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By means of a statistical derivation it is shown that the momentum-balance equation of a 
polarized fluid contains a force term that is the divergence of an anisotropic tensor (l/S)PP + 
(l/lO)P’U, where P is the polarization. However, for a fluid in equilibrium this force term is 
compensated by an anisotropic part in the pressure tensor. The same is true for a fluid in an 
optical field if time-averaged quantities are considered. 

1. Introduction 

The concepts of pressure and force in a polarized medium have been the 
subject of controversies for a long time’.*). In some recent papers%‘) it has been 
argued that the force density contains a term, that is the divergence of an 
anisotropic tensor. Neither of these papers consider the associated pressure in 
the medium. The divergence of the latter appears in the momentum-balance 
equation on a par with the force density. For that reason the divergence of an 
anisotropic tensor in the force density can in principle be compensated by an 
anisotropic term in the pressure. In this paper we show that this is indeed the case 
for a polarized fluid in a static field or in an electromagnetic field of high 
frequency. 

2. The momentum balance in a polarized fluid 

The macroscopic momentum balance for a polarizable medium in an 
electric field can be found from the microscopic equations of motion for the 
individual molecules of which the system consists. For a molecule k with 
mass m, position Rk, electric dipole moment fik in a slowly varying eXterna1 

electric field E, the equation of motion reads 

mtik = [VkEe(Rk, t)] ’ pk - ,gk, Vt’#‘(Rk -RI, k, 1). (1) 
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The field Ee is supposed to vary slowly in time and space, so that magnetic 
interactions may be neglected. The potential ~b depends upon the inter- 
molecular separation RR- RI and the internal variables (including the dipole 
moments) of both of the interacting molecules k and I. It may be written as 
the sum of a long-range and a short-range part: 

t~(R, k, 1)- t~L(a, k,/)  + ~bS(R, k, 1) = - ttk • Vial 1 + • 4~rR thS(R, k,l). (2) 

For large separations of the molecules, the short-range part ~b s of the 
potential falls off more rapidly than R-3; it contains the repulsive interactions 
for small distances and attractive Van der Waals contributions. In the follow- 
ing the explicit form for ~b s is not needed, although for specific models it can 
easily be written down (see Appendix A). 

When a statistical averaging procedure is carried out, the macroscopic 
momentum balance becomes ~) 

Opv = _ V • (pvv + pr;) + FL + Fs.  (3) 
Ot 

Here p is the mass density, v the hydrodynamic velocity and pK the kinetic 
pressure tensor 

pK = f m v l v l f l ( R ,  191; t) dr1, (4) 

with 131 = I~1-12 the velocity fluctuation and fl the one-particle distribution 
function. Furthermore F L and F s are the long-range and short-range force 
densities: 

F L = ( V E e )  • P - fvs L(s, 1, 2)f2(a ,  1, a - S, 2; t) ds dl  d2, 

F s = - f ~7,~bS(s, l, 2)f2(R, l, R - s, 2; t) ds dl  d2. 

(5) 

(6) 

The polarization P is the average dipole density; f2 is the two-particle 
distribution function, which depends upon the positions R, R - s  and the 
internal variables 1, 2 of a pair of particles. The integrals over s extend over 
all space. However,  since f2 vanishes for small s one may exclude an 
infinitesimal sphere around the origin so as to avoid the occurrence of 
divergences in subsequent formulae. In other words, in both (5) and (6) we 
may insert a principal value symbol ~ before the integrals. 
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The long-range force  density falls apart in an uncorrelated and a correlated 
contribution, if the two-particle distribution function f2 is written as flfl + c2, 
where c2 is called the correlation function. The uncorrelated part of (5) 
becomes  upon using (2) 

F = (VE~)" P + ~ fP(R-s , t )P(R, t ) :V ,V ,V ,  4-~s ds. (7) 

Instead of the external  field E~ we want to introduce the Maxwell field; it 

(8) 

has the form 

I ' E(R, t) = Eo(R, t) + VR P(R - s, t ) .  V, ~ ds. 

