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The collective modes for a classical magnetized Coulomb plasma are determined with the use of
kinetic theory. A comparison is made with the results from magnetohydrodynamics. It is shown
that only four of the nine independent static transport coefficients are accessible through the
damping terms of the purely dissipative modes. One of these is the convective cell mode which
decays relatively stowly for strong magnetic fields; it exists solely when the wave vector is purely
perpendicular to the field. The oscillating modes contain generalized transport coefficients, evalu-
ated at finite frequencies.

1. Introduction

Collective modes play an important role in the dynamical response of a
plasma to external disturbances. In particular, the modes with small
wavenumber determine the large-scale behaviour of the dynamical structure
factor. Obviously the dynamics of a plasma is influenced by the presence of a
magnetic field. In the present paper we shall study the mode spectrum of a
magnetized plasma.

For a fluid consisting of neutral particles the collective-mode spectrum is
known to consist of a a heat mode, two shear modes and two sound modes. For
all these modes the dispersion relation implies that for long wavelengths the
frequency of the modes tends to zero. In a plasma the density fluctuations,
which are essential for sound propagation, are modified owing to the neutraliz-
ing effect of the long-range Coulomb interaction. Consequently, instead of
sound waves plasma oscillations occur at a frequency that remains finite for
large wavelengths.

To determine the mode spectrum various alternative methods are available.
From a macroscopic point of view the collective modes should follow from the
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linearized version of the hydrodynamic equations. For a system of neutral
particles the frequencies of the long-wavelength modes are indeed found in this
way. The damping is determined by the static transport coefficients. However,
for a plasma the usefulness of hydrodynamics is not evident. Indeed, the
occurrence of plasma oscillations at a finite frequency, even for vanishing
wavenumber, points to the fact that the use of the hydrodynamic limit, which
implies a limit of zero frequency, is questionable"?).

An alternative approach to the evaluation of the mode spectrum is furnished
by kinetic theory. Here the mode frequencies follow by considering the poles
of the matrix elements of the resolvent of the kinetic kernel in the complex
frequency plane. In this way it has been shown®) that the damping and the
dispersion of the collective plasma oscillations is determined by generalized
transport coefficients given as kinetic expressions at a finite frequency. The
thermal and the viscous modes may still be obtained from macroscopic hydro-
dynamics.

For a magnetized plasma the spherical isotropy of the plasma is destroyed
and one is left with a cylindrical symmetry. As a consequence the mode
spectrum will depend on the angle between the wave vector and the magnetic
field. Moreover the cyclotron frequency will play a role on a par with the
plasma frequency. In view of the findings for an unmagnetized plasma it is
obvious that confidence in a (magneto) hydrodynamic evaluation of the mode
spectrum is even less justified for a plasma in a magnetic field. Hence a kinetic
approach will be adopted from the outset. In a later stage of the treatment the
connexion with the magnetohydrodynamic results will be established.

As a model we shall consider a classical one-component plasma, which
consists of a system of charged particles in an inert uniform background of
opposite charge. The interaction between the particles and with the back-
ground is purely electrostatic. The magnetic field is supposed to be stationary
and uniform in space.

After a review, in section 2, of the general formalism of kinetic theory for
time correlation functions, the frequency matrix, the eigenvalues of which
determine the modes, is discussed in section 3. In sections 4-6 the mode
frequencies are evaluated. A separate treatment is given of the collective
modes in a strongly magnetized plasma and of the modes propagating in a
direction transverse to the magnetic field. The final section contains a dis-
cussion of the connexion between the kinetic and the magnetohydrodynamic
derivation of the mode spectrum.

2. Kinetic equation

The time correlation function C, which describes the motion of the con-
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stituent charged particles of a magnetized plasma, is defined by its Fourier-
Laplace transform

w0

Clk,p,p', 2) = —ifdtei“<5f(k, p, )of(k, p', 0)%), 2.1

0

with Im z > 0. The canonical-ensemble average contains the fluctuating part
8f = f— (f) of the phase-space density

fk, p, 1) = %ze"*"uma[p—pa(t)], 22)

a

with r,, p, the position and momentum of particle «, and V the volume of the
plasma. For k # 0 one has (f)=0 so that in this case 8f in (2.1) may be
replaced by f.

With the help of the Mori projection-operator formalism*?) a formal kinetic

equation for C may be derived:

[z - L§(k p)IC(k, p, P, Z)—J’dp”so(k, pp",2)Ck p", p', z)=C(k, p,p').
2.3)

Here L] is the Liouville operator associated with the motion of a single
charged particle, of charge e and mass m, in a uniform and stationary magnetic
field B:

k-p . N
Lo (k, p)=—=—iwg(pnB)-V,, 2.4)

where wy is the Larmor frequency eB/mc and B a unit vector in the direction
of the field. Furthermore, C(k, p, p’) is the static correlation function given by
lim . zC(k,p,p’, z). As a consequence of the theorem of Bohr and van
Leeuwen C is independent of the magnetic field.

