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Tic-ordered fo!ded diagrams zue used to represent the effective hami!tonian in the adiabatic formalism. Resummstion 
of the diagrams is shown to give a term-by-term correspondence with time-indeper.dent perturbation theory. 

1. Iutroduction 

Perturbation theory for a degenerate energy level 
can be formulated in two essentially different ways_ in 
fact, expressions for the effective hamiltonian are de- 
rived both from the familiar time-independent approach 
and by means of timedependent adiabatic techniques_ 
In this letter the connection between these two for- 
mulations will be investigated. To that end it will be 
shown how the time-dependent formal&m naturally 
leads to a representation for the effective hamiltonian 
in terms of time-ordered folded diagrams. Topologicai- 
iy equivalent diagrams have been introduced recently by 
Kvasni~ka [l] along different lines; in his formulation 
the diagrams are not interpreted as being time-ordered. 
The diagrammatic expansion of the effective hamiho- 
nian will subsequently be resummed in such a way that 
a term-by-term correspondence is established with the 
time-independent Bayleigh-Schriidinger theory in the 
formulation given by Bloch [2] _ 

We shah study the energyeigenvalue problem for a 
time-independent hamiltonian N = No + HI, with II, 
a perturbation term. The perturbed eigenvalue problem 
associated with a degenerate energy level in the discrete 
spectrum of Ho can be written in terms of an effec- 
tive hamiltonian Bc= P~~Po, where Po is the projector 
onto the degenerate eigenstates. In th 3 time-dependent 
interaction representation this effective hamiltonian . 
is given by [3,4] : 

Here V, (0, -) is the adiabatic evolution operator; it 
is given as a power series in the interaction operator 

H, e(t) = e 
--EItleiHotHI e-iHot 

(2) 

by means of the Dyson expansion: 

~&k-=9 = m$o t-i)” j dt, .._dfme(-fl)Hlc(fl) 
--oo 

x 60, - t&---8(t,_l - tm)H&,) - (3) 

The denominator of (1) can be eliminated by the fol- 
lowing way. Each function e(t) is split up in O(t) and 
Po. with O(r) E 13 (t) (1 - Po) - 8 (-r)Po. Then the 
numerator of (1) can in (m + 1)th order be written as 
a sum of terms in which the first intermediate PO occurs 
after k operators Q(t). Upon choosing k and m - k as 
the independent summation variables one finds that 
the numerator of (1) factorizes such that the part in- 
volving the sum over m - k exactly cancels the de- 
nominator. As a result one gets: 

with n = k f 1 denoting the order in the perturbation 
expansion. 
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2. Diagrammatic representation of the effective 
hamiltonian 

Formula (4) is our starting point for rhe diagram 
matic representation of the effective hamiltonian. In 
fact, when the definition of O(t) is substituted the 
r?th order contribution to 5% becomes a sum of 2’1-a 
terms that are specified by a unique succession of 
operators PO and Q. G 1 -PO. We shall represent these 
terms by drawing the time variables TV_ as vertices, ccn- 
netted by a string of oriented line segments_ A down- 
ward or upward line segment (k. k + 1) corresponds to 
a projector Qo or PO between the interaction hamilto- 
nians WI (tk) and HI (rk+ 1 ); definition of 9(r) then 
implies that in the diagram the upward direction cor- 
responds to increasing time. As an example a sixth-order 
term from (4), with Qo, PO, I’,-, _ PO, Q. as the succes- 
sive intermediate projectors, is drawn in fig. 1 _ AS- 
sociated with these projectors is the time ordering 
O>t, >r?,t, >t, >tz andO>rd >r5_However. 
the order of the vertices is not determined completely 
by these conditions: the term under consideration 
actually leads to a set of 11 merent diagrams, of 
whichtheonewithO>rl >r4 >r3 >r3 >rs is 
shown in fig. I _ 

The contribution to %!from a singie diagram is obtain- 
ed by performing the time integrations. As can be seen 
from (2) each vertex entails a factor exp [i(E,_ I,k - 
Ek, x-+ L - ie)rk] in the integrand; here .!Zksk+ 1 is the 
energy difference between the intermediate state as- 
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Fig. 1. Foideddiagram representation of a skth-order con- 
tribution to the effective hamiltonian. 

sociated with the line segment (k, k +I) and the initial 
state. Upon integrating over the time variables from 
the lowest vertex onwards a product of energy denomi- 
nators results. The real part of the denominators can be 
read off from the diagram by cutring it horzontaliy 
above each of the vertices and adding up. for every 
intersection, the energies E of the encountered down- 
ward lines. The latter are different from zero so that the 
real parts of all denominators are nonvanishing; the 
imagix-.ary parts are linear in E and may hence be neglect- 
ed; in particular this means that the contribution of 
each separate diagram-is ftiire in the adiabatic limit. 
Finally we note that every diagram carries a sign 
(-l)q, with 4 the number of projectors Qo_ For the 
diagram of fig. 1 the above prescriptions iead to the 
product of energy denominators Eel E,, (El2 f 
E,& 2E45 and a negative sign. 

