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The effective Hamiltonian for the degenerate energy-eigenvalue problem in adiabatic pertur- 
bation theory is cast in a form that permits an expansion in Feynman diagrams. By means of a 
block representation a resummation of these diagrams is carried out such that in the adiabatic 
limit no divergencies are encountered. The resummed form of the effective Hamiltonian is used 
to establish a connexion with the S matrix. 

1. Introduction 

Perturbation theory for degenerate energy levels can be formulated with 

the help of an effective Hamiltonian. In the adiabatic approach this Hamil- 
tonian is expressed in terms of chronological products of interaction opera- 
tors, so that Wick’s theorem may be applied. As a consequence, the energy 
shifts of a perturbed degenerate level are found through the evaluation of a 
set of Feynman diagrams. This method has been used frequently in cal- 
culations of nuclear structure and molecular interactions’). In particular, 
lowest-order perturbation theory leads to a simple form for the effective 
Hamiltonian, which may be understood heuristically on the basis of the Born 
approximation’). When higher-order perturbation theory is employed the 
diagrammatic representation of the effective Hamiltonian becomes more 
complicated. For the special case of instantaneous interactions the intro- 
duction of so-called ‘folded’ diagrams has proved advantageous”). The field- 
theoretical perturbation theory for non-instantaneous interaction has so far 
been studied only in specific problems, as for instance molecular energy and 
polarizability calculations in quantum electrodynamics”“). In these examples 
it was found that some of the occurring Feynman diagrams are divergent in 
the adiabatic limit; to calculate the energy shifts a resummation of the 
divergent diagrams had to be performed. The purpose of the present paper is 
to show how the diagrammatic expansion of the effective Hamiltonian for 
general interactions can generally be resummed so as to yield a termwise finite 
$ Present address: Koninklj;ke/Shell-Laboratorium, Amsterdam. 
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result in the adiabatic limit. The analysis is facilitated by a schematic block 
representation of the Feynman diagrams, which clearly displays the origins of 
the divergencies. 

The paper has been organized as follows. In section 2 the field-theoretical 
expression for the full effective Hamiltonian, and in particular for the 
averaged energy shift, is derived from adiabatic perturbation theory. In the 
next section the cancellation of divergencies is demonstrated for the example 
of interatomic two-photon exchange processes. A reformulation of this can- 
cellation is given in section 4, where the concept ‘of block diagrams is 
introduced. In section 5 more general examples of the resummation of 
diagrams are worked out, while in section 6 the general rules are established 
for obtaining termwise finite diagram expansions for the averaged energy 
shift. In section 7 it is shown how these rules are to be extended when the full 
effective Hamiltonian is considered. After the resummation procedure has 
been carried out the averaged energy shift can be related to the S matrix, as 
will be proved in the last section. 

2. The effective Hamiltonian in the adiabatic formalism 

We shall study a stationary system with an unperturbed Hamiltonian HO. 
Let PO be the projector on a degenerate level in the discrete part of the 
spectrum of HO. When a time-independent perturbation H1 is present the 
energy shifts AE of such a level may be found as the eigenvalues of an 
effective Hamiltonian V = PoVPO. The relation between V and the interaction 
H1 can be established either by time-independent methods’3P’4) or with the 
help of the adiabatic formalism3-s~15-‘9 ). In the latter case the time-dependent 
interaction picture is used; in addition an explicit time dependence is intro- 
duced by adiabatically switching on the interaction. The total Hamiltonian 
then gets the form: 

HO + e-‘I’IH,(t) = HO + e-.M e%d$J, e-*Ot, (1) 

while the time evolution of the system is governed by the evolution operator: 

UE(t, t’)= gO(-i)” 1 dtl . . . dt, e-"'ll~..-"'~'Hl(t,)e(t12) 

i' 

x Hl(tzNw23)~ * -HI(h), 

with tii = ti - tp In terms of U, one finds for the effective Hamiltonian: 

(2) 

v = ljnJ PoHrU,(O, -w)P,[P,U,(O, -)PJ’. (3) 
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The operator POU,(O, -m)Po is the sum of the zeroth-order projector PO and 
a term PO{ U,(O, -m) - l}PO, which vanishes in the absence of a perturbation. 
Hence the power series of the function (1 +x)-’ can be applied in (3) to the 
inverse [P,U,(O, -m)P,J'. When moreover (2) is substituted we obtain for V 
the perturbation expansion’?: 

0 

V = ljn~ "2, (-i)“-’ 1 dti . . . dtnml e-C1’ll~~~-“rn-I’ 
-m 

x PoH,(O){B(-tJ - PO}H,(tl){wl2) -PO) * . - ~l(LI)PO. (4) 

At the right-hand side we shall split up the contribution of a given order n into 
terms with N time-ordered products of interaction operators, the jth product 
having kj factors H,(t); upon symmetrizing the products with respect to the 
time variables and introducing the time-ordering symbol T the expression (4) 

becomes: @Z 

V = ljr~~ n$l (-$‘-I 1 dtl . . . dr, e-“rl’~.~-r’*n’S(t,,,) 
--co 

’ 9 
N=l kl....,k,~~=l i=I j(#i) 

x PonHl(tl) . . . Hl(t,)lPOT[Hl(fk,+l) . . . Hl(tk,+kz)l . . . 

