
Physica 93A (1978) 559-573 © North-Holland Publishing Co. 

ON ADIABATIC PERTURBATION THEORY 
FOR THE ENERGY EIGENVALUE PROBLEM 

M.A.J. MICHELS and L.G. SUTTORP 

Instituut voor Theoretische Fysica, Universiteit van Amsterdam, Amsterdam, The Netherlands 

Received 28 March 1978 

The adiabatic perturbation formalism is used to derive several alternative expressions for the 
effective Hamiltonian of a discrete energy level. It is shown how in the nondegenerate case these 
expressions may be cast in the form of linked-cluster expansions. The connection between the 
energy shifts and the scattering matrix is investigated. 

1. Introduction 

The most customary method to treat quantum-mechanical energy-eigen- 
value problems that cannot be solved exactly is the well-known Rayleigh- 
SchrSdinger perturbation theory. Sometimes, however,  it turns out to be more 
convenient  to deal with t ime-independent problems by means of a time- 
dependent  formalism, and particularly so when the Hamiltonian of the system 
can be expressed in terms of quantized fields. If such is the case a pertur- 
bation theory can be formulated that enables one to make use of the 
techniques of quantum field theory. This approach lends itself naturally to a 
diagrammatic representation, which has turned out to be extremely useful in 
the study of nuclei and molecular systems1). 

Perturbation theory for the degenerate energy-eigenvalue problem can be 
formulated in terms of an effective Hamiltonian of which the eigenvalues are 
the energy shifts. Crucial for the applicability of t ime-dependent methods is 
the existence of a relation between this Hamiltonian and the time-evolution 
operator  in the interaction picture. Such a relation can be established in the 
adiabatic limit, i.e. when the interaction is switched on infinitesimally slowly. 
In the expressions for the effective Harniltonian that have been used in the 
literature, the existence of this limit has until recently hardly been in- 
vestigated2"3). In this paper the adiabatic method will be employed to derive 
several alternative expressions for the effective Hamiltonian of a degenerate 
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energy level; the existence of the adiabatic limits involved will be examined 

carefully. 
The evaluation of the energy shifts by means of field-theoretical methods 

may be simplified considerably if the effective Hamiltonian can be expressed 
in terms of the scattering matrix. For nondegenerate  energy levels a connec- 

tion of this type will be proved with the help of linked-cluster expansions.  In 
addition it will be shown how in special cases such a relation can be obtained 
for degenerate  levels as well. 

2. The effective Hamiltonian for degenerate states 

In the following we shall s tudy a Hamiitonian H that is a sum of an 

unper turbed Hamil tonian/40  and a perturbat ion term H1; the latter is linear in 
a coupling constant  A. Both Ho and HI are t ime-independent  Hermi tean  
operators .  We consider a degenerate  energy level/50 in the discrete part of the 
spect rum of H0; the corresponding eigenstates span a subspace /20 of the 

Hilbert  space. Let  the states I~'~) be eigenstates of the total Hamil tonian H, 
with eigenvalues Eo that reduce to E0 when A tends to zero; these states span 
a subspace /2 ,  which coincides with/2o for A = 0. The projectors  onto/2o and 
/2 will be denoted by P0 and P, respectively.  We shall assume that for any 

nonzero 1~) in /2 the project ion P01~b) onto /20 does not vanish, which is a 
reasonable  assumption if the perturbat ion is sufficiently small. 

The eigenvalue equation for I~/'~) can be written as: 

( H  - Eo)l~b,,) = AE~,IO~,), (1) 

with AE,~ = E,, - 15o. Project ing both sides onto /2o  we obtain: 

P0H,lg'D = aE~p01g, o). (2) 

This equation can be reduced to an eigenvalue equation within the subspace 
/20. In fact ,  by virtue of the assumption made above one can introduce 4) a 
linear opera tor  W that t ransforms the projected state P0l~'.) back into [¢'.): 

[~b.) = WPol~b,~). (3) 

Substituting (3) into (2) one gets: 

P o l l ,  WV01~D = aE~P01¢O, (4) 

which is an eigenvalue equation within /2o. The energy shifts A E ~  are the 
eigenvalues of the effective Hamiltonian:  

V = P o l l 1 W P o  (5) 
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or, alternatively: 

V = P o P ( H  - Eo) WPo. (6) 

The operator  V is not necessarily Hermitean since its eigenstates P0 l~)  in 
general do not form an orthogonal set. 