An alternative expression for E is: 

E(R, t) - Eo(R, t) - ~ f [VX(B - s, t)l .  V, 1 _  ds 
d 

Ee(R, t)+ ~ J P(R-s , t ) .VsV ,  4-~sds-3P(R,t).  (9) 

To obtain the last member  a partial integration has been performed and use 
has been made of the identity 

f nin j dO/41T = (10) 

where n is a unit vector  normal to the surface of the unit sphere. 
The first term at the right-hand side of (7) becomes upon using (9) 

( w ) .  P + ~ f t v x ( R  - ~, t)lP(S, t) .  v ,v ,  ~ ds + ~vp ~. (VEe)  • P 
J 

Performing once more a partial integration and employing the identity 

f n'nJnkn ' dO/4"rr = l(8'J6k'+ 8'~SJt+ 8"8'k), 

(11) 

(12) 
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one obtains for  (11) 

I ' (VEe) • P = ( V E ) .  P - ~ P(R - s, t ) P ( R ,  t): VsV, V, ~ ds  

+ v .  ( lPP + ~P2U).  (13) 

After  insertion into (7) one arrives at an expression for  the force  density F 
f rom which the external  field Ee has been eliminated: 

F = (VE) .  P + V(Ipp + ~P2tl). (14) 

Le t  us now consider the correlated part  of the long-range force density F L. 

The correlat ion function which is contained in F L may  be expanded into a 

Taylor  series: 

is • • • Is 2; t). (15) c2(R, 1, R - s, 2; t) = (1 - 2 ~7 + ")c2(R + ½s, 1, R - 2 , 

In a fluid the correlat ion function is of  short  range in the variable s, so that 
terms beyond  the ones writ ten down can be neglected. After  substitution into 
(5) the leading term of (15) drops  out on account  of the symmet ry  of 
thE(s, 1,2) under  the change s<->-s. The long-range force  density then 

becomes  

F L = F - V • pc ,  (16) 

with F given by (14) and with the pressure  tensor  

p c  = _ ½ ~  f s[VsthL(s, 1,2)1c2(R + ½s, 1, R - ½ s ,  2; t)ds dl d2. (17) 

In an analogous fashion the short-range force  density can be t rans formed to 
a divergence if use is made of the short-range character  of thS(s, 1, 2): 

F s =  - v ' p s ,  (18) 

with 

s = _ 1~ ~ s [v,thS(s, 1, 2)][2(R + ½s, 1, e - ½s, 2; t) ds d I d2. P 

The momen tum  balance (3) may  now be writ ten as 

(19) 
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opv _ _ V . (pvv + P)  + F, (20) 
at 

with the total pressure tensor defined by 

p = p K +  p c +  ps  (21) 

and the force density F given in (14). 
The t reatment  given so far may be extended easily so as to include the 

effects of t ime-dependent  fields, at least for the case that the velocities of the 
electric dipoles are low. Then the equation of motion will contain an ad- 
ditional term of the form c-~O/Ot [ttk ^ Be(Rk, t)]. (Terms proportional to p, RklC 
are neglected in the present  approximation.) As a consequence F L and F 
contain an extra term c-~O/Ot(P ^ Be), or c-~O/Ot(P ^ B )  since the medium is not 
magnetizable. The momentum balance still has the form (20) with the force 
density F given by 

F = (VE).  P + c- 'O/Ot(P ^ B) + V- (~PP + ~ o p 2 U ) ,  (22) 

instead of (14). 

3. Anisotropy of the pressure tensor 

The pressure P for an unpolarized fluid in equilibrium is an isotropic tensor 
of the form pO. However ,  the pressure tensor P for a polarized medium, as 
defined in (21), does not reduce to diagonal form in equilibrium. In fact  we 
shall prove in the following that the equilibrium form of the pressure is 

P = p ' lJ  + ~PP, (23) 

with a scalar p'.  For  a dilute medium this statement follows from the explicit 
form of the two-particle distribution function in the low-density limit: 

f2(R +Is,  1 , R - I s ,  2) = f , ( R  ' + ~s, 1)fl(R - is, 2) e -t3(~'L+'~s), (24) 

with/3 = (kT) -] and with (~L and ~b s depending on s, 1 and 2. Insertion of this 
form into the correlated and the short-range parts (17) and (19) of the pressure 
tensor yields 

pc+ps=½/3' fs,(R+Is, lffi(R -2,!s 2) 

× S ~ s ( e  -0('/'g+'t's) - 1 +/3(~L) ds dl  d2. (25) 
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Since for large s the expression in square brackets starts off with terms of 
order s 6 the integral over  s extends effectively over  small values of s only, so 
that the dependence on s in the one-particle distribution functions can be 
neglected. A partial integration of the integral over  s thus gives 

p c +  p s =  p~U -½~-~ lim,~ f fl(R, 1)/I(R, 2)(ss/s) 
S(e) 

X (e  -#(~L+*s) -- 1 +/34~ L) ds dl  d2. 

with 

p* = -½t3-'  f f,(R, 1)fl(R, 2)(e -0(¢L+'~s)- 1 +/3~) L) ds dl  d2. 