POT[Hl(tn-k,+l) . . . ~l(td1PO. (5) 

Here the prime at the summation sign stands for the restriction XjN=i kj = R. 
The condition on the upper boundaries of the time integrations is expressed 
formally through a product of S and 8 functions. In fact it merely states that 
the maximum t,,, of tl, . . . , t. is equal to zero, and that this maximum is to be 
chosen symmetrically out of the time variables ti, . . . , fk, of the leading 
time-ordered product. 

If one is not interested in the full effective Hamiltonian V but only in the 
average energy shift dE of the degenerate level, the discussion may be 
limited to the trace Tr V = dE Tr PO. In that case the integrand of (5) may be 
made cycle-symmetric by choosing t max in any of the time-ordered products. 
Then the trace of the effective Hamiltonian can be written as: 

m 

Tr V = ljg nz, (-i)“-’ [ dt, . . . dr, e-f”~t~~~-sl’~l 
-m 

x Tr{PoT[Hr(tJ . . . ~,(~k,)lPO~[~I(~k,+I) * . * Hdtk,+k,)l. . . 

POT[Hl(tn-k,+l) * . * Hdr”)1). (6) 
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The equations (5) and (6) show that in the interaction representation the 
energy-eigenvalue problem of a perturbed degenerate level may be formulated 
entirely in terms of symmetric time-ordered products of the perturbation. If 
the Hamiltonian Ho of the unperturbed system and the perturbation HI can be 
described by quantum field theory the ensuing time-ordered products of field 
operators may be dealt with by applying Wick’s theorem. In this way the 
effective Hamiltonian is represented by a set of Feynman diagrams. However, 
evaluation of the individual diagrams by standard field-theoretical methods 
will generally not be possible, since the existence of the adiabatic limits is 
guaranteed only for the complete set of diagrams contributing to a particular 
order II in (5) and (6). To avoid divergencies a resummation of the Feynman 
diagrams is necessary; in the following sections it will be shown how this 
resummation is achieved in terms of generalized Feynman diagrams that can 
indeed be calculated separately in the adiabatic limit. 

3. Resummation of diagrams in fourth order 

As an example of the field-theoretical perturbation theory we shall consider 
the two-photon exchange contribution to the interaction of two hydrogen 
atoms a, b in their ground states 6,7*9-“). In accordance with the Born-Oppen- 

heimer approximation the nuclei are held fixed, while the electrons are 
described by the covariant Dirac theory. For convenience we shall confine 
ourselves to the electronic part of the photon-exchange interaction, which 
follows from the Hamiltonian H, = -e J dx$y,4Afi’, with $ and A’ the electron 
and photon fields; the nuclear part can be treated in an analogous way. 

The interaction energy will be averaged over the twofold degenerate ground 
states (Ye, /30 of both atoms independently, so that the formula (6) can be used. 
In the summations over N and kj only two terms contribute to this fourth- 
order process, viz with N = 1, k, = 4 and with N = 2, k, = kZ = 2. Carrying out 
all possible contractions one gets the set of Feynman diagrams of fig. 1. The 
first diagram yields for Tr V: 

, __---2 \ 
\ / 

‘s’ 

/ 

I-----l 
3 ----- L 

,,’ ‘\ l-----l 
(al lb) (cl 

Fig. 1. Feynman diagrams for interatomic two-photon exchange, (a, b) with N = 1, and (c) with 
N =2. 
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Here the photon propagator reads: 

i&(X) = -e(t) & dk &. r_ikot 
2ke 

. I 
P x-ikof 

=-$$ d4k kz_kz+io; 
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(7) 

(8) 

the electron propagator is a sum over positive- and negative-energy bound- 
state solutions: 

i&(x, x’) = 19(t - t’) 
E 

~i(~)J(~l) e-iE(:-0 _ 
>a 

e(t’ - t) & $(x>I&x’> e-iE(‘-“). 

(9) 

When (9) is substituted the expression (7) becomes a summation over posi- 
tive- and negative-energy intermediate states for both atoms. The part with 
ground-level intermediate states reads: 

iii x _ ie’ ddx, . . . d’x4 e-‘b~I~.~-‘Id 
%Blpb.B6 I 

x WLax)~(~l, * * * 9 f4)IClolg(X1)YKJI,6(X1)~~,(X3)yrS1~(X3) 

x ~~(xz)rA~~6(xz)~~ai(X4)rY~~(X4)gr~g~DF(X,2)DF(X34), (10) 

with F = O(tl3)O(t24). This contribution to Tr V is divergent in the adiabatic 
limit, as can be seen by actually performing the time integrations. In fact, the 
divergence can be read off already from the diagram la, since the order of the 
vertices can be chosen such that at a fixed intermediate time the total energy 
of the system equals that of the initial state; this argument will be made more 
specific in the appendix. A similar situation does not occur in the diagram lb, 
owing to the different contraction of the photon lines. The contribution of the 
product diagram lc has the same form as (lo), with F = -1, and is likewise 
divergent when c is put equal to zero. 