The operator  W defined by (3), and consequently the operator  V(5), can be 
given in terms of P0 and p4,S). In fact, since W transforms Do into D and has 
as its inverse the transformation PoP one can write: 

W = PPo(PoPPo) -1. (7) 

Here the inverse (PoPPo) -~ is defined as an operator  inside O0. From (5) or (6) 
with (7) it follows that a perturbation expansion for the effective Hamiltonian 
V may be obtained by expressing the projector  P as a power series in H~. 
This will be achieved in the following section. 

3. Adiabatic perturbation theory 

In adiabatic perturbation theory the interaction H1 is switched on by adding 
a factor  exp ( -e l t l ) ;  if the interaction representat ion is chosen the total 
Hamiltonian then reads: 

H , ( t )  = t t o+  H~,( t )  = Ho + e -`l'l em°' H~ e -m°'. (8) 

The time dependence of the states describing the system is determined by the 
unitary time-evolution operator  U,(t ,  t ') defined as: 

I~,(t)) = u,(t, t')lgJAt')). (9) 

Its properties are discussed in the appendix. According to (9) the operator:  

UAo, - ~ ) P o U A -  ~, o) (lO) 

is the projector  on the space to which the unperturbed space O0 develops in 
the time interval ( -o  o, 0). For finite e this space will not coincide with the 
space 12 of eigenstates of the Hamiltonian H~(0) = H. However ,  in the limit 
e--*0 the perturbation is switched on adiabatically and indeed the projector  
(10) then becomes equal to P, as has been proved recently by Dmitriev3). In 
fact,  the formula (A.8) may be employed to write (10) as: 

U,(O, -oo)PoU~(-oo,  O) = - ~  i d z  G~(z) (11) 
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with: 

1 ® " (H ,  1 ike) ,  (12) G~(Z)-z-Ho.~=o~=t z - H o -  

while the contour  C encircles all poles having Re z = E0. When the limit e ~ 0 
is taken the series (12) can be summed with the result (z - H )  -~. If  in addition 
the contour  C is modified so as to enclose the shifted pole at z = E the limit 
of the right-hand side of (11) is found to be the projector  P:  

V = lim U~(0, -oo)PoU~(-oo, 0). (13) 
e--~0 

Likewise one may prove  an expression for  P with -o~ replaced by oo. 
Combining the two and using P = pZ one gets: 

P = l im U , ( 0 ,  - ~ ) P o U ~ ( - o o ,  oO)PoU~(~ ` 0).  
e ~ 0  

(14) 

A third express ion for  this projector  follows f rom the identity P = 
PPo(PoPPo)-~PoP by substituting (13) and the Hermi tean  conjugate of (14): 

P = l im  U , ( 0 ,  - o ~ ) P o [ P o U , ( o o ,  - o O ) P o ] - l P o U ~ ( o o  , 0) .  
~-~0 

(15) 

The above  expressions relate the projector  P to the t ime-evolution operator  
U~ and may be employed  to derive f rom (~)-(7) adiabatic formulae for the 
effective Hamil tonian V and the operator  W. 

Upon  insertion of (13) into (7) one finds: 

W = l im U ~ ( 0 , - o o ) P o [ P o U ~ ( O  , - o o ) p 0 ] - J .  
e-*0  

(16) 

This entails for the operator  (5): 

V = lim Poll1U~ (0, - oo)P0[P 0 U~ (0,  - oo) P0] - l .  
~--~0 

(17) 

These expressions,  which are generalizations to the degenerate  case of the 
so-called "adiabat ic  fo rmulae"  of Gell-Mann and Low6), have been given 
earlier by several  authors2'3'7-J°). To our knowledge the first to prove the 
existence of the adiabatic limits involved is Bulaevskii;  his t reatment  is less 
elegant, however ,  than that of Dmitriev. It should be noted that in ref. 8 the 
nondegenerate  counterpar t  of (16), as given by Gell-Mann and Low,  is 
assumed to hold in the same form for  degenerate  states as well; yet by an 
er roneous  reasoning the correct  opera tor  (16) is obtained there. 

