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synopsis 
The angular momentum balance of matter in an electromagnetic field on the atomic 

level is derived from microscopic theory. As a consequence an energy-momentum 
tensor can be constructed, which is completely symmetrical. Both its material and 
field parts are given explicitly in terms of the atomic parameters. 

$ 1. Introduction. From microscopic theory the conservation laws of 

energy and momentum for a system in an electromagnetic field have been 

obtainedl). In the same way we shall derive balance equations and con- 

servation laws for angular momentum on the “atomic” level. This means 

that we suppose that the constituent charged point particles of the system 
are grouped into stable structures such as atoms, ions, molecules etc., 

which carry electric and magnetic moments (for brevity we shall refer to 

these stable groups as atoms). 

§ 2. The atomic angular momentum balance. The equations of motion of 

the point particle ki (constituent i of atom k) with mass mki, charge ek(, 
time-space coordinates Rzi = (c tki, Rki) and proper time Tki reads: 

where the parameter s is the proper time of the privileged point Rjj, which 
characterizes the motion of the atom as a whole. Inner coordinates rEi are 

defined by means of 

R& = R; + r;Zi. (2) 

The following conditions are imposed on r&: the orthogonality relation 

dR; 
r/& ~- = 0, 

ds 

- 297 - 
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and the centre of mass relation 

which is valid up to second order-l). After multiplication of (1) by & and 
expansion up to second order (using (2)) one gets, adding an integration 
over a four-dimensional delta-function : 

1 dRi drkiv dRl 

Using (4), the first term at the left-hand side disappears. Taking (twice) 
the antisymmetric part of eq. (5) one obtains with the use of (3), (1.13) *), 
the definition of the atomic angular momentum density 

(a purely space-space-like tensor in the rest frame), the tensor 

1 dRk, dR{ 
Agb = 6” + - a 

c2 ds ds ’ (7) 

the four-velocity tig of the atom i? (1.38) and the four-acceleration Dk@ 
(1.43) : 

1 
%($?$) + 2~2 f&$ DkZ’tky - & %&;’ &%k, = 

fp,ye(Rkd $ $ (r;& 6(Rk - R) ds 

- X s d&s, 
i 

eki fz(Rkg) -pds t’ii d(Rk - R) ds 

- c 
i s 

ekifg(Rki) 
d%y B 
~ yki s(Rk - R) ds -- (cc, j3), ds (8) 

where (c(, /3) stands for the preceding terms of the right-hand side with 
CL and ,5 interchanged. This equation is the balance of the atomic angular 
momentum density @. 

9 3. The intra-atomic electromagnetic field. The field f$(Rki) acting on 
particle ki may be split into a part f;“,“,,(Rkt) due to the action of the other 

*) (1.13) means formula (13) of the first paper I). 
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constituent particles of atom k and a part f”@(Rki) due to the other atoms 

1 fk: 

f&Rki) = f$3,,(Rd + P(RkZ). (9) 

Let us first consider the right-hand side of (8), but for the intra-atomic 
field j$?j only. The space-space part (a, /3 = 1, 2, 3) reads in the rest frame 
(denoted by (0)) in which dRz/ds = (c, 0, 0, 0) : 

In this expression we substitute the formulae (I. 17) and (I. 18) for the intra- 
atomic fields up to order c- 2. Then one obtains transforming back to the 
reference frame : 

where the Coulomb mass density is given by 

Sp;; = c J dm~, d(Rk - R) ds, (12a) 

Smii = c-2 IX 
eki ekj 

i(#i) 852 irjj” - rj$‘j ’ 
(155) 

and the angular momentum density JgP of the intra-atomic field is defined 
by its components in the momentary rest frame: 

with 

1;:“’ 6(Rh”’ - R’O’) ds - (a, /I), (CL, /3 = 1, 2, 3), (13a) 

Aaoco) = _ 
k 1p’O’ = 0 (a = 1, 2, 3); l~“‘o’ = 0, (13b) 

T(r$), t-i’)) = U + 
(rj$) - rg’)(rg’ - r$) 

I&?) - $)I2 . kz 
(13c) 

(A simple calculation of the total moment of the Lorentz forces, with 
fields up to order c-2, acting on a group of charged point particles leads to 
the time derivative of a tensor of exactly the same form as X$.) 