In view of the existence of the adiabatic limit for the total effective 
Hamiltonian V the divergencies in figs. la and lc should cancel. To make this 
cancellation explicit we first symmetrize the integrand in (10) with respect to 
the vertex pairs (1,2) and (3,4). The sum of the terms with ground-level 
intermediate states in Tr V then contains a time-ordering factor F of the 
form: 

tle(t13)e(t24) + e(r31)e(t42) - Ii = -:le(r13)e(r,) + e(t31)e(t24)i. (II) 
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In both terms at the right-hand side time orderings with tl > t3, tZ > f4 or t3 > t,, 
t4 > f2 are excluded, so that indeed at no fixed intermediate time the system 
has an energy equal to that of the initial state; hence the resulting time 
integral remains finite in the adiabatic limit, so that the averaged interaction 
energy of the atoms can now be found straightforwardly. The detailed 
calculations have been given elsewheregV1’). 

4. Block-diagram representation of the averaged energy shift 

In the preceding section it was shown for the special case of interatomic 
photon-exchange interactions how the contributions of the various Feynman 
diagrams could be rearranged in such a way that all terms are separately 
convergent in the adiabatic limit. In order to generalize this treatment it is 
useful to introduce a more schematic representation for Feynman diagrams 
connecting identical initial and final energy levels. For convenience we shall 
limit ourselves to initial states j&J that are products II~(I&~o) of positive-energy 
states I&o) of distinguishable particles k = a, b, . . . . The interactions are 
supposed to conserve particle number of each species k separately. 

Let us split the Feynman propagators SF,k (k = a, b, . . .) that occur in a 
diagram D into two parts S”,,k and Sks; the contribution Sii,k contains a sum 
over the k-states with energies different from that of the initial state l$&, 
whereas S”,,k = SF,k - Sf;,k involves only the initial-level states. In the example 
of section 3, the part S”, of the electron propagator (9) becomes in this way: 

iSO,(x, x’) = O(t - t’) EzE J/(x)tj(x’) e+(‘-*‘), 
0 

(12) 

with E. the ground-level energy. 
When the above splitting is carried out for all internal lines of the types 

k = a, b, . . . , the diagram D becomes a sum of diagrams DL in which the 
internal k-lines carry an additional label 0 or ‘. The vertices in such a labelled 
diagram may be grouped now in blocks that are defined as the smallest units 
into which DL falls apart if all propagator lines S”,,k are cut. In this way one 
arrives at a schematic block representation DB of a labelled diagram D,; a 
general Feynman diagram D can then be written as a sum of these block 
diagrams. 

A pair of blocks in a diagram DB may be either disconnected (as is the case 
for product diagrams like fig. lc or connected by one or more parallel S”,,, 
lines. Each of these lines carries a time factor O(fkI- t& or @(&,I- &I) with kl 
and kll vertices in the blocks I and II, respectively. For the product &13(&~- 
4,J of all 8 functions directed from II to I we shall introduce as a short-hand 
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notation the symbol Ora. Correspondingly, in the diagram the associated 

propagator lines will be contracted into one oriented line +-. In general, a 
factor Orr,r will occur as well so that the blocks I and II will be linked by two 
lines with opposite orientations. 

The above procedure to introduce block diagrams may be illustrated with 
the help of the diagrams of fig. 1. The Feynman diagram la is a sum of four 
labelled diagrams. The contribution with O-labels at both intermediate electron 
lines consists of two identical blocks I and II, with vertices 1, 2 and 3, 4, 
respectively (see fig. 2a); the intermediate time factor reads O1,r1 = 
8(tl - f3)0(t2 - t4). The other three contributions from fig. la, with a prime at 
one or both electron lines, may each be represented by the single block of fig. 
2b; the diagram of fig. lb remains one block for all labellings of electron lines, 
owing to the occurrence of crossed photon lines. Finally the product diagram 
lc is built up of two separate blocks as drawn in fig. 2c. 

In section 3 we have shown how the divergent contributions that are 
represented by the block diagrams 2a and 2c may be grouped such that a finite 
result is found. This resummation applies quite generally to two-block diagrams 
of the type of fig. 2. In fact, the time factor from the diagrams 2a and 2c is @,rr - ! 
(u. section 3). In view of the symmetry between the blocks I and II we may 
replace the diagram 2a by half the sum of 2a and 2d. The total time factor then 
becomes: 

&h,II + @II,1 - 1) = :[oI,IIo*I,I - (@I,11 - 1X@II,l - 111. (13) 

It should be noted that @ii - 1 will in general be different from -@ii. For the 
particular case of section 3 the product @r,rIOnI gives a vanishing con- 
tribution, since it there implies incompatible requirements on the time vari- 
ables. In general however, this product does contribute, as is clear for 
instance when each block is thought to contain a two-photon exchange 
process with crossed photon lines. 