An alternative express ion for V is found by starting f rom (6) instead of (5) 
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and substituting (13) and (16): 

V -- lim T~PoU~(- oo, O)(H - Eo) U~(0, - ~)PoT~ I. (18) 
e--~0 

Here  we introduced the abbreviation: 

T~ = P0 U~ (0, - oo) P0. (19) 

The form (18) shows explicitly that the non-Hermitean effective Hamiltonian 
can have real eigenvalues only. 

The denominator  in (16) and (17) is the sum of a zeroth-order  term P0 and a 
contribution that vanishes for ;t--)0. Hence  the series expansion of the 
function ( l + x )  -I in powers of x can be applied to the operator  
[PoU~(0,-oo)P0]-l. Then V becomes: 

V = lira PoH1U,(0, -oO)Po Po+ (--1)k[PoU,(O, -oo)Po- Po] k • (20) 
e--~0 

The important feature of this result is the way in which the effective 
Hamiltonian may be obtained now as a function of the perturbation H~. In the 
factor  between square brackets the perturbation occurs only through the 
operator  U~(0,-oo). According to (A.5) the latter can be expressed by means 
of t ime-ordered products  of H~,(t) as: 

0 

U~(0,-oo) = ~ (- i)"  I dtl dt, T [Hl , ( t l ) .  Hle(tD]. (21) 
~o n! _ . . . . .  

-oo 

In the remaining part of (20) we may write: 
oo 

-oo) = : dto 8(to)Hi,(to) U~(to, - oo). (22) HI u A o ,  

Upon substituting (A.5) and symmetrizing between to and the other time 
variables we get: 

H~U~(0,-oo) = x~ (- i)"  I dh  dt.  iS(tm~x)T[Hl~(h). Hl~(tn)], (23) 
.'='--1 n !  , " . . . .  

-co  

with tm~x = max(h  . . . . .  t~). In this way the first factor  of (20) is now also 
expressed by means of t ime-ordered products  of Hit(t) only. As a result the 
perturbation theory for degenerate energy levels is formulated entirely in 
terms of t ime-ordered products of the perturbation. If the Hamil tonian/4o of 
the unperturbed system and the perturbation HI can be described by quantum 
field theory the ensuing t ime-ordered products  of field operators may be dealt 
with in the usual way by applying Wick's theorem. In this way one obtains an 
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expansion for  the effective Hamil tonian in terms of Feynman  diagrams. 
The expression (20) with (21) can be writ ten more concisely as: 

0 

f V = lira ~ (- i)n dt~. . ,  dtn Portly(O) 

x {0(- t , )  - Po}H~(tO{O(t~- t2) - P0} • • • Hl~(tn)Po. (24) 

Starting f rom this formula  an alternative expansion of V may  be found which 
makes  uses of  a folded version of F eynm an  diagrams; this approach is a 

generalization of the folded-diagram techniques used in many-body  
theory 7'9"1°) and will be discussed in a subsequent  paper") .  In addition the 

form (24) of the effective Hamil tonian is particularly suited to establish the 
connect ion be tween the adiabatic and the standard t ime-independent  pertur- 
bat ion theories4'H'12). 

4. Alternative expressions for the effective Hamiltonian 

In the preceding section the effective Hamil tonian V for  a degenerate  

energy level has been written in a form that permits the use of  field- 
theoretical  methods.  We want  to present  now a number  of alternative 

express ions  for  V with this same proper ty ;  some of these are generalizations 
of  formulae  given previously in the literature. 