The memory kernel ¢ in (2.3) consists of two parts: ¢ = ¢°+ ¢°. The static
kernel ¢°, which does not depend on z, is given by

k-
ok, p.p) =~ nfi(p)e(k). @s)

with #n the particle density, f,(p) the normalized Maxwell-Boltzmann dis-
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tribution and c(k) the direct correlation function. The collision part ¢° of the
memory kernel may be written formally as

ok p, p', Dnfy(p) = ([QLF(k, p)I* QLf(k, p)). @)

1
z+ QLQ
Here L is the Liouville operator in phase space, which for an arbitrary function
F on phase space is defined through dF/d¢=iLF; furthermore f(k, p)=
f(k, p, t = 0). The projector Q = 1— P projects an arbitrary function F, which
depends parametrically on k and p, on the space orthogonal to the one-particle
functions f(k, p),

PF(k p) = [ dp' dp"(F(k D)k B XF(k BTk P kP, @)

with the inverse integral kernel

8(p—p)_

. 2.
ofp) <® @8

(f(k, p)f(k, p)y*)" =

The collision kernel ¢° fulfils a set of symmetry relations and conservation
laws. The symmetry of the Liouville operator under parity and under the
combined effect of time reversal and of time translation leads to the relations

(pc(k’ P, P', Z, B) = ‘Pc(_ k, =P "‘PI, Z, B) s
¢°(k, p, p', 2, B)f(P) = ¢°(=k,—p', —p, z, - B)fy(P) ,

2.9)

where the dependence of ¢° on the magnetic field has been made explicit. Under
complex conjugation the collision kernel transforms according to the rule

¢C(k, b, P” z, B) = —[GPC(—k, D, p,’ _Z*s B)]* . (210)
The microscopic conservation laws of particle number, momentum and
energy give rise to integral expressions for the moments of the collision

kernel”®). The derivation of these relations is given in appendix A. Con-
servation of particle number implies the identity

[apetkpp, 2)=0. @11)

From the microscopic conservation of momentum and of energy one derives
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fdppqcf(k, pp.2)=k-T(kp,z), (2.12)

2

f dp EIL ok, p, p', 2)= k- J.(k p', )~ zE(k, p', z). (2.13)
m

The pressure tensor T, the energy density E and the energy flow J, remain
finite in the limit k- 0, z —>10.

3. Determination of the eigenvalue equation for the collective mode frequencies

The kinetic equation (2.3) is an integral equation for the time correlation
function with the formal structure

[z = 3(k, 2)]C(k, z) = C(k), 3.1)

where the momentum variables have been suppressed. The kernel 3 has the
form

k-p N .
S(k,pp, Z)=—m—6(p—p )~ iwy(p A B)-V,8(p—p')
+ @'k p,p)t+ o'k pp,2). (3.2)

The collective modes of the magnetized one-component plasma are determined
by the poles of the matrix elements of the resolvent of 3,

1
Gtk )= [ ap ap 0, | 5| 2 0010
1
= —_— 33
<# z—3(k, z) y>’ (3-3)
in the complex z-plane. Here the functions ¥, (p) with u =0, ..., 4 are defined
as
WP)=1. WP == (=1,2,3),
0 * i (ka T)l/z

(3.4)

W= (3
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The matrix G,, satisfies the equation>?)

> (28, - 2,,(k 2)]G,,(k, 2)=35,,, (3.5)
A
with the frequency matrix

0,0k 2)= IS+ (| 20 = 03]»). (3.6)

1
z-03Q
Here Q is the complement of the projector P, which projects a momentum-
dependent function onto the space spanned by the states |x). From (3.5) it is
clear that the poles in G, are determined by the eigenvalues of the frequency
matrix {2,

The evaluation of the matrix elements {2, and the subsequent determination
of the collective modes is more complicated for a magnetized one-component
plasma than for an unmagnetized plasma or a fluid. The reason is that isotropy
arguments can not be used to classify the modes as either longitudinal or
transverse with respect to the wave vector. In fact, two independent directions,
k and B, play a role. In the following B will be chosen parallel to the positive
z-axis; the wave vector k then points in an arbitrary direction.

The matrix {2,,, as given by (3.6), consists of a direct part, which is the first
term at the right-hand side, and an indirect part, the remainder of (3.6). The
direct part contains contributions due to the free-streaming term, the magnetic-
field term and the static memory kernel in (3.2). These contributions are easy
to evaluate explicitly>®). For (g, ») = (0, 0) there is no contribution, while for
(1, v)=(0,i) and (i,0) one finds vyk, and wvy(l— nc)k, respectively, with
i=1,2,3 and v,= (ky T/m)"?. Furthermore, for both (u, »)=(i,4) and (4, i)
the result is \/Qﬁvoki. The magnetic field only enters in the (u, v) = (1, 2) and
(2, 1) terms, with a contribution iw; and ~iw, respectively.

The direct part also contains a matrix element of the collision term ¢°. As a
consequence of particle number conservation (see (2.11)) this matrix element is
non-vanishing only for i =1, j = 1. For (u, v) = (i, j), with i, j = 1, 2, 3, it follows
from the conservation of momentum in the form (2.12) that the matrix element
is proportional to k*:

<l’¢c,]> =—i D(Z]Mij, mn(k’ Z)kmkn N (37)

Here M,

4 mn 18 @ tensor that is symmetric under the interchanges i<>m and
jen,
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i

M, . (k2)=~——5—
u,mn( Z) n(kBT)ZV

(om0 0r,,(k)), (3.8)

z+ QLQ

where use has been made of (2.6) and (A.9). For k — 0 this tensor only depends
on the unit vector B and on scalar quantities (z, wg, n, T, etc.). One may
construct eight covariant tensors of fourth rank possessing the required sym-

metry properties and depending on a single unit vector B:

(43 I—
Tij, mn 6im(sjn ’
T n=8,8,,+8,8
ij, mn if¥mn in~ jm >
e _ A a
ij,mn_aimB/'Bn’
@ A A
Tij,mn - SjnBiBm’
T9.=6.B8, +6,BB+8,BB, +5, BB (39)
ij, mn o m~n mn— it in~j"m jm~i=n>
©® _BBB DB
Tu mn—BiBijBn’
() R 5,
T = (aijemnk +6, et 0, €t ajmgink)Bk :
® a A A A A A a
T9,,=BBe,, +B,Be,+BB.e,,+BB,e,)B,.