After the resummation in (13) the two terms at the right-hand side may be 
considered in their turn as the time factors of new block diagrams. According 
to the rules given already the first term will correspond to the diagram 3a; the 
main difference with the diagrams of fig. 2 consists in the occurrence of a 

I 

8 
II 

(a) (bl (cl (d) 
Fig. 2. Block diagrams for the two-photon exchange process of fig. 1. 
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Fig. 3. Finite block 

I I aI II II 

(a) (bl 
diagrams resulting from the I :esummation of fig. 2. 

closed loop of two oriented lines between the blocks. The second term in (13) 
may be represented in a similar way. To that end we make the convention to 
denote a factor @ii - 1 by an oriented line - pointing from block i to j ; then 
one arrives at the diagram of fig. 3b, which again contains a closed loop. 

The block diagrams introduced here have the convenient property that one 
may assess the finiteness of the corresponding terms in the energy shift 
without a detailed knowledge of the internal structure of the blocks. To 
exemplify this we shall prove now that the block diagrams of fig. 3 each yield 
a finite contribution. As has been argued already in connexion with eq. (11) of 
section 3, the time integrations for a particular diagram may yield an infinite 
result only if an ordering of the vertices can be chosen that allows an 
intermediate state at time t with energy equal to that of the initial state. The 
existence of such an intermediate state implies that at constant time t an 
intersection of the diagram can be made through a number of O-lines only. By 
definition a block cannot be split into two parts by an intersection of O-lines. 
Furthermore, the explicit factors 0 and 0 - 1 between the blocks, represen- 
ted by the lines with single and double arrows, forbid a relative time ordering 
of the blocks such that all vertices in one block have times t smaller than 
those of all vertices in the other block. As a consequence the occurrence of 
intermediate states with initial-state energy is ruled out completely, which 
proves the finiteness of the diagrams 3a and 3b. 

The method used above to rearrange a sum of divergent two-block 
diagrams will be generalized now to diagrams with more blocks. In the 
following we shall first study diagrams consisting of a string of blocks. 
Subsequently an example of a diagram with a more complicated structure will 
be considered. In this way we will be led to a general prescription for the 
rearrangements of block diagrams in such a way that a termwise finite 
representation of the averaged energy shift is obtained. 

The general expression (6) for the trace of the effective Hamiltonian may be 
written as a sum of block diagrams in the way indicated above. For a block 
diagram with M blocks the simplest example is drawn in fig. 4a. It results from 
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I 

: 

II 

I I 

I 
I 

0 M 

I 

II 

: 

M 

(cl 

I 

‘II II 

&J M 

(a) Id) 
Fig. 4. (a, b) Divergent diagrams for strings of blocks; (c, d) resummed string-type block 
diagrams. 

the term with N = 1 in (6) and consists of a string of blocks connected by arrows 
in either direction (note that particle conservation forbids the occurrence of 
single lines pointing downwards). This diagram gives rise to an infinite time 
integral in the adiabatic limit, since an intersection at constant time is possible 
through the O-lines below the block II. No such intersection can be made 
between the blocks I and II, which are connected by two oppositely oriented 
lines. When investigating the divergencies of a diagram we can therefore limit 
ourselves to strings of blocks linked in the way of fig. 4b. The time factor 
associated with the latter diagram is: 

@r,&i,,~i . . . @ . . . . M- (14) 

Assuming for the present that all blocks have identical internal structure, we 
may replace the diagram of fig. 4b by a symmetrized sum of M block 
diagrams obtained by a cyclic permutation of the blocks. 

The other terms in the effective Hamiltonian (6), with N > 1, likewise yield 
block diagrams of the form of fig. 4b, with (N - 1) out of the (M - 1) lines 
absent; in view of the structure of (6) their time factors follow from (14) by 
replacing (N - 1) factors 0 by - 1. For fixed N and M one obtains in this way 
(N/M) x (E) different block diagrams. When again a cyclic permutation of the 
blocks is performed and the explicit factor N-’ in (6) is taken into account 
one arrives, upon summation over all N, at a total time factor: 

M [@I,II@II,III * . . @M,I - (@I,11 - l)(@II,III - 1) . . . (@b&I - 111. (15) 

This formula is a straightforward generalization of the result (13); just as in 
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that case a factor @ii or @ii - 1 is present for each line that connects a pair of 
blocks. The symmetry factor M-’ follows from the assumption of identical 
structure of the blocks. When all blocks are different the only modification is 
that no such factor shows up; in the case of partial symmetry the appropriate 
factor is easily determined. 

As before we may represent the two terms in (15) by diagrams with single 
or double arrows only (see fig. 4c and 4d). The blocks are connected by closed 
loops of a unique orientation; this feature guarantees the finiteness of each 
diagram separately. 