In contrast with the result (11) for the space-space part in the rest 
frame the space-time part (a = 0, /I = 1, 2, 3) of the right-hand side of 

*) The dot indicates a (three-dimensional) contraction of &j (0) with the first index of the tensor 
(13~); its second index is a. 
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(8) for f$, contains in the rest frame not only terms of order c-s but also 
terms of order 1. These terms are somewhat difficult to interpret physically 
but they will not be needed for the following discussions. In fact from now 
on we shall consider equation (8) with both sides multiplied by Ai, A& 
(with At, = 8; + c-2 ukau&); then in the rest frame it only contains space- 
space components (F, i’ = 1, 2, 3) : 

A& AiB ~,{u;(@ + I$‘)} = x S&D&) $ 
i 

- x 
i s 

ekir?‘(Rki) -fR$ rii S(Rk - R) ds 

eki A;, faY(Rki) df’kiy < 7 yki 6(Rk - R) ds - (8, 0. (14) 

This is a form of the balance equation of angular momentum, in which the 
interatomic fields remain to be studied. 

$ 4. The interatomic field. In contrast to the intra-atomic field the 
interatomic field f”fl(Rki) may be expanded in powers of ?‘ki. Up to second 
order in I/& the equation (14) gets the form: 

where the angular momentum density a.k+@ is defined a 

Ok 
+@ = ago + @. 

(16) 

Retaining only terms with electric and magnetic dipoles, but discarding 
electric quadrupoles, (15) becomes with the use of (3): 

Ai, A& ay(z$azEC ) = c &J;;(Dk$) f’[i 

+ c-’ fay tbk; ,;“’ uks 

- A;, f”?’ rn(;)$, - (cr, /3), (17) 

where the polarization tensors are in first and second order 

B dR,” 
- ‘ki7 s(Rk - R) ds, (18) 
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Using (1.28) and the properties (1.36) and (1.37) the equation (17) can be 
written (with a summation over k) in the form of a balance equation for 
the atomic angular momentum density: 

c O;zE A& a,(?,$ fJIcf&C) - I: G&&u; $ - DJ&E YEi) = 
k ki 

= 2 O&O”,,(m~ fj, - fy wz&), (20) 
k,Z(kfZ) 

with the total polarization tensor 

mk 
M = #@bB 

k 
+ mck‘2)ao. 

(21) 

With the use of the conservation law (1.44) of proper mass (1.23) the 
angular momentum balance (20) gets the form 

c p; A& A& JS&; @) 
k 

- c &&{p&) & - (DkU$ Y&} = 
ki 

= C A;, d&(rnr f:Y - fi” m;,), (22) 
k,l(kfl) 

where Dk = u:a, and n; = (pJ-1. 
In the momentary rest frame of atom K the contribution of k to equation 

(22) reads (with the notation c$(‘)‘~ = ~k+(‘)~j, i, j, m = 1, 2, 3 cycl.) : 

p; D,&QQO)) - 2 spj$ DI, $J’ A ri;’ = 

= &(p~‘; A cl(O) + rnjj” A bl”). (23) 

If the atom k is isotropic as far as polarization and magnetization are 
concerned, the term at the right-hand side vanishes. 

9 5. The symmetry of the energy-momentum tensor. The conservation laws 
of energy-momentum at the atomic level are 

&3($, + t;;, = 0. (24) 

Here the atomic material energy-momentum tensor is given byr) 

$‘, = z (P; + &J;’ + a$‘) +g + x C2 $=Y(Dk’Uk,) u; 
k 

+ I$ wx~ 44 6214 (25) 

where for convenience the angular momentum density uk+, instead of ok, 
is written in the second term. The difference c-2 LzY(Dkztk,,) z.+i is negligible 



302 S. R. DE GROOT AND L. G. SUTTORP 

since it contains the intra-atomic field and is of order c-4. The atomic 
energy-momentum tensor of the field isi) 

t;;‘S = c {fp%,& - *fly8ffp 
k,Z(ki-Z) 