Correspondingly, the right-hand side of (3.7) can be represented, for small k, by
a linear combination of eight terms resulting by contraction of each of the
tensors (3.9) with &, k,. A further simplification of this representation is obtained
by employing the symmetry relations (2.9). These imply the following identities
for the matrix elements (3.7):

<li¢c|]>(k’ 2, B) = <i|(Pc|j>(_k, Z B) s

(3.10)
(ile i)k, z, B) = (jl¢|i}—k, z, - B),

where the dependence on k, z and B has been indicated. For small k the first
relation gives no new information: it is identically satisfied by (3.7). The second
relation is fulfilled only if the coefficients of the terms T3, k,k, and
T, .k,k, are equal. In this way only sever independent terms are lelt in the

representation of (3.7). After some rearrangement the matrix element gets the
form

(ileflj) = —ivik’a}(k, B, z), (3.11)

for small k, with a tensor «; that depends on k and B in the following way:
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A A

ay(k, B, z)=aj(z)8,+ a;(z)E,.E,.
+ay(z)(k,B;+ BK)k- B+ al(z)[BB,+5,(k-B))
+ai(z)B,B;(k- BY + ay2)[(k n B),k,— k(KA B), + £,,B,]
+aj(z)[(knB)B.— B,(knB),+¢,Bk-Blk-B. (3.12)
The coefficients a’(z) satisfy the reality conditions

afz)=laj-z"]*, j=1,...,7, (3.13)

as a consequence of (2.10). Each a] follows by taking the infinite-wavelength
limit of a particular matrix element of ¢° for a special choice of the direction of
the wave vector. One has for instance

i, 1 .
a;(z)=‘v—21km;P[<1|¢ |1>]k=(0,k,0)' (3.14)
0 -

The matrix elements {i|@°4), with i = 1, 2, 3, have the general form
(il = v,M (K, 2)k, , (3.15)

as a consequence of the momentum conservation law (2.12). From (2.6) with
(A.9) and (A.18) it follows that the symmetric tensor M ,,, is

0r,u(0)).

L 2 pot . *
M, (k Z)="‘1(—kB—T—)2—‘; \/;<[QL3 (k) + Qk - j (k)] 21 0LO

(3.16)

For k- 0 the contribution with j,(k) can be neglected. Then M,, depends on
the unit vector B and on scalars. Consequently it must be a linear combination
of the two tensors

TO = §.

m

, T®=BB,. (3.17)
The symmetry properties (2.9) of the collision kernel lead to the relations
(ile|A)(k, z, B) = —(i|@|4)(— k, z, B),

(3.18)
(ile°|4)(k, z, B) = —(4|¢°|i)(—k,z, ~B).
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Combining (3.15), (3.17) and (3.18) one may write for small k

(il¢°14) = (4le°liy = vokBi(K, B, z), (3.19)
with a vector 8’ depending on k and B in the following way:

B'(k, B, z) = bi(2)k, + b)(z)B,k - B. (3.20)
The coeflicients b(z) satisty the reality conditions

bi(z)=[b)(—=z*)]*, j=1,2, (3.21)

as a result of (2.10).

The static limit of the coefficient bj(z) is related to thermodynamic
quantities>*). In fact, by taking the double limit z —i0, k- 0 in (3.16) one may
prove (see appendix B)

lim b'(z) = \/g [7{117 (E) - 1] . limbl(z)=0. (3.22)

z—i0 0T/ n z-i0

Finally, we consider the contribution (4/¢|4) to the direct part of the
frequency matrix. From energy conservation in the form (A.18) it follows that
this matrix element reads

@) = [QLe™'(k) + Qk - j.(k)]*

3n(kBT)2V<

X T oLo QLeT )+ Ok -ig(k)]> - (3.23)

For small k the right-hand side is a linear combination of the invariants that
can be constructed from k and B. Up to second order in k one has

Ao 14y = ~iy'(K, B, ) — iv2k*8'(k, B, z), (3.24)
with
Yk B, z)=c'(z), &k B z)=d|(z)+dyz)k-BY. (3.25)

The symmetry properties

(4@ 1a)(k, z, B) = (4]¢°|4)(~ k, 2z, B) ,

W)k, 2, B) = (4o W)~k 2, - B), (3.26)
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which follow from (2.9), give no new information. From (2.10) one obtains the
reality conditions

c(z)=[c'(=zM)*, d2)=[d(-z"N", j=12. (3.27)

For small z the coefficient ¢’(z) is related to thermodynamic quantities™).
As is shown in appendix B one has in this limit

1 2c
lim—c'(z)=i(1-=2%), 3.28
szC(Z) l( 3kB> ( )

with ¢, the isochoric heat capacity.

The indirect part of the frequency matrix {2, (3.6) may be analyzed in a
similar way as has been done above for the contribution {(u|¢‘|v). Particle
number conservation implies the vanishing of indirect contributions to {2 , and
£2,,. Employing momentum conservation and the cylindrical symmetry of the
system one finds that for small k the indirect part of {2, has the same form as
(3.11)}~(3.12), with a tensor a’; and coefficients a} instead of «; and a/,
respectively. Likewise, the indirect part of £2,, and 2,; follows from (3.19) with
(3.20) by replacing 8 and b; by B’ and b. For small z both bj(z) and b(z)
tend to 0. Finally the indirect contribution to (2,, is, for small k, of the form
(3.24) with (3.25), with the substitutions y'— y”, 8= 8" and correspondingly
¢’ c", d;~ d’. In contrast with (3.28) one has for small z the limit z7'e"(z) >
0.