Le t  us start  with (A.4). Choosing (t, t ' ) =  (0,---oo) so that H,(t)= H and 

H,(t') = Ho we get the well-known relation of Gell-Mann and Low6): 

HUe(O, _+oo) - U~(0, _+oo)H0 = ~ieA d U,(0, _+oo). (25) 

I f  it is multiplied on both sides by Po the effective Hamil tonian (17) may  be 
cast into the form:  

V = lim [ieA d p°u~(o' -°°)P°] [P°U`(O' (26) 

(cf. refs.  3, 8); in the nondegenerate  case it reduces to a formula  for  AE that is 
generally attributed to Gell-Mann and Low. Analogously one finds f rom (18) 
and (25): 

V = Iim T~P°U~(-°°' O) [ieX-~A U~(O' (27) 

From this express ion it can be shown that the effective Hamil tonian has an 



ADIABATIC PERTURBATION THEORY 565 

alternative series expansion, with retarded commutators instead of chronolo- 
gical products; in fact (A.10) and (A.ll) yield immediately: 

V = lii TePo z, (-i)“-‘e p dt, j dtz. . . r’ dt,, 

x 1. . . [H,,(t,), HI.ki * * .~~&.m~,‘. (28) 

Expansions of this type have been used before in quantum field theory in 
order to study the connection between operators in the Heisenberg and in the 
interaction representation13). 

The formulae (26) and (27) are asymmetric in the time variables. A more 
symmetrical result can be obtained by employing the symmetrized form of 
(25), viz 

Ue(m, O)HU,(O, --Q)) - ;{ Ue(m, -@J), Ho) = SEA $ Ue(a, -00). (29) 

If (15) and (16) are substituted in (6) an expression for V arises in which the 
left-hand side of (29) may be recognized. As a consequence we find for the 
effective Hamiltonian: 

V = lim T,[PJJ,(w, -w)PJ’ $&A -&w, - 03) 
e-&l [ 1 PoTi*. (30) 

A related formula, with the inverse of P&=(Q), -w)P,, replaced by its Hermi- 
tean conjugate, follows by using (14) instead of (15). 

In the special case of a nondegenerate level (30) reduces to the expression 
for the energy shift AE that has been obtained by Sucher along different 
lines”). It may be remarked that his derivation relied upon the interchange of 
two adiabatic limits; this difficulty has been circumvented in the present 
treatment. 
In the literature the energy shift for a nondegenerate level is sometimes 

written as an integral of the expectation value of H, with respect to the 
coupling constant h. Indeed, since A dH/dA equals HI, differentiation of the 
eigenvalue equation gives: 

(31) 

and hence: 

0 
(32) 
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This result  is believed to be due to Pauli~5). Within the f r amework  of adiabatic 

perturbat ion theory such formulae may  also be derived for the effective 
Hamil tonian V. From the Ge l l -Mann-Low identity (25) one gets: 

A ~-~ [P0 U~ ( -  o% 0)(H - E0) U~ (0, - oo)Po] = P0 U~ ( -  oo, 0)H1 U~ (0, - ~)Po. 

(33) 

Integrat ion and insertion into (18) then yields: 

A 

V = lira T~ -~PoU~(-~, 0)H1 g~(0 ,  - ~ ) P 0  r ~  l- (34) 
e--~0 

0 

For the nondegenerate  case (34) is equivalent  to Pauli 's  formula  (32), as 
follows by using the adiabatic express ion (13) for  the projector  IO)<~[~)-l(~01. 
It should be remarked  that in contrast  to the generalizations (26) and (30) of 

the Ge l l -Mann-Low and Sucher expressions,  the present  form of V in terms 
of H1 does not contain an explicit factor  e, so that the adiabatic limit becomes  
more manageable.  