Twice the antisymmetric part of this tensor t$ is: 

(27) 

which turns out to be equal to the right-hand side of (20). We wish to relate 
the left-hand side of (20) to the material energy-momentum tensor. In this 
respect it should first be remarked that the energy-momentum tensor is 
determined up to a divergence-free part only, as is clear from (24). It will 
be shown that the addition of the divergence-free expression 

- & x a&,+%$ - @;+a%[ - cr,‘%;, (28) 
k 

to the material energy-momentum tensor (25) is of advantage. A similar 
procedure has been followed by Belinfantes) and Rosenfelds) in the 
field theory of particles with spin. The sum of (25) and (28) gives a neze, 
material energy-momentum tensor (which will again be denoted by the 
symbol t$,) : 

where (6), (13), the relation 

uka ok 
+a/3 = 0 

(30) 

(which follows from (6) and (13)), and (7) have been used. In this way (twice) 
the antisymmetric part of the tensor t$, (29) is nearly equal to the left-hand 
side of (20) : in fact 

k % 

(31) 

The difference between the right-hand side of this equation and the left- 
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hand side of (20) consists only in small terms of intra-atomic origin. If one 
desires so one can get rid of these terms by an appropriate localization of 
the atomic energy 

which occurs in the first term of tap Cmj (29). In fact, defining a point 

where SmLi is defined by (12b), one derives by means of a Taylor expansion 
of 6(Rk - R) around &: 

2 c 
h- s dR; dR& 

(mk + dmf) ~ 
ds 

ds- d(& - R) ds = 

= c c 
k s 

dR; dR[ 
(mk + &%f) ~ -~ 

ds ds 
s(R, - R) ds 

where A@ is a series of terms symmetric in c(, j3 and B@ is divergence-free. 
One could thus define a new material tensor t$) - B@ of which (twice) 
the antisymmetric part is given (cf. (31)) by: 

s d& A;, a,,(@ U;) + z 6&?‘;Zi L&U& - ?‘fi D&j, (35) 
k ki 

which is exactly equal to the left-hand side of (20). Thus, according to 
(27) and (35), the balance of angular momentum (20) is precisely the ex- 
pression of the fact that the total energy-momentum tensor t$) + t$ is 
symmetric. 

As shown here the conclusion about the symmetry of the energy-mo- 
mentum tensor is only reached if the atomic energy mk + dmf is properly 
localized. However in the rest frame of atom k the (purely spacelike) 
difference Rz - Ri is small (of the order 10-S) compared with atomic 
dimensions as (33) shows. Such a refinement is hardly useful in a theo- 
ry in which nuclei and electrons are considered as point particles. There- 
fore from now on the material energy-momentum tensor will be writ- 
ten as: 
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where pz is the sum of p;, 6~:’ and 6~;“. In the approximation described 
above the sum of this tensor and the field energy-momentum tensor (26) 
is symmetric and conserved. 

3 6. The conservation laws of angular momentum. The total energy-mo- 
mentum tensor of matter and field is 

t”” = ta8 
(WI) + $71 (37) 

with the tensors at the right-hand side given by (36) and (26). As discussed 
in the preceding section it is symmetric 

&@a ZYz @a, (38) 
and conserved 

a,Ow = 0. (39) 

From (38) and (39) one finds the conservation law of angular momentum: 

&&wv - xwq = 0. (40) 

From this equation it follows that 

l@fi = J (xw’” - z&h”) dV (41) 

is a conserved quantity: 

dIaP/dt = 0. (42) 

Moreover, I@ is a tensor according to Klein’s theorem. 
The contents of these conservation laws are well-known: for the space- 

space components (a, p = 1, 2, 3) one has with pi = c-W: 

dICi 
~ = ;d 1 (R A p)” dV = 0 
c dt 

(i, j, K = 1, 2, 3 cycl.), (43) 

which expresses the conservation of angular momentum properly speaking; 
for the space-time components one has 

d 
~ 
dt s 

+tOO dl/ = ; .OtiO dV = 

s 

= c ti0 dV + ~0; ti” dV 
s s 

(i = 1, 2, 3). (44) 

The last term vanishes since total momentum is conserved. Thus we have 

d 
~ .itao dV = $J’S, 
dt s 

where Pi = c-1 j t i0 dV is the (conserved) total momentum. Dividing both 
members of this equation by the (conserved) total energy E = s to0 dV 
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of the system one obtains 

$(J;;;;;;) = $. (46) 

This equation expresses the fact that the centre of energy of the system 
moves with a uniform velocity @P/E. 