In conclusion, we have found the following general form for the frequency
matrix:

0 l)()k,r voky Uok, 0
Uo(l - nc)k, —iv%k2au ia)g - il)(z)kzaflz —ivgkzau Uokﬁl
0,k z)= vo(l = ncdk, —iwg —ivgk?ax —ivgk’ay —ivdk2ax vok B,
vo(1 — ne)k, —ivgk2as, —iv3k2an —ivdk’asn vok B3
0 kB vok 3 vok B —iy —ivfk?s

(3.29)

Here we introduced the abbreviations &, = a};+ «; and likewise for y and
8. Furthermore we wrote B_, =Bi+tpi+ \/57312,.. Correspondingly one has a; =
a;+ aj and similarly for the coefficients ¢ and d,. The coefficients b; are defined
as b, = b+ b"+V?2/3 and b,= b;+ b}

The frequency matrix (3.29) is more complicated than the corresponding one
for an unmagnetized plasma. Owing to the change from spherical to cylindrical
symmetry the matrix no longer has a block structure as in the unmagnetized
case. As a consequence the evaluation of the mode frequencies is a more
elaborate task, which will be discussed in the next sections.
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4. Evaluation of the collective mode frequencies for a strongly magnetized
plasma

The mode frequencies are determined by the eigenvalues of the frequency
matrix £2,,. For k — 0 some of these mode frequencies vanish, while others remain
finite. It turns out that for general directions of the wave vector there is only one
purely dissipative mode, with a damping proportional to k. In the special case
k L B the number of dissipative modes increases to three. This special case will be
considered separately in section 6. In this section we will consider the general case
of modes with wave vectors in an arbitrary direction.

The dissipative mode is determined by substituting the expansion z =
ak®+--- in the eigenvalue equation det(z8,,— £2,,)=0 and retaining the
leading terms in k. One finds in this way

z+iy(k, B, z)+iv2k*8(k, B, z)=0 4.1)

and hence, by insertion of (3.25) and (3.28),

3k
z =i oi{d )k} + (d,+ dyk]]. 4.2)
2¢c,,

The subscripts || and L denote components in the direction parallel to and
perpendicular to the magnetic field. The coefficients d;(z) have to be evaluated
at the limiting value z = i0 of the mode frequency. From (3.27) it then follows
that the mode (4.2) is purely dissipative, with an imaginary frequency, at least up
to second order in k. The damping in (4.2) is anisotropic, with two independent
coeflicients d, and d,+ d,.

The remaining modes are, for a general orientation of the wave vector,
oscillating modes, with finite frequencies for k — 0. These are found from the
eigenvalue equation

2~ [pk* (A~ ne) + wg) 2’ + vpkj(1 - nc)wp =0, 4.3)

where in the coefficients the limit k — 0 is understood. In fact, one has for small
k (see appendix B)

2

nky Tk

k*(1-nc)= k2 + + O0(kY), 4.4)

with k;, the Debye wave vector, which is related to the plasma frequency w,
through v k;, = w,. Furthermore, «, is the isothermal compressibility. The
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solutions of (4.3), with (4.4) inserted, follow as

z=%3(w,+w), z=i%(w+—w_). 4.5)
Here the abbreviations

w, = (03+ 0} + 20 wk)"?, (4.6)

with E"= ky/k, have been introduced. From (4.5) it is obvious that the case
k L B is a special one, since E“ =0 implies w, = w_, so that the second pair of
modes then becomes purely dissipative.

The zeroth-order mode frequencies (4.5) simplify in the special case of strong
magnetic fields, corresponding to cyclotron frequencies wy > w,. In that case
(4.5) becomes

z=*wy, z=%*wlk. 4.7)

The damping and the dispersion of the oscillating modes follow by deter-
mining the coefficients of order k” in the expansion of the mode frequencies
with respect to k. In the general case of arbitrary field strengths the results are
rather complicated. For w, > w,, however, one obtains from the eigenvalue
equation

2 . 1 .
z = [wy — 2ag0;k ; — (ag+ a,)voki] —i(a, +3a,)v5k —i(a;, + a4)v3kﬁ ,

“4.8)
and
oI (bt By oRkk
z2=*w, n[“ ; 2+(1 . "]
2nkyTrrwp 20, (wk xic)
—3i(a, + a)vik? —li(a, + a,+ 2a,+2a,+ as)vzkﬁ . 4.9

In the coefficients a, I;J and c one should insert the lowest (k°) order values of
z. From the reality conditions (3.13), (3.21) and (3.27) it follows that the mode
frequencies (4.8) and (4.9) are located at positions that are symmetric with
respect to a reflection in the imaginary z-axis (i.e. with respect to the trans-
formation z - —z*).

In a recent paper*) expressions for the frequencies of the oscillating modes of
a plasma in a strong magnetic field have been reported on. Since no explicit
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formulae for the kinetic coefficients in these expressions have been given a
detailed comparison with the results found here is difficult. It can be noted,
however, that in some of the contributions to the frequencies of the oscillating
modes, as given in ref. 4, the static limit has been taken. As a consequence the
mode dispersion contains a term depending on the ratio of the heat capacities
¢, and ¢y. In (4.8) and (4.9) the kinetic coefficients a,, b_; and ¢ are all to be
evaluated at finite frequencies. Such kinetic coefficients also appear in the
expressions for the oscillating modes of an unmagnetized plasma’?).

5. Collective mode frequencies for general values of the magnetic field strength

If the plasma is situated in a magnetic field of arbitrary strength the
evaluation of its oscillating collective mode frequencies is rather complicated.
Complete cylinder symmetry is present only in the particular case that the wave
vector is parallel to the magnetic field. It turns out that the oscillating modes
are then given, for arbitrary values of w,, by expressions (4.8) and (4.9), with
the substitutions k,— k, k, >0, kA“—> 1.