(26) 

(27) 

The integral in (26) extends over  the surface S(E) of a small sphere of radius e 
around s = 0, with surface element  dS and outward normal s/s. In the limit 
e ~ 0 only the term j~L in the integrand contributes,  since ~b s tends to 
infinity and the product  s dS is proportional to e3. Employing the identity (12) 
we obtain therefore  

pc + ps = p~'O + ~PP - ~ p 2 u .  (28) 

In equilibrium the kinetic pressure P~: has the diagonal form pKU, sO that the 
total pressure tensor  P for a dilute polarized fluid in equilibrium reads 

p = (p~C + p * ) U  + ~PP - ~ P 2 U  (29) 

in accordance with the statement embodied in (23). 
For  a general polarized fluid in equilibrium the statement (23) can be proved 

as well if use is made of statistical thermodynamics.  In fact,  we have shown 
earlier I) that under quite general conditions a particular pressure tensor /~ is 
diagonal for  a fluid in equilibrium. This tensor is connected to the tensor P of 
the present  paper through the relation 

= p - ~pp - ~op2u, (30) 

as will be proved in appendix B. 
If the fluid is not in equilibrium, as is the case if it is situated in a 

t ime-dependent  external field, a general s tatement about  the anisotropic part 
of the pressure tensor cannot  be established. However ,  if fields of optical 
f requency  are considered one is interested not in the pressure as such, but in its 
time average P. For  a dilute medium the analogue of (23) may be established 
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then by writing the two-particle distribution function as 

f 2 ( R  + ~s, 1, R - ~s, 2) = f l ( R  + is2 ,1)fl(R - ½s, 2) e -o(*~+*s), (31) 

with the time-averaged interaction potentials ~-~ and ~-g; the symbols 1, 2 
denote the time averages and the amplitudes of the oscillating parts of the 
internal variables for the two atoms. The time-averaged pressure tensor will 
now contain the contribution (cf. (25)) 

+ ~S, 1)/l(R -- ½S, 2) 

× S V s ( e  -/3f'~L+'~s) - -  1 +/34, L) ds dl  d2. (32) 

Employing the same steps as above one obtains instead of (28) 

-#-c + = + (33) 

where p-~ follows from (27) by adding average bars over ~b L and 4~ s. Since the 
time-averaged kinetic pressure ~ will again be diagonal, one ends up with 

# -- + + (34) 

instead of (29). 
For a fluid in equilibrium we have seen in (29) and (30) that the anisotropic 

part of the pressure has the same form for a dilute and a dense medium. For 
that reason it is plausible to assume that the time-averaged pressure tensor of 
a fluid in an oscillating field of an optical frequency has the form (34) for a 
dense fluid as well. 

4. An alternative form for the momentum balance 

The balance equation (20) as derived in section 2 is slightly inconvenient 
because it contains anisotropic terms in the pressure (23) and the force 
density (14) that cancel out in equilibrium. For a dilute medium in equilibrium 
an alternative form of the balance equation follows by inserting (29) into (20) 
with (14): 

Opv  = _ V .  ( p v v )  - V(p K + p* - ~p2) + (VE). P 
Ot 

= - V .  ( p v v )  - V(p r + p~) + F ' ,  (35) 
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with a force density 

F ' =  (VEL) • P (36) 

containing the Lorentz cavity field EL = E q- lp .  

The momentum balance for a general polarized fluid in equilibrium may 
likewise be written in a different form by substituting (30) into (20) with (14): 

3pv 
= - V .  (pry + P)  + F, (37) 

Ot 

with the force density 

1~" = (VE). P. (38) 

This form of the balance equation is equal to that used before'), if magnetic 
terms are deleted in conformity with the present treatment. 