So far we have  studied the full effective Hamil tonian V. If  only the average 
AE of the energy shifts for  a degenerate  level is of interest we may  limit 

ourselves  to a discussion of the trace Tr V = AETr P0. In that case the 
similarity t ransformat ions  T~ (19) occurring in some of the above results drop 
out. In particular (34) then becomes:  

A 

. p / ~  TriP0 U, ( -  ~, 0)Hi U,(0, - oo)P0], (35) Tr  V lim 
e--*0 

0 

or, with (13): 

X 

f dX' Tr  V = --~-Tr(H1P). (36) 

0 

In the latter formula  the adiabatic limit no longer occurs;  indeed an alternative 
proof  analogous to that of (32) may  be given. Once the expression (36) has 
been established any of the forms  (13)-(15) for  the pro jec tor  P can be 
inserted. With (15) we get for  instance: 

A 

l mf Tr V = ~ Tr{[PoUAoo, - ~)Po]-~PoU~( oo, O)H~ U~(0, - oo)P0}. (37) 

0 

If  (14) had been used the inverse operator  in the integrand would have been 
replaced by the Hermi tean  conjugate.  The close resemblance  of the latter 
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formulae with (35) suggests that these would have straightforward generaliza- 
tions similar to (34) as well; however,  in these cases the adiabatic limit does 
not exist, as is seen already in third-order perturbation theory. 

5. Connected-d iagram expansions  and the relation with  the S matrix  

In the previous section general expressions for the effective Hamiltonian V 
have been derived, which can be developed in terms of t ime-ordered products 
of the interaction Hamiltonian HI. If the latter is a product of field operators 
Wick's theorem may be used to arrive at an expansion of V in Feynman 
diagrams. 

For the nondegenerate case it is possible to choose the unperturbed state 
]~Oo) as the vacuum state and to use it as a starting point for the second- 
quantization formalism. Then the numerator of (17), with (21) inserted, may 
be factorized in the familiar wayl6): 

® " ( - i )"  n 
= 

0 

× ~ d t , . . ,  dt, (OolT[H,~(O)H,~(tO... H,~(tm)]100)c 
-oo 

× (~OolT[Hl~(t,,+O... H,,(t,)]J~O0). (38) 

Here the subscript c denotes the part of the matrix element that is represented 

by the set of all connected Feynman diagrams. By taking rn and n - r n  as 
summation variables the two sums in (38) may be carried out independently, 
with the result: 

(~'01H, U~(0, - o~)1~0) = ( ~ b o l n l  U ~ ( 0 ,  - ~)l~0o>c(~0ol u ~ ( 0 ,  - oo1~0o). (39) 

As a consequence (17) becomes in the nondegenerate case: 

AE = lim (4 ,0I l l ,  U , (O ,  - oo)14J0)c, (40) 
e--*0 

which is an example of a connected-diagram expansion for the energy shift. 
In the following it will be shown that the expressions (26), (30) and (37) also 

lead to connected-diagram expansions in the nondegenerate case. The expec- 
tation value of the time-evolution operator  can be factorized by means of a 
similar argument as used above; thus one finds: 

(6ol U,(t, t')[~o) = exp[(~ol U,(t, t')l*o)A. (41) 

With the help of this relation the nondegenerate versions of (26) and (30) 
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become:  

A E  = lim ieA d-~h (~/,o[ U~(0 , -  oo)1¢,o) c (42) 

and 

= lim ½isA w~-d~ (~bo[ U~(~, -oo)l~o)c, (43) A E  
e--q) 

respectively.  To factorize the numera tor  in (37) we first write: 

U,(~, 0)H, U~(0, - ~) 

x Om.n(ti . . . . .  tm+,)T[Hl~(O)Hl~(tO...  Hl~(tm+,)], (44) 

where Om.,(tl . . . . .  tin÷,) is the characterist ic function for the union of the (ram+") 
regions in which exact ly  m variables are posit ive.  If at fixed m + n  the 
summation over  m is per formed we get: 

UAo~, O)H, U~(O, -o~) 

n~0- -~ ,  d t l . . ,  dt,  r[Hl~(0)I"/l~(tl) . . .  Hl~(t,)]. (45) 

Upon  taking the expectat ion value the right-hand side may be brought  in the 
same form as that of (38), albeit with different integration boundaries.  Hence  
we have on a par with (39): 

(¢'o[ U~ (oo, 0)H, U~(0, - oo)l~/,o) 