For the general case of arbitrary angles between k and B the oscillating
mode frequencies are, in zeroth order of k, given by (4.5) or by =w,, with
w, =3(w,+ Aw_) and A = +1. Up to second order in k a straightforward
calculation yields

ok’ N
z=*w % (Nf+ 2 ), (5.1)

+ =
A 2 2 2 2 202 :
2wi(w, + wp) — 4w w k) +w, +ic

with N7 and N, polynomials in w,,

. 1 . A
Ni=%w, [wB(alz_ 1) nkg TKT] —iwilwplan + ay) + o, kK]
. 1 "
tw, [a)in&‘ ijim @ kmE" - wf, ﬁ;lkT} + iwiw;kﬁaii S 3.2)
B T
N,= wi[wf)[?iB_iEiEj + wiz(ﬂ? + B_i)] - wf’wglgﬁ[zﬂ_i > (5.3)

where a summation over repeated indices is understood. The coefficients in
these polynomials may be expressed in terms of the quantities a; and b; by
inserting (3.12) and (3.20) and their counterparts for a; and 8. Then one gets
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. 1
Ni=5w {wB[4a6E§ +2(ag+ a,)ki] - T TKT}
+ iwf{wf,[(Za] +a)kt+(4a,+3a,+ as)fiﬁ
+2(a, + a4)l€ﬁ - (3a,+ a,+ a k>
—(3a,+ a,+2a,+4a,+ as)lfﬁ - wi[(2a, + a )k’ + 2(a, + a4)1€ﬁ]}

" 1
w, {wFakil2(a, ~ @)k + 2ag+ a3 - 03k} ————]

B0 nky Tk,
+iwlwiki[Ba,+ a,+ a )k + (3a, + a,+ 2a,+ 4a, + a,)kj] (5.4)
N, = wilwp(b, + b k(Y + w3 b1k%] - 0w [52K2 + (b, + B KI)K?. (5.5)

The coefficients a;, I;] and c are to be evaluated at z = xw,.

6. The special case of orthogonal wave vector and magnetic field

The collective mode spectrum for modes with a wave vector perpendicular to
the magnetic field is qualitatively different from the spectrum for arbitrary
wave vector. Whereas in the general case four of the five modes are oscillating
only two of these retain that property in the special case IE,I =0, as is obvious
from the expressions (4.5) for the mode frequency at vanishing wave number,
In that case the k® contributions to the mode frequencies cannot be obtained
from (5.1). In fact, both the numerator and the denominator in the second term
of (5.1) vanish for E"=0 and A = -1, since in that case w, =0. No such
difficulty arises for A = +1, since the zeroth-order frequency then becomes
w, = (wf;+ w3)'? = w, Putting E"=0 in (5.1) one finds for the propagating
modes with A = +1

27,2 12,212
k bivgk
z= i[w0—2a6&03k2+ Yo + % . ]
w, 2wynky Tk  2(wy,xic)
1 vok?
~—ifwi(a, + a,) + wi2a, + a)) 5. 6.1)
2°° w,

To obtain the dissipative mode frequencies for the case k1 B we should
return to the expression (3.29) for the frequency matrix {£2,,. Upon substitution
of k, = 0 in (3.29) with (3.12) and (3.20) it follows that £2,, = £2;, =0 for u # 3,
so that one of the modes is decoupled. It has the frequency z = (2,,, or

z=—i(a,+ a)vik®. 6.2)
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A further analysis of the eigenvalue equation for the remaining modes leads to
another dissipative mode:

2
2= —i 22 0%, 6.3)
Wy

Of course also the mode (4.2) is recovered. The coefficients a; in (6.2) and (6.3)
must be evaluated at the frequency z = i0. As these are real according to (3.13),
the modes (6.2) and (6.3) are purely damped, with an imaginary frequency, up to
order k*. It should be remarked that the expression for the mode (6.3) contains
explicitly a factor w(‘,z as compared to that of the modes discussed before. When
the strength of the magnetic field increases, the damping of this mode thus
vanishes relatively fast as compared to that of the other modes. So for intense
magnetic fields the mode (6.3) becomes long-lived.

The singular property of long-livedness of the mode (6.3) shows that it is not
connected in a continuous way to the modes with k"aé 0. In fact, the mode
frequencies given in (6.2) and (6.3) cannot be obtained from the general
formLAlla by putting A = —1 and taking the limit 13” = 0. Indeed, since for A = —1
and k;— 0 one has

W Wy -
w, = w Bk||, 6.4)
0

the polynomial (5.2) becomes for small IEH

. 2 2
_ lwlw .
N, = —;T‘i [0)Qa,+ a,)+ wila, + a)lk], (6.5)
0

while N, = 0(k}). Then one finds from (5.1) for ky—0:

i
7=+ %“2 i~ 5 lwia + a)+ W+ a)loik’. (6.6)
0 0

Hence for small but nonvanishing k, two of the oscillating modes become
nearly degenerate, with almost vanishing frequencies and with the same
damping coefficients. This damping coefficient differs from those of (6.2) and
(6.3). In fact, it is the arithmetic mean of these. For strong fields it does not
tend to zero, so that none of the modes (6.6) becomes longlived. The mode
(6.3) indeed has a unique property.

The discontinuity in the frequency spectrum of the collective modes is a nice
example of a general phenomenon in spectral theory. Indeed, discontinuities in
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an eigenvalue spectrum may arise if a degeneracy occurs for a particular value
of a parameter, as is a well-known fact in perturbation theory. The prescription
to obtain the perturbed eigenvalues depends critically on the degree of
degeneracy of the unperturbed problem. The present calculation of the mode
frequencies can be considered as an example of a perturbation analysis. The
unperturbed problem corresponds to the case of vanishing wave vector.

