentz transformations. In the electro- 
static case (68) or (69) reduces to the well-known Kelvin force 

Fc,, = (VE)*P = P.VE. (70) 

In the general case of arbitrary motion the ponderomotive force (61) for 
a = 0 and tc = 1, 2, 3 respectively has the form: 

F& = - (aoE) l P - (&,B) . M + c-le’y $ (yv’j3. (P A B - M A E)) 

F(P) 
= 

+ c-$‘y 2 {y%‘(P - /3 A M) l iY* (E + /3 A B)}, 

(vE)*P + (VB)*M + C-lp’y & {yv’(P A B - MA E)} 

-C-l@‘y $ {yv’p A (P A E + M A B)) 

+ c-$‘y $ {y3v’(P - p A M) l fi2* (E + p A B) p), 

(71) 

(72) 

where y = (1 - P2)-*, tin2 = U - ,0/3 and the substantial time derivative 
c-l d/dt = aa + /?a V. These formulae show the influence of arbitrary 
(relativistic) motion on the ponderomotive force Fcpj. 

5 8. The$onderomotive torqtie. From the conservationof energy-momentum 
(27) and the symmetry (29) of the energy-momentum tensor one proves the 
conservation law of total angular momentum: 

$(,aTSy - xflTay) = 0. 

With (30) and (56) this can be written as 

(73) 

&,(x”Tf& - xflT$,) = x”Ffl - xfiFa + T;$ - T& (74) 

The space-space part (CZ = i, /? = j; i, j = 1,2, 3) of this equation becomes, 
with (54) and (59): 

&(x2?-& - xjq&,) = {R A F(,, + R A F(,, + y2n2.(P A E + MA B) 

+ y2P A (P A B - MA E)}k (i, j, k = 1, 2, 3, cycl.). (75) 

Here one recognizes in the first term a torque due to the Lorentz force FCLj. 
The other terms represent the “ponderomotive torque” exerted on the 
medium: it contains the torque due to the ponderomotive force F,,, and 
besides two other terms which in the rest frame reduce to P A E + M A B. 
For a system isotropic with respect to polarization the last two terms of 
(75) disappear. 
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$9. Concludirtg remarks. The purpose of this paper was to derive an 
expression for the total macroscopic energy-momentum tensor Ta@ in terms 
of atomic parameters. This tensor was seen to contain a field part T$, 
depending on the macroscopic fields and polarizations, and a material part 
T$& In the subsequent paper we shall discuss the content of T$,. On the 

other hand it will then also be shown that different splittings of Tae into 
“field” and “material” parts may be used. 
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