The block diagrams discussed so far are not the most general that may be 
encountered. A different type is given in fig. 5a, where a new feature is the 
occurrence of parallel lines, i.e. lines that pass along one of the blocks. Cyclic 
permutation of the blocks yields in addition the diagrams of fig. 5b and SC. 
The total time factor from figs. 5a-c then becomes: 

OI,IIOII,II,@I,III + @II,III@III,I + @I.II@III,I. (16) 

The product diagrams accompanying these have been drawn in fig. 6; their 
total time factor is: 

- 011,111 - @III,1 - @I,11 + 1. (17) 

The 0 functions in the sum of (16) and (17) must be regrouped now such 
that the result gives rise to termwise finite contributions in the energy shift. 
To that end we need a systematic procedure for generalizing the ad hoc 
manipulations performed so far. The characteristic feature of the ,final 
expression (15) for the time factor of the string diagram is that each term is a 
product of factors @ii or @ii - 1, one for each line that is realized in any of the 
underlying block diagrams. The same feature may be introduced in the time 
factors (16) and (17) by inserting a factor 1 = @ii - (@ii - 1) for each line (ij) 

Fig. 5. (a-c) Block diagrams with parallel lines; 

ity, as a physical example of (a). 

I II 

E! II Ill 

m I 

(bl (b) 
(4 

III is 1 

II 

(cl (d) 
typical diagram of the atomic pair polarizabil- 
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1 I@ m 1 

.; 8 g y. 

(al lb1 (cl ld) 
Fig. 6. Intersected block diagrams with parallel lines. 

from the set (I, II), (II, III), (I, III), (III, I) that is missing in a particular 
diagram. In this way the total time factor for the diagrams of figs. 5a-c and 6 
is found to be: 

@1,11@II,III@1,I11@111,1 - E@I,II@II.III(@I,III - 1) - (@I,11 - 1)(@11,111 - 0@1,111 

+ (01.11 - l)(@II.III - 1)(@1,111 - ~)I(@III,I - 1). V-9 

As before this expression may be represented by diagrams with single and 
double arrows (see fig. 7). The structure of these diagrams is more com- 
plicated than those of fig. 4c, d. In the present case both types of internal 
lines, with single and double arrows, may occur simultaneously. Nevertheless 
each of the diagrams in fig. 7 yields a finite contribution to the energy shift, 
since no time ordering can be found such that all vertices in one or more 
blocks carry time labels smaller than those of the remaining vertices. 

An example of a physical process where block diagrams with parallel lines 
show up is the dipole polarization of a pair of atoms in an external electric 
field’*). A typical diagram that contributes to the energy shift associated with 
this pair polarization has been drawn in fig. Sd. It gets the block structure of 
fig. 5a if the appropriate intermediate atomic states are chosen equal to the 
initial states. When all pair-polarization diagrams of the type of figs. 5a-c and 

i, 
I 

II 1 m 
I 

I 
1 

I 

1 II 

III 

I- \ 

I 

3J Il 

III 

I 

i 

ii 

II 

I IJI I 
.I 

1 - 

(al lb) (cl 
Fig. 7. Resummed block diagrams with parallel lines. 
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6 are combined one ends up with a total time factor that is in fact a translation 
of (18): 

@25e64e13e31042- [025e64(e13- I)-(eZS- 1) 

x (e,- 1)&3+(e25- l)(e,- l)(e,3 - l)l(e3,e42- 1) 

= -e25e61e31e24- e52e46e13e24 - e52be13e42 - e52e46e3,e24. (19) 

It is checked immediately that neither of these terms gives an infinite result 
when the time integrals are carried out. 

5. General resummation procedure for block diagrams 

For the special types of block diagrams treated in the preceding sections we 
have shown how the diagrams contributing to the energy shift could be 
rearranged by writing each time factor as a product of functions @ii (for each 
line (ij) that connects blocks i and j in the diagram) and 1 = @ii -(@ii - 1) 
(when no such line is present). In this way the total time factor of the 
contributing diagrams becomes a sum of terms of the form [II@][II(@ - l)], 
which for the examples considered so far each give rise to a finite energy shift 
in the adiabatic limit. In this section we shall prove quite generally that the 
rearrangement procedure just described always leads to a sum of finite terms. 

Each term in a rearranged time factor may be represented by a block 
diagram in which all lines between the blocks carry either a single or a double 
arrow, corresponding to functions @ii and @ii - 1, respectively. Such a block 
diagram entails a divergent contribution in the energy shift if these functions 
permit a time ordering of the vertices in such a way that the time variables for 
the vertices of one or more blocks are all smaller than those of the rest of the 
diagram, so that these vertices may be isolated in time. 