7. Magnetohydrodynamics

To establish the connexion between magnetohydrodynamics and the kinetic
theory of a magnetized plasma we calculate in this section the modes that
follow from the linearized magnetohydrodynamic equations. Subsequently, we
investigate the relation with the results from the preceding sections.

The linearized magnetohydrodynamic equations read

0
58n(r, H+nV-o(r,t)=0,
a A

nm g;v(r, 1)+ VéP(r,t)~ V-5 :Vo(r,t) = neE(r, t)+ nmwgo(r, t) A B,

i T (9P 1

2 ST(r, )+ — (—) V-o(r,f)——— V-A-VsT(r,1)=0. (7.1)

ot nc, 0T/, ncy
The hydrodynamic velocity is denoted by wv(r, t). The local fluctuations of the
particle density n, the temperature T and the hydrostatic pressure P are
written as én(r, t), 8T(r, t) and 8P(r, t), respectively. The local electric field
satisfies the Maxwell equation

V-E(r,t)=edn(r1). 7.2)

The thermal conductivity tensor A depends on the magnetic field and
satisfies the Onsager symmetry

A,(B)= A, (~B). (7.3)
Upon expansion in covariant tensors we have™®)

A=A 8,+(N—A)BB + e, B, . (7.4)



386 L.G. SUTTORP AND J1.S. COHEN
Similarly, the viscosity tensor 5 satisfies the Onsager symmetry

Nijmn(B) = Nppi;(— B) (7.5)
and is symmetric in the indices ij and mn. Consequently, we may expand it in
seven independent linear combinations of the tensors T® as defined in (3.9).

We choose the independent combinations such that the contraction has a form
similar to (3.12)>%),

— [0}] [v] [} 3 @
nijmn - fl(_ Timjn + Timjn) + f2Ti"'/" + f3(Tim/" + Timf")
5 3 @ ©) @ ®)
T T = T T f T+ f T+ f T (7.6)

The coefficients f; are related to the seven viscosity coefficients as introduced in
ref. 5, viz.

fi=—m+2n,, fzzé”h+77v_2{’ f3:*”’71+1773+3§7 1 a.7)
f4:771_2772+773’ f5:27)1+2772_4713’ f6:§774, f7:”§n4'775-

The coefficients n,, .
volume viscosity and ¢ describes a cross effect between shear and volume
viscosity. From the requirement of positive entropy production it follows that

A =0, A4=0, 9,20 (=123V),
2 (7.8)

2n,=z 0, mmy =30

To find the collective modes we apply a Fourier-Laplace transform to the
equations (7.1). Then we obtain the determinant of the resulting system of
equations for the quantities én(k, z), v(k, z) and 8T(k, z). Subsequently we
calculate the zeros of this determinant for long wavelengths.

In general we find only one purely damped mode, viz. the heat mode

i
z=— (k2 +AKD), (7.9)
necy

where terms of higher order in k have been omitted. As compared to the
corresponding expression for a neutral gas the heat mode contains the specific
heat ¢, instead of ¢, This feature occurs already in the unmagnetized one-
component plasma'?). It is due to the suppression of density fluctuations by the
local self-consistent electric field.

The remaining modes have an oscillating nature, at least when the wave

vector has an arbitrary orientation with respect to the magnetic field.
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Specifically, we have for very strong magnetic fields, i.e. wz > o,

1 i[s 1
oo gonstensd] 5 fnean et ensi]

(7.10)

and

. kil 2 1
2=z k (1+5‘—OP~2> - [5 nk?+ (5 - +5nv+2§) kﬂ . (7.11)

The sound velocity ¢, depends in the usual way on the thermodynamic
quantities,

1 1 T [P\’
2= - +— (—) . (7.12)
¢y nmk; nmky n'mc, \oT/

The imaginary parts of z in (7.10) and (7.11) are negative definite, so that
indeed the modes are damped. In fact, one easily verifies with the use of (7.8)

1 _ o 2
—2771+2772+%7lv_£>2772—771+_2‘<\/%771_\/77v> =0,

(7.13)
1
§7l1+%nv+2§25(2 v %7]1— v nv)2>0-

The oscillation frequency of the mode (7.10) is shifted from the Larmor
frequency by an amount depending on the viscosity coefficients 5, and 7,.
Hence in the presence of a magnetic field the transport coefficients not only
determine the damping of the modes but in some cases also influence the
dispersion.

For arbitrary values of the magnitude of the magnetic field the calculation of
the modes becomes relatively simple if the wave vector is parallel to the
magnetic field, i.e. k, = 0. Then one finds that the expressions (7.10) and (7.11)
for k, = 0 are valid for arbitrary values of wp.

Another particularly interesting case occurs when the wave vector is purely
perpendicular to the magnetic field, i.e. ky=0. In this case there are, apart
from the heat mode, two purely dissipative modes: a viscous mode

_ M3 2 (7.14)
nm
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and a vortex mode

i(=n,+2n,) 0
= (=m "72)&; k2, (7.15)
nm wg

which is known as the convective cell’); here w,= (w+ w}y)"?, as before. The
dissipative modes (7.14) and (7.15) are not obtained by taking the limit k,— Oin the
expressions of the mode frequencies for general wave vector. The situation is
quite similar to that considered in the previous section.