= (Ool U.(oo, 0)H, U~(0. - oo)[t/,O)c(~/,o[ U,(oo - oo)lOo ) (46) 

and consequently,  f rom (37): 

idA ' 
A E  = lim -~-;-(001U~(~, 0)H~ U~(0, - ~)lqJ0)c. (47) 

0 

The connected-diagram expansions  obtained here may be recast  in a form 
that relates the energy shift with the connected part  of the S matrix. A 
formula  of this kind has been employed somet imes in the literature, in order 

to take full advantage of the covariant  S-matrix methods.  It has been used, 
for instance, to evaluate retarded interatomic interaction energies in the 
f r amework  of covariant  quantum electrodynamics~7'~8). 

Rodberg ~9) has suggested a general proof  of the relation with the scattering 
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matrix. However ,  his way of taking the adiabatic limit requires rather 
complicated contour  integrations, in the course of which certain poles (viz 

those at the origins of the complex planes) are ignored without sufficient 
justification. 

To establish the desired relation with the S matrix we shall choose as a 
starting point the formulae (40) and (47); these expressions for A E  do not 
contain an explicit factor  e, so that the adiabatic limit can be taken im- 
mediately. Then (40), with (23) inserted, gets the form: 

oo 

n=, ~ d t ,  . . . d t ~  i S ( t m a x ) ( d / o l r [ H t ( t l )  . . . H,(tn)][O0)c. (48) 
- - o o  

Similarly (47) with (45) yields 2°'21) 

,=~ ~ d t ,  . . . d t n  i S ( t O ( ~ o ] T [ H , ( t , )  . . . H,(t~)ll~0)c. (49) 

The right-hand sides of the above two formulae have the same appearance as 
the Dyson series (A.5) for the connected part of the S matrix, the only 
difference being the delta functions in the integrands. In particular (49) shows 
that the energy A E  ~an be evaluated by writing out the connected diagrams of 
the scattering matrix and suppressing, apart from a factor i, one of the time 
integrations. 

The connection with the S matrix can be presented in a more concise 
waylS). We make the formal step of replacing the bra and ket vectors (~01 and 
[00) in (48) by final and initial states (0fl and [~i), respectively; when the time 
variables t are replaced by t + r the expression (48) gets the form: 

® i ~ f  i~F~-E~, ( - - )  
A E  = e ~ --27- d h . . .  dt,  iS(tmax + ~) 

n = l  n .  

x (did T [ H ~ ( t l ) . . .  nt(tn)]l~b~)~. (50) 

Here Ef and E~ are the energies associated with the final and initial states. 
Upon bringing the exponential in front to the left-hand side and integrating 
from ~" = -oo to z = ~ the right-hand side becomes the Dyson series for the S 
matrix. Hence we finally arrive at the result: 

Sfi.~ = -2rr iS(Ef  - E i ) A E ,  (51) 

which could equally well be proved from (49); it is in fact  the relation 
assumed in the literature. In view of (41) we may write it in the suggestive 
form: 

Sfi = e x p [ -  21riB(El - E i ) A E ] ,  (52) 



570 M.A.J. MICHELS AND L.G. SUTTORP 

which of course has strictly speaking no mathemat ica l  significance, in view of 
the fact  that (41) has no adiabatic limit. 

In the present  section we have confined ourselves to the case of a 
nondegenerate  unperturbed energy level, for which connected-diagram 
expansions  can be established. These expansions  were crucial in the deriva- 
tion of the above  S-matrix formulae.  The connected-diagram expansions  

given here do no longer hold for degenerate  levels since the second quan- 
tization as introduced above would have led then to a degenerate  vacuum;  to 
c i rcumvent  this problem the introduction of folded diagrams is essential7"gJ°). 

In special cases a formula  analogous to (51) can be derived even for 
degenerate  levels. In fact ,  if in the effective Hamil tonian (17) the inverse 
opera tor  need not be considered,  for instance in lowest-order  perturbat ion 
theory,  a similar reasoning as given above  may be applied. As a result one 
finds 

Sfi = 6 f i -  2rri• ( E l -  Ei)W, ( 5 3 )  

which shows that the effective Hamil tonian reduces in this particular case to 

the transition matrix. 