In the laws (43) and (46) the tensor components Pa and tia occur. Explicit 
expressions in three-dimensional notation for these quantities are given in 
the next section. 

3 7. The atomic energy-momentum tensor in three-dimensional notation. 

The components of the material energy-momentum tensor (36) may be 
written in vector notation if one uses the expressions for the components 
of u;, DkuE and AgO : 

u; = CyL, u; = cy&, (47) 

D/&E = c2yk aOyk> Dku; = +k ao(ykp;,> (48) 

A;” = _ 1 + & A? = @ = f$;, 02 = g”i + y”p’pi 
k k kJ (49) 

where i, j = 1, 2, 3. Here cpk is the velocity of atom K, yk = (I - &-* 

and gQ = 1 if i = j, gii = 0 if i # j. Since the antisymmetric tensor ak+“p 
is purely space-space-like in the (dashed) rest frame, the Lorentz trans- 
formation from the rest frame to the reference frame yields: 

Ok 
+ii E ,+m _ 

k - (ykfik’f$‘)m (i, j, m = I) 2, 3 cycl.), 

ak +” = (ykpk ,, 0,“)” (i = 1, 2, 3), 

where we have used the three-tensor 

Qijxgiif YIP 
-l P$$> 

Pi 
which has the properties 

(@)ii = g’i _ p7#, 

(Q2,2)ii = gii + y;p;pi. 

With the help of the abbreviation 

ok = !&a,+‘, - 

one gets then for the components of (36) : 

” 2 tpz) = T bk c Y ; - &(pk * gk)’ aOPk + cY;pk’(v * ak)l> 

t::, = z [& c2&?k + c fiF2’ aO(Y;Pk A ak) + &y$ A gk 

+ &?‘,i (bk ’ r) (P k A ak) - &$k~‘(Pk A Ek)li (i = 1, 2,3), 

(50) 
(51) 

(52) 

(534 

(53b) 

(54) 

(55) 

(56) 
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cy .a p ; 0 k A ok + +cy;r A (Tk-&‘;(pk’v) 

(/!?k A ak) -&&?kP’ (Pk A ak)li (i’ 1, 2, 3)~ 

tii ())L) = z: [P”, “YEP;cp:, - Bc w&3 ‘c ‘. 
k 

(57) 

(i, j, m = 1, 2, 3 cycl.). (58) 

Similarly, if one uses (47) and the vector notations for the fields and 

polarizations : 

fp = ei, fc = by (i, j, m = 1, 2, 3 cycl.), (5% 

hoi = di 
k k, 

hik’ z h12” (i, j, m = 1, 2, 3 cycl.), (60) 

pp = - pk, pz = rnr (i, j, m = 1, 2, 3 cycl.) , (61) 

the components of the field energy-momentum tensor (26) can be calculated: 

ty; = x [&?k*eZ + +bk*bz + pk.% - $Pk’(pk A bz - mk A ez) 
k,Z(k#Z) 

- y;(pk - pk A mk)‘fii’(eZ + Pk A WI, (62) 

t$) = x [ez A hk - y;pk. (pk A bz - mk A eZ) Pk 
k,Z(k#Z) 

-Y~(pk-~khmk)‘~~*(ez+~khbZ)~kli (i=l,w), (63) 

ty = x [Q A hk - Y;@(pk A bz - mk A ez) 
k,Z(k+Z) 

+ Y;Pk A (pk A ez + mk A bz) 

- y$(pk - Pk A mk) *Q;* (ez + Pk A bz) pk]’ (i = 1, 2, 3)~ 

t& = z [- efd$ - hibi + (-&ek*ez + +bk.bz - mkabz) g”i 
k, Z(k# 1) 

(64) 

+Y~{~kh(pk~ez+mk~bz)-pPk~bz+mk~ez)i~i, 

- y;(pk - /?k A mk) *n;+z + Pk A bz) &$I (i, i = 1, 2, 3). (65) 

These formulae will enable us to give explicit expressions for the quantities 

which occur in the angular momentum laws. 