In addition, for k" = 0, we find two oscillating modes, viz.
1 n.wg\ k* 1 1
z== +<—c2——“—‘-’-)—]—i[ 2(—— +m,+=n,— )
[“’0 2% wm ) w, @p\T3mtmtsy 4
k2

5.
nmw,

2(_3 1
T wp (*6771‘}’2712*'577‘/”{)] (7.16)

Now that we have calculated the modes from the magnetohydrodynamic
equations we can make a comparison with the results that we have obtained
from kinetic theory. For the heat mode (7.9) the relation with (4.2) is obvious,

A= aTd | A= iTd + ) (7.17)
Y e A I 1 2} .

where d; = d(z = i0). The heat mode is a purely hydrodynamic mode; in the
general framework of kinetic theory it occurs in the simultaneous limit k— 0,
z—1i0. Similarly, the connexion is clear for the purely dissipative modes at
ky=0. A comparison of (7.14) and (7.15) with (6.2) and (6.3) yields

ny= nkgT(a;+a), —m+2n,=nkyTa,, (7.18)

where again the q; are to be evaluated at z = i0.

For the oscillating modes the situation is more subtle. For wy > w, these
modes have dispersion relations, given by (4.8) and (4.9), that contain the
coefficients a;, 5] and ¢. Since z410 if k— 0 these coefficients are to be
evaluated at finite values of their argument. So in principle they are not the
phenomenological transport coefficients which appear in the magnetohy-
drodynamic considerations. However, for a strongly coupled plasma we expect
collisions to dominate the collective behaviour'), so that wy/w, <1, where o, is
the collision frequency. Then the coefficients a,(z), I;j(z) and ¢(z) are well
approximated by their values near z =i0. These follow with the use of (3.22)
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and (3.28), so that we can make the replacements

_ 2 1 (8P — . 2¢c,
bl_)\/%n—k,,<aT>n’ ,—0, c—->12( —3—kB>. (7.19)

Now (4.8) and (4.9) get the same form as (7.10) and (7.11) and we can make the
following identifications:

o

5 1 1
—g’ﬂ1+21’2+§7]‘,— §= nkBT(a1+§a2),
§n1+§nv+2g’=nk8T(%al+%a2+ a,+ a4+%a5), (7.20)

n,=2nkgTa,, ns=-nkyT(as+ a,),

where a; = a,(z = i0). One more relation is found from the comparison of the
mode dispersion relations for arbitrary values of the strength of the magnetic
field and an arbitrary direction of the wave vector. The relations are con-
veniently written in terms of the coefficients f,, which were defined in (7.7), viz.

f,= nkyTa,(z = i0). (7.21)

Thus we have related the phenomenological viscosity coefficients n,, { and the
thermal conductivity coefficients A, A, to the kinetic coefficients a; and d,. For
these kinetic coefficients we have derived expressions that contain the collision
kernel, e.g. (3.14).

We have now established the connexion between kinetic theory and mag-
netohydrodynamics as far as the collective modes are concerned. The mag-
netohydrodynamic equations contain static transport coefficients, whereas
kinetic theory shows that several collective modes are determined by general-
ized transport coefficients at finite frequencies. Only the purely dissipative
modes follow correctly from the magnetohydrodynamic equations. The thermal
conductivity coefficients A, A, the viscosity coefficient 1, and the combination
7, — 27, are accessible through the damping coefficients of these modes. The
remaining viscosity coefficients, however, appear only in the oscillating modes
in the form of generalized transport coefficients at finite frequencies. Their
static counterparts do not play a role in the mode spectrum.
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Appendix A

Integral relations for the collision kernel

The microscopic conservation of the number of particles is expressed by the
continuity equation

iLn(k)=iLS e ™" =—ik-> ’fnﬁe“""a : (A1)

a

Upon projection onto the space orthogonal to the one-particle phase functions
one gets

OLJdpf(k,p)=0, (A.2)

and hence, with the help of (2.6),

f dpe(k,p,p')=0. (A.3)
The microscopic momentum balance equation follows by writing
iLg(k)=iL Y p, e " =—ik-7""(k)+ > p, e *™, (A.4)
with the kinetic pressure tensor
k)= %e“*"a , (A.5)

and using the equation of motion (cf. refs. 8, 9)

i

2
[ . A
=3 S G S Tt app nB. (A6)
90) 4 p=o)

The subsidiary condition g # @ accounts for the effects of the neutralizing



KINETIC THEORY OF COLLECTIVE MODES 391

background. The microscopic momentum balance equation becomes
. . . . k .
iLg(k)=—ik-1(k)—ine Pn(k)+ wpg(k) A B. (A7)

Here 7 is the sum of the kinetic pressure tensor (A.5) and the potential
pressure tensor, which for small k is given by*%)

1 é 2qq . A
=5, S S(U-TE) 3 e, (A8)
2v q(#%# 0 q2 qz B
a#*f

with U the unit tensor.
The momentum balance equation (A.7) gives rise to an expression for the
first moment of the collision kernel. Projection with the operator Q yields

- 1
QL | d kp)=-——Qk-7(k A9
[ app it p)= - —= Ok 7 (A9)
and hence, with (2.6),

[dppethpp, )=k TG p'2), (A.10)

with the tensor T defined by

" 1
T(k b, )nfy(p) = ——= ([QLF(k p)]* ——— Q1(k)). (A1)
z+ QLQ

=+
A%
For small k the right-hand side of (A.10) is linear in %, since T has a finite limit
for k — 0. It should be remarked that the magnetic force term in (A.7) has been
annihilated by the projector Q, so that no such term appears in (A.9).
However, the tensor T still depends on the magnetic field through the Liouville

operator in the denominator at the right-hand side of (A.11).
The microscopic energy balance follows by starting from the kinetic energy:

2
king gy _ 5 Pa—iker,
£ (k)—§2me (A.12)

and deriving its time derivative as
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. 2
. o e o iker
iLe"(k) = ~ik-j - % A5 Poingien, (A.13)
Vq(¢0) q a, B m
a#B

- kin

where (A.6) has been used. The kinetic energy flow j:" is defined as

2
. kin Py Pa ik,

=3 e Pe ook A.l4
=2 - (A.14)

a

It should be noted that the magnetic field term in (A.6) has dropped out from
(A.13). The microscopic potential energy is given by®®)

1 e’ ) .
P (k)==—— > S 3 elrrmitn, (A.15)
ZV,,(#o,;et) ‘12 o B
a#B

for small values of k. The total energy satisfies the conservation law
iL[e“"(k)+ e™'(k)] = —ik - j,(k), (A.16)

with the total microscopic energy flow j, = j*" + j™ given by (A.14) and by*")

1 &’ i reaike
Pw=< 3 S(u-H). 3 B, (A.17)
a0, 9 o B
a=f
for small k.

From the microscopic energy balance equation (A.16) one may derive an
expression for the second moment of the collision kernel. In fact, applying the
operator Q to (A.16) one gets

oL [ ap L= fks py=-——

— Q[Le™ (k) + k+j,(k)]. A.18
-~ \/VQ[ (k) + k- j (k)] (A.18)

The collision kernel (2.6) thus fulfils the relation

2

P . , '
j dp o ® (k, p, p', 2)nfy(p")
m

1 . 1
= — —_— y MN* — pot . . .
vV <[QLf(k p)) i [Le™'(k)+ k Js(k)]> (A.19)
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Since one has QLP ¢™'(k) = 0, the right-hand side may be written as

__.’f_.<OL'k Ny * 1 i (k
v oLt P 5= i)

z PR 1 pot
+ T {lQLtk It ——— i)

- \—/1_7 ({OLf(k, p))*e™'(k)). (A.20)

The third term can be shown to be proportional to k for small k. In fact, by
writting Q= 1- P, this term falls apart into two contributions. The first,
without the projector, becomes upon using (A.16) and then (A.13)

1. , 1 /. €4 < Pu igrpin

— k, 4 *k' potk _ k, ] * -1, Fa igr.g-ikery .

o (Tl Pk 12000 V3,2<[f( %) (2) oSk )
a#fB

(A21)

Inserting the expression for f and performing the momentum average one finds
that the second term vanishes as a consequence of the antisymmetry in g. The
first term has the form

dg €
Ll OF

ol s € (g 9N 2 e kP
ey 2 Shk(U-3)-E=Snne 8 [
(A.22)

V.,(;ea,;u)q

where the isotropy of the summation over ¢ has been used.
The second contribution, with the projector P, to the third term of (A.20) is

k-p 1
~FAp) = (1= ne()] 3 (O e (k). (A23)
m

as follows by employing the definition (2.7). For small k the inverse structure
factor 1— nc(k) is proportional to k2 (see (B.4)). However, the average in
(A.23) is proportional to k* (see (B.5)). Hence, for small k the expression
(A.23) becomes

k-p

1
—3nkBTf0(p’)7<nk o~ —1). (A24)
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From (A.20), (A.22) and (A.24) it follows that the left-hand side of (A.19)
may indeed be written in the form (2.13), with finite J, and E for small k and z.
Appendix B
The low-frequency limit of matrix elements of the collision kernel

In this appendix the relations (3.22) and (3.28), which determine the low-

frequency limits of the matrix elements (3.19) and (3.24), will be derived.
For small k and z —i0 the expression (3.15) with (3.16) becomes

(ilef4 >_(k—T)V\[<[QL p"‘(k)]*QTOQ[k T(k)]>
TV \[ ([e™ ()" QLk - 7)) (B.1)

where we used QLPe™" =0 in the last equality. With the definition (2.7) of the
projector we get

(kvoT)Z\[‘{—q P *[k - 7(k)],)

e Wy S e 7w} B2

The canonical average in the first term within the braces is given by’)

FE @)= [k (57) ~ntkaTY] 0, (83)

for small k. It should be remarked here that the fluctuation formulae of ref. 9
are valid for a magnetized plasma as well. The second term in (B.2) is
proportional to k for small k, so that it may be ignored in the limit k— 0. In
fact, the inverse structure factor is, for small k, proportional to k™2;

1-nc(k)= k—‘; + 0k, (B.4)

nky Tk,
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with ;. the isothermal compressublhty On the other hand, the two canonical
averages are each proportional to k” for small wave vectors %),

PR)]* Tk2 ! -1 B.5
SRy =3nk T 15 (== 1), ®5)

2 1

.__([n(k)]*r(k)) = nkyT—; cmre Y

(B.6)

Substitution of (B.3) into (B.2) and comparison with (3.19)~(3.20) completes the
proof of (3.22).
To prove (3.28) we start from (3.23), which for small k and z reads

o) = (1oLe(iy)- OL:™(k)) ®.7)

3n(kgTY'V z+QLQ

Again using the identity QLP ™' = 0 we may write the canonical average as
([e™(K)]*(QLQ — zQ)e™'(k)) (B.8)
where terms of higher order in z have been neglected.
The first part of this expression, which contains QLQ, vanishes on account of

its antisymmetry with respect to time reversal. Substituting the projector in the
second part we get

2
o= - 3—(;—”{ ([e™ (k)™ (k)
)] n< L= ne®) e e
AW n) 0] R (B.9)

Again, the second term is of order k? as follows from (B.4) and (B.5). Since
one has’)

1 3
S W e 0y = nes T (= ks ) (B.10)

for small k, the proof of (3.28) is established.
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