In t.h% section we have derived rules for a diagram- 
matic representation of the generai term in the effective 
hamiltonian 5X _ The dia_g~ came about as a natural 
consequence of the time-dependent approach for the 
perturbation theory. Diagrams of the same topological 
structure have been written down by KvasniEka [l] , 
who obtained them in lowest orders of the per- 
turbation expantion by empioying a time-indepen- 
dent formalism_ This aidthor already noticed as a gen- 
eral feature the similarity with the folded diagrams of 
many-body theory_ Indeed the latter diagrams may be 
found from a similar splitting of 6-functions [3,5] as 
that leading to our eq. (4). 

3. Connection with time-independent perturbation 
theory 

The effective hamiltonian Bias calculated accord- 
ing to the rules of the preceding section contains en- 
ergy denominators in which sums of excitation energies 
E show up. Ordinary time-independent Rayleigh- 
Schrtidinger perturbation theory, however, leads to an 
expression for Bc with products of only single excita- 
tion energies in the denominators. Such an expression 
can indeed be derived from the present formalism. 

We study a diagram D of nth order (see fig. 2a) and 
calculate the (n - I)-fold time integral 9(D) over the 
functions Q (rk - rks) and exp [i(Ek_-l,k - Ek,k+l)tk] _ 
Let i be the lowest index such that + 1 < fi (i.e. ri is 
the first relative maximum_in the diagram). We shall 
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Fig. 2. Factorization of a general diagram D = DI + DII mto a V-type diazam DE’ and a remnminz dias=m DII’. 

split the diagram into two parts, D, and DII: D, con- 
tains the lines and vertices up to the point j that have 
r < 2~ and DIi is its complement_ For each particular 
diagram D there exist a whole class {D) of diagrams hav- 
ing the same DI and DIG, but a different relative ordering 
of the vertices in Dl with respect to those in D,. if all 
diagrams in this class are taken together the integra- 
tions over the time variables in D,, with upper bound- 
ary ri, can effectively be carried out independently 
from those in D,,. 

In addition to D, one may consider a diagram D, r 
of the same structure in which the integrations run to 
t = 0 (see fig. 2b). In accordance with time-translation 
invariance the associated integrals are related by 
I = 9(DIn)exp(iBj), with E =Ei_ 1, p In the inte- 
grand of 9(D) “ch e vertex j contributes a phase factor 
exp(--iE’+), with E’ = ELi+l, so that the total factor _ 
containing fi is exp [i(E - E’)ti] . With this modified 
phase factor the integrand depending on the time vari- 
ables of D,, (i.e. on tl ,___ r,_1, fi ,.__ tn -1) precisely 
equals that of the diagram D,,., drawn in fig. 2c. As a 
result we find: 

I?) g(D) = ~(DIs) g(D11’) - (5) 

This relation is in fact the analogue of the factoriza- 

tion theorem commonly used in many-body perturba- 
tion theory [6]. 

The argument leading to (5) may be applied itera- 
tively to Drlr. As a consequence the effective hamilto- 
nian can be rewritten as a sum of “factorized” dia- 
grams Df that are products of simple V-type diagrams 
like D,*. Since the time integrals 9 of the V-diagrams 
contain no sums of excitation energies in the denomi- 
nators the same holds true for the diagrams D,. 

The above factorization scheme may be illustrated 
by means of the diagram in fig. 1, to which two dia- 
grams of the same topological structure must be added, 
withO>t, Bra >ts >is >tl adO>tl >~a > 
t5 > t3 > t?, respectively. When the contributions of 
the three diagrams are surnuned one arrives indeed at 
the factorized denominator Eel E:2E45 _ 

The general factorized denominator of a diagram 
Df is: 

with .&- > 0. The exponents {ki} can be read off from 
D,. To that end one first has to decompose the dia- 
gram into its constituent V-type diagrams in the way 
indicated before. For the latter the exponents follow 
straightfonvardly from the time integrations. Taking 
as an example the same sixth-order contribution as 
before we get a factorized diagram with exponents 
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Fig_ 3. Factorized sixth-order diagram with exponents 

(1.3,O.W). 

(1,3,0,0,1) (see fig. 3); it is built up from two V-dia- 
grams for which the k-values are (2,O) and (1 ,I .l), 
respectively. 

In a generalized factorized diagram the assignment 
of the X--values is such that the conditions 

are satisfied; in fact these constraints are valid already 
in each of the elementary V-diagrams_ Conversely, for 
a given set of values {ki) fUlf&g (7) one ConStrUcts 
in a unique way a diagram Dr_ 

AU diagrams contributing in a factorized diagram 
Dr are accompanied by the same string of successive 
projectorsPo. Q. and the same overall sign (-l)q, 
with 4 the number of projectors Qo. The energy fac- 

tors Ewk can accordingly be replaced by operators Sk, 
with So = PO and Sk3 ;Qo (Ho - Eo)-k rbr k > 0 
(E. being the unperturbed energy)_ Thus we have 
found that each Dr in the diagrammatic expansion of 

the effective hamiltonian corresponds to an algebraic 
term 

pOHr sklff1sk2 --Sk,,_r%PO - (8) 

The complete 9c is found by drawing all distinct factor- 
ized diagrams Dr_ This corresponds to a summation of 
(8) over the exponents {ki), subject to condition 
(7), and over the order n; the expression thus obtain- 
ed for the effective hamiltonian was fmt derived by 
Bfoch [2] in the framework of time-independent per- 
turbation theory. So a term-by-term correspondence 
has been established between the time-dependent and 
time-independent fomndations of perturbation theory 
for degenerate energy levels. 
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