3 8. Explicit expressions for the qua&ties occurring in the angular mo- 
mentum laws. In § 6 two angular momentum laws (43) and (46) were 
derived. They contain four global quantities, which we shall now write in 
explicit form with the help of the results of 3 7. Using (57) and (64) for 
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pi = c-1 ii0 one gets: 

+ C-l c j R A (‘3 A hl, - &-@k A bz - mk A ez) 
k,Z(k#Z) 

+ $Pk A (pk A eZ + mk A bz) 

- Y;(pk - Pk A mk) *a;* (ez + pk A bz)Pk) dV, (66) 

where a partial integration has been performed. The first integrand contains 
the orbital angular momentum density Rk A pi y; cpk, the atomic angular 
momentum density J&k and a relativistic term in which ok multiplied 
by the atomic acceleration occurs. Furthermore the second integrand 
contains the moment of the field momentum density with the leading 
term & lCk+lj c-1R A (f?l A hk); the remaining terms vanish in the rest 
frame. ’ 

The equation (46) contains three global quantities, viz. j xi too dV, 
P = c-1 S PJ dV and E = J too d.V. With the help of (55) and (62) we can 
write for the first of these, after partial integrations: 

j x” too dV = T j-[ Rz{p; C2y; - cy;(pk A (Tk) * aOpk} + cy;(pk A ok)‘] d’V 

+ k Zz+Z)r Ri[+k’eZ + P k lb .bZ+pk~eZ--~~k.(PkhbZ--kheZ) 

- &pk - Pk A mk) *@$ (ez + Pk A &)I dv/. (67) 
The total momentum becomes with the help of (57) and (64) 

p = C-l 5 s (/‘; c2y$k + ‘&aOpk A ak)}dV 

+ C--l z j [ez A hk - $P;(pk A h - mk A ez) 
k, Z(k#Z) 

+ Y;Pk A (pk A ‘3 + mk A bz) 

- r;(pk - Pk A mk) l @$ (ez + Pk A bz) Pk] dV. (68) 

The first integrand contains the material momentum density and a rela- 
tivistic correction. The second integrand contains the field momentum 
density i.e. c-1 ~k,zCk+zj el A hk as a leading term and a number of terms 
which vanish in the rest frame. 

The total energy of the system gets the form: 

E = If; s {/$ C2y; + ‘&$k’ (aOpk A ok)} d’V 

+ c ~[~ek’eZ+~bk’bz+Pk’ez-_~Pk’(PkhbZ-mkheZ) 
k,Z(k#Z) 

- &(pk - Pk A mk) *fi:* (ez + Pk A &)I dv. (69) 

The material part contains the mass energy and a relativistic correction. 
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The field part contains the leading terms i Ck,l(k_lJ (ek.el + bksbl) and 
a number of terms which disappear in the rest frame. 

In this way the conservation laws of angular momentum (43) and (46) 
are completely specified. 

9 9. Concluding remarks. In a following paper we shall treat the macro- 
scopic conservation laws of energy and momentum obtained by averaging 
the corresponding atomic laws. The macroscopic energy-momentum tensor 
which occurs in these laws is symmetric as a consequence of the symmetry 
of the corresponding atomic tensor. (In this connection it may be remarked 
that the macroscofiic field and material energy-momentum tensors separately 
are not simply the average of the corresponding atomic energy-momentum 
tensors.) From the symmetry and conservation of the macroscopic energy- 
momentum tensor will follow the macroscopic conservation laws of angular 
momentum. 

This investigation is part ot the research programme of the “Stichting 
voor Fundamenteel Onderzoek der Materie (F.O.M.)“, which is financially 
supported by the “Organisatie voor &river Wetenschappelijk Onderzoek 

(Z.W.O.)“. 
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