In principle, two types of divergent diagrams may show up: the blocks that 
can be isolated in the diagram will or will not be accompanied by parallel lines 
or even parallel strings of blocks (see fig. 8). Let us first treat the simple case 
without such a parallel structure. In fig. 8a a diagram of this type has been 
drawn. Both Sr and S2 stand for sets of blocks of which the internal structure 
(i.e. their constituent blocks and the single- or double-arrowed lines connec- 
ting them) need not be specified; only the lines that connect the sets of blocks 
have been displayed. A diagram of this general form will be divergent if the 
arrow configuration is such that the set Sr and SZ can be separated in time; in 
fact this is possible only if the arrows are drawn as in fig. 8a. The double 
arrow at the line 12 stands for a factor 0 - 1, which has emerged by writing 
1 = 0 - (0 - 1) in the original diagrams. Hence the latter have an intersection 



BLOCK DIAGRAMS IN PERTURBATION THEORY 499 

S 
2 s2 

‘1 ‘1 

:: m s1 s1 

'2 '2 

(01 lb1 
Fig. 8. Potentially divergent resummed diagrams, (a) without and (b) with parallel structure. 

I through I2 (v. fig. 9a). The single arrow at 1, represents a factor 0 which has 
arisen either from a factor 0 or 1 in the underlying diagrams; so the 
intersection I’ through 11 may but need not be present there. Each original 
diagram without an intersection I’ is thus associated with a similar diagram in 
which I’ is realized. The number of intersections of these two diagrams differs 
by 1, so that they have an opposite sign (cf. (6)). As a consequence their 
contributions to the diagrams of fig. 8a exactly cancel. Thus a divergency of 
this form does not occur in the set of rearranged diagrams. 

In the more general form of fig. gb the set Sr is accompanied by parallel 
lines or blocks belonging to SZ, so that the lines I, and I2 do not represent the 
full initial or final state. A separation of S1 and S2 and hence a divergency is 
possible only if the lines I1 and I2 differ both in the type and the direction of 
their arrows. The example of fig. 8b is divergent as S1 may be moved 
downward freely with respect to S2. 

Just as above we want to reconstruct the original block diagrams that lead 

Fig. 9. Original diagrams underlying those of fig. 8, with their possible 

(al 
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in the rearrangement process to the diagram of fig. 8b. Again the line 12, with 
double arrows, can result only from a factor 1 = 0 - (0 - 1) and accordingly 
from an intersected line in the original block diagrams. Since lz represents 
only part of the initial state, this intersection I must also pass through &. The 

line 1, corresponds to a factor 0, which arises either from a factor 0 or 
1 = 0 - (0 - 1) in the original diagrams; consequently the latter diagrams have 

an intersection through l2 and Sz and possibly another intersection at II. One 
of these diagrams has been drawn in fig. 9b. Let IO be the highest intersection 
in this diagram that passes through Sz and below II (I0 may be identical to I). 
The intersection I’, which partially coincides with 10 but in addition cuts 
through II, may be either present or absent. Hence such diagrams contribute 
to fig. 8b in pairs that differ only with respect to I’. Owing to the minus sign 
accompanying each intersection, however, the contributions of a pair cancel, 
as was found already for the special case of fig. 8a. Thus a diagram like fig. 8b 
does not occur either when the rearrangement of block diagrams is carried 
out. So we may conclude that the rearrangement procedure for the block 
diagrams leads indeed to a sum of terms that are separately convergent. 

6. Block diagrams for the effective Hamiftonian 

Up to now we have considered block-diagram representations for the 
averaged energy shift given by (6). We shall now show that such a represen- 
tation can be used for the full effective Hamiltonian (5) as well. The main 
difference between the formulae (5) and (6) is the occurrence in the former of 
an additional product of 8 functions, which specifies that the largest time 
variable is carried by one of the Hamilton operators in the first chronological 
product. 

Let us once more consider the example of section 3, where the average 
energy shift has been evaluated for the two-photon exchange diagrams of fig. 
1. For the full effective Hamiltonian the diagrams are evaluated analogously. 
In particular, the contributions with ground-level intermediate states from fig. 
la and Ic are again divergent. Their forms are similar to (lo), with time 
factors F equal to: 

e(tl3Mtz4) (20) 

for diagram la, and: 

-e(r12)e(r13)e(r14) - e(r21)e(r23)e(r24) (21) 

for diagram lc. The formula (21) expresses that in diagram lc the largest time is 
associated with either vertex 1 or 2. As in section 3 the total time factor may be 
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rearranged such that the divergencies cancel: 

er3eZ4 - e12e13e14 - e21e23e24 = - e12e13e14e42 - e21e23e24e31. (22) 

It may be verified that each of the terms at the right-hand side excludes an 
ordering of the vertices with a ground-level energy at intermediate times. 

The above rearrangement procedure may again be formulated in terms of 
block diagrams. On a par with the diagrams of fig. 2 for the averaged energy 
shift the full effective Hamiltonian for the two-photon process is represented 
by the blocks of figs. 1Oa-c. In the present case the asterisk is necessary to 
label the blocks in which the vertex with the largest time variable is con- 
tained. (It should be noted that as a consequence of the simple internal 
structure of the blocks in this special case a diagram of the form of fig. 10d 
does not show up; for processes with a more complicated structure of the 
blocks this diagram will play a role as well.) Addition of the diagrams 10a and 
1Oc leads to the diagram 10e in which the double arrow has the same meaning 
as before. From the figure a time factor: 

(oI,11 - I)[e(t,2)e(t13)e(t14) + e(r2,)e(t23)e(r24)i (23) 

may be read off, which is indeed equivalent to (22). The finiteness of the 
rearranged diagram 10e is not guaranteed by closed loops of single or double 
arrows as in fig. 3, but by the fact that the asterisk in block I prevents block II 
to be moved to the top of the figure. 