Appendix 

Some properties o f  the t ime-evolution operator 

The t ime-evolution opera tor  U~(t, t') in the interaction picture satisfies the 
differential equation: 

i (a/at)U,(t ,  t') = H, , ( t )U~(t ,  t') (A.1) 

and the initial condition Us(t, t ) =  1. The adiabatic interaction Hamiltonian is 

given by: 

Hl~(t) = e -~ltl e iH°t HI e iuo~. (A.2) 

Here  H~ is the t ime-independent  perturbat ion Hamil tonian in the Schr6dinger 
picture; it is linear in the coupling constant  A. 

From (A.1) one can derive a differential equation for U~ in terms of A by 
using t ime-translation arguments.  If in (A. 1) the time variables t, t' are replaced 
by t + ~', t ' +  ~" (with t, t '  and r of equal sign) an equation of the same form 
may be recovered  in which a modified coupling constant  A ' =  
A exp [ - ( sgn t ) e~ ' ]  shows up. Since the solution of the differential equation 
(A.I)  is uniquely determined by the initial condition one arrives at the 
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relation: 

U~(t, t'[ A) = e -iH°~ U~(t + ~-, t ' +  r [ A e ~s~t)~') e iu°~. ( A . 3 )  

Upon differentiating with respect to ~- and putting r = 0 one gets: 

d t' H~(t)Udt ,  t ' l A ) - U ~ ( t , t ' l A ) H ~ ( t ' ) + ( s g n t ) i e A - ~ U ~ ( t ,  IA)--0, (A.4) 

valid for sgn t = sgn t'; this is a generalization of the identity of Gell-Mann 
and Low6). 

Both (A.1) and (A.4) can be solved iteratively in the form of a perturbation 
expansion. In particular, the time differential equation (A.1) yields the Dyson 
series containing time-ordered products of the perturbation: 

U,(t, t') = ~ <-i)n ] , = 0 T  d t ~ . . . d t ,  T [ H l d t O . . .  H~:(t.)]. (A.5) 
t '  

The time integration may in principle be carried out straightforwardly with the 
help of (A.2). A particularly simple expression is obtained in the special case 
that the integration extends to infinity. It may be derived alternatively from 
the coupling-constant differential equation (A.4) as will be shown now. To 
that end U:(t, +-~) is written in the spectral form: 

o~ 

I dz O~(t, +_-oo; z )8(z  - Ho), (A.6) U~(t, +__~) 

which gives after insertion in (A.4): 

z - H0 -7- ieA ~ -  (A.7) 

If this equation is solved in successive orders of A we get immediately: 

U,(I,-¢-oo) = ~ f dz  e -i(z-HOT-ine)t 1 1 
,=0 J z - Ho ~- ine H1. . . ie HsS(Z - Ho), z-Ho-T- --oo 

which is the desired result. (A.8) 

The similarity transform of an arbitrary operator A( t )  with respect to U~(t, t') 
may be expanded in a series analogous to (A.5). This can be proved from the 
equation of motion: 

ia--~[ U,(t',  t )A( t )U, ( t ,  t')l = [H,,(t'), U,(t',  t )A(t)U~(t ,  t')l, (A.9) 

which is an immediate consequence of (A.1). After integration and iterative 
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solution one gets an expansion involving retarded commutators instead of 
time-ordered products: 

U,(t', t )A(t)U,(t ,  t') 

¢'i = ~".,.., (-i)" dtj d t2 . . .  [ . . .  [A(t), H,~(tl)] . . . . .  H,~(t,)]. (A.10) 
a = 0  

t ~ l ~ 

To employ this retarded-commutator expansion in the main text the following 
auxiliary relation is required: 

t 

U~(t', t)iA ~ U~(t, t') = I dt" U~(t', t")H,~(t") U~(t", t'); (A. 11) 
l '  

it relates the A and t dependence of the time-evolution operator and may be 
proved by differentiating with respect to t and using A dH~JdA = n l~ .