If the fluid is situated in a field of optical frequency its time-averaged 
momentum balance follows from (20) with (22) and (34): 

V " (pv--V) + V(-~ + -~) = if;, (39) 

with F' given in (36). 
The transitions from (20) with (14) to (35-36), to (37-38) or to (39) are 

illustrations of the possibility of shifting terms from the pressure gradient to 
the force density. The definition of the force density by itself is thus not 
unique: only the combination of the force density and the associated pressure 
has a physical meaning. 

In recent papers 3'4) a force density was studied which is equivalent to (22) if 
the electric field is transverse. However, in writing the momentum-balance 
equation the pressure tensor was not taken into account. The occurrence of 
anisotropic terms in the pressure tensor thus escapes the attention. In fact we 
have shown that the time average of the pressure tensor for a fluid in an 
optical field contains an anisotropic term ~P-P which compensates the aniso- 
tropic part V • (-~P-P) in the force density. 

Appendix A 

Pressure tensor for hard-sphere molecules carrying electric dipoles 

The short-range part of the interaction for a pair of hard-sphere dipole 
molecules is given by the hard-sphere potential &aS(R) which vanishes for R > cr 
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and is infinite for  R < or. The long-range part is for  R > or equal to t~L(a), defined 
in (2), while it vanishes for  R < or. The correlation part of the pressure tensor has 
a form analogous to (17): 

f ls ~ C ~ .  __1 $[Vst~L(s, 1, 2)]c2(R +½s, 1, R - 2  ,2; t ) d s  dl d2. 
s>o- 

(A.1) 

Fur thermore  the short-range part of the pressure tensor (cf. (19)) becomes 

___ f 
~S 1 S[Vs~pHS(s)]f2(a +½s, 1 ,R  - ~s, 2; t) ds dl d2, (A.2) 

where owing to the singular character  of ~b Hs the integrand is different from 
zero only at the surface of the sphere s = or. For  a dilute fluid of dipolar 
hard-spheres in equilibrium the two-particle distribution function can be 
approximated as in (24). Then the sum of (A.1) and (A.2) becomes 

/ .  

pc + ps  = ½/3-~ j I~(R + ~s, 1)/~(R - ½s, 2) 

x [O(s - o-)sVs(e -#*L - 1 +/3th L) + e-O*LsV, e -~+"s] ds dl  d2. (A.3) 

As in Section 3 the dependence of the one-particle distribution function on s 
may be neglected. In the first term between square brackets a partial integration 
is performed and in the second term one uses the identity exp(-/3~b Hs) = 
0 (s - or). With the use of (12) one then obtains a relation like (28) with p * given by 

p4, = _~n213-~or 3_ ~13-' f .f~(R, 1)f,(R, 2)(e -~6~- 1 +/3(~ L) ds dl  d2. (A.4) 
s>o- 

The first term is the low-density hard-sphere pressure, while the second 
represents  the pressure due to electric-dipole interactions. Such a decom- 
position of the pressure was not feasible in the general case treated in Section 
3. 

Appendix B 

Connexion between the pressure tensors P and I ~ 

To be able to discuss the relation (30) we shall start by defining I 6 as it 
appears in our bookm). For  a dipole fluid in a slowly-varying electric field the 
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pressure tensor # is of the form (21), but with pc replaced by #c defined 
without a principal value symbol: 

f $[Vs(~L(s,l,2)]c2(R+½s, l,R-½s, 2;t) ds dld2. (B.1) 

Upon comparing with (17) one gets 

#c = pc + ½1im f S[VstJ)L(s, 1, 2)]/.(R, 1, t)/,(R, 2, t) ds dl d2, (B.2) 
~--*0 3 

U(e) 

where U(e) represents a small sphere of radius e around s = 0. We could 
replace the correlation function c2 by the product - / , / ,  since/2 reduces to 
zero when the interparticle distance vanishes. Introducing the explicit 
expression for ~b L given in (2), we may write (B.2) as 

mc= pc_! f sV~P.V,P.V, 8_~ds, (B.3) 
U(~) 

with P the macroscopic polarization. With the use of the auxiliary relation 

lim,~o f s~V jV kv i ...~1 ds = !(6iJ6ktS, + 8~k8 j~ + 6"6Jk), 
U(~) 

(B.4) 

which follows from partial integration and formula (12), the connexion be- 
tween #c and pC becomes 

# c =  pC _~pp _~oP2O, (B.5) 

which proves (30). 
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