The general prescription for the rearrangement of the block diagrams into a 
sum of convergent contributions is the same as before: in the time factors of 
the factorized block diagrams a function 0 - (0 - 1) is introduced for each 
absent line between two blocks. The total time factor of a set of block 
diagrams with the same structure may be written then again as a product of 
functions 0 and 0 - 1; in addition it also contains a factor that indicates the 
position of the vertex with the largest time variable. 

Just as before a general proof can be given that the rearranged diagrams are 
separately convergent. The most general diagram to be considered has the 
structure of fig. Sb, with an asterisk in either S, or S2. When the arrow 
configuration is as drawn in fig. 8b an asterisk in S, implies that the diagram 

0 "I 

b Il 

0 "I 

0 II 

I 

8 
*II 

“I 

t 
II 

(al lb1 (cl ld) (el 
Fig. 10. Block diagrams for the effective Hamiltonian of the two-photon exchange process 
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remains finite, while for an asterisk in S2 the argument of section 5 can be 
repeated. If the configuration with interchanged arrows is realized the asterisk 
must be chosen in &; in that case the contribution is again finite. 

7. Connexion with the S matrix 

In the preceding sections we have shown how the expansion in Feynman 
diagrams for the effective Hamiltonian (5) or (6) may be resummed such that 
the individual terms remain finite in the adiabatic limit. When in the expres- 
sions for V and Tr V the factors exp(-•(tl) are accordingly suppressed the 
functions 6(t,,,) can be eliminated as well by employing time-translation 
invariance. To do so we first make the formal step of associating energies Ei 

and Ef with the initial and final projectors in (5) and (6). Upon shifting all time 
variables from t to t + 7 these equations then remain invariant apart from the 
replacement: 

6 (t,,,) + 6 (t,,, + 7) e i(E~-Ei)‘. (24) 

In the formulae thus obtained for V and Tr V we subsequently bring the 
exponential exp{i(E, - Ei)T} to the left-hand side and integrate from r = ---co to 
T = 03. As a result we get from (6) for instance: 

-2~ iS(E, - Ei) Tr V 

x Tr{PoT[Hi(t,) . . . H,(tk,)lPOT[Hl(tk,+l). . . Hl(tk,+k& . . . 

POT[Hl@-k,+l) . . . ~l(tn)1). (25) 

The equation (25) may be cast in a very suggestive form by relaxing the 
constraint on X:iN_r kj through an interchange of the summations and time 
integrations, so that the sums over kj become independent. Each of these 
reproduces the series expansion (2) for the operator U(=J, -00) - 1; thus we 
have: 

-27~ iS(E, - Ei) Tr V = 2 9 Tr[PoU(w, -m)Po - PolN, 
N=I 

(26) 

which may be written as: 

-27~ iS(Ef - Ei) Tr V = Tr log S (27) 

with S = U(m, -00). So we have found from (6) a relation between the 
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averaged energy shift dE = Tr V/Tr PO and the S matrix”). It should be 
remarked that a straightforward evaluation of the S matrix by standard 
field-theoretical techniques will lead to divergencies in the result for Tr V; 
these divergencies are eliminated only when a resummation of the Feynman 
diagrams is performed in the way described in the preceding sections. 

A result similar to (27) cannot be obtained from (5) for the operator V 
itself, owing to the additional 8 functions in the integrand. However, the latter 
become superfluous if the sum Xg=, occurring in (5) may be truncated after 
the first term; this is correct for instance if lowest-order perturbation theory is 
used. On a par with (27) we then get”z’9): 

-2~ iS(Er -Ei)V = S - 1. (28) 

This relation may also be understood heuristically on the basis of the Born 
approximation*). 

Appendix 

The existence of the adiabatic limit in separate contributions to the 
effective Hamiltonian V has so far been judged directly from the structure of 
the corresponding Feynman diagrams. In fact, it was argued that a diagram 
yields a finite result if for each time ordering of the vertices the total energy 
E(t) at an intermediate time t is always different from the initial or final 
energy Ei = E, = E(+m). This argument will now be considered in more detail. 

After application of the Wick theorem to the equations (5) and (6) for V 

and Tr V the effective Hamiltonian is expressed in terms of propagators, 
which have the general form: 

(A.11 

for any of the fields 4(x) taking part in the interaction; the wave functions 
4(x) belong to the single-particle eigenstates of the noninteracting system, 
with energy eigenvalues E. In the example of section 3 the fields 4(x) are the 
electromagnetic and Dirac-fields A’(x) and 4(x), respectively, of which the 
propagators are given in (8) and (9). In view of (A.l) the time integral I(“) of an 
nth-order contribution V(“) to V can be written as: 

(A.21 

The energies E,, are linear combinations of the eigenvalues E associated with 
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the propagators (pq), (qp) and the external initial and final lines (pi), cfp) that 
are connected to the vertex p. In fact one has: 

EP=~E,~+~E~-~EP4-~EPI; (A-3) 
4 P 

energy conservation then implies X%=1 E,, = Ei - Ef = 0. 

We shall now derive the conditions under which I(“), and hence V(“), is 
finite in the adiabatic limit. To do so we may choose any specific time 
ordering of the vertices and replace the product Ue(t,,) in (A.2) by a string of 
8 functions; let us take tl > t2 > * - . > t, and write: 

rI W,,) = fi2 w,-14). 

Substituting (A.4) in (A.2) and introducing the new integration 
7, = -t, and 7P = fr_, - tP, p = 2,. . . , n, we get for the time integral: 

m 

I(“) = lim 
r-0 

pq J dTpe(G)exp[i(q~pE,)s,-(n-~+l)E~7p~] 
-m 

(A-4) 

variables 

(A.9 

This result implies that the adiabatic limit exists if the sum ZiZp Eq is different 
from zero for p = 2,. . . , n. With (A.3) the latter becomes: 

2 Eq = l.qZp) Ef, + c E, - x I% + iqg<pj J% 
w(qzP>r) q,r(qBP>r) 

(A.@ 

The right-hand side may be written as the difference between the intermediate 
energy E(t), for tp-i > t > tp, and the initial energy Ei = E(-w). The former is 
associated with an intersection of the diagram at a fixed time t and is defined 
as: 

(A-7) 

independent of the specific choice (A.4). So we conclude that the adiabatic 
limit exists if E(t) always differs from the initial energy E(-a). From (AS) it 
is clear that in this case the limit may already be carried out inside the time 
integral, provided that the Fourier transform of the 8 function is taken to be: 

cc 

-i 
dTe(T)e-iEr =- 

E -iO’ (A.81 

which is the form generally used in the Feynman formalism. 



BLOCK DIAGRAMS IN PERTURBATION THEORY 505 

Acknowledgements 

This investigation is part of the research programme of the “Stichting voor 
Fundamenteel Onderzoek der Materie (FOM)“, which is financially supported 
by the “Nederlandse Organisatie voor Zuiver-Wetenschappelijk Onderzoek 
(Z.W.O.)“. 

References 

1) P.J. Ellis and E. Osnes, Rev. Mod. Phys. 49 (1977) 777. 
R. Lefebvre and C. Moser, eds., Correlation effects in Atoms and Molecules, Advances in 
Chemical Physics 14 (Wiley, New York, 1%9). 

2) AI. Akhiezer and V.B. Berestetskii, Quantum Electrodynamics (Moscow, 1953) (in Russian; 
English translation Interscience, New York, 1%5). 

3) T. Morita, Progr. Theor. Phys. 29 (1%3) 351. 
4) G. Oberlechner, F. Owono-N’-Guema and J. Richert, Nuovo Cimento 68B (1970) 23. 
5) T.T.S. Kuo, S.Y. Lee and K.F. Rat&I, Nucl. Phys. Al76 (1971) 65. 
6) I.E. Dzialoshinskii, Sov. Phys. JETP 3 (1956) 977. 
7) C. Mavroyannis and M.J. Stephen, Mol. Phys. 5 (1%2) 629. 
8) L.N. Labzovskii, Sov. Phys. JETP 32 (1971) 94. 
9) M.A.J. Michels and L.G. Suttorp, Physica 67 (1973) 137. 

10) M.A.J. Michels and LG. Suttorp, Mol. Phys. 33 (1977) 245. 
11) M.A.J. Michels, The long-range interaction of relativistic hydrogen atoms, thesis, University 

of Amsterdam (1976). 
12) L.G. Suttorp and M.A.J. Michels, Chem. Phys. Lett. 46 (1977) 391. 
13) C. Bloch, Nucl. Phys. 6 (1958) 329. 
14) D.J. Klein, J. Chem. Phys. 61 (1974) 786. 
15) M. Gell-Mann and F. Low, Phys. Rev. 84 (1951) 350. 
16) L.N. Bulaevskii, Sov. Phys. JETP 24 (1967) 154. 
17) Y. Dmitriev, Int. J. Quant. Chem. 9 (1975) 1033. 
18) V.V. Tohnachev, Adv. Chem. Phys. 14 (1969) 421. 
19) M.A.J. Michels and L.G. Suttorp, Physica 93A (1978) 559. 
20) M.A.J. Michels and L.G. Suttorp, J. Phys. A (to be published). 

For the nondegenerate case see J. Hubbard, Proc. Roy. Sot. A248 (1957) 539; L.S. Rodberg, 
Phys. Rev. 110 (1958) 277; P. Nor&es, Theory of Interacting Fermi Systems (Benjamin, 
New York, 1964); ref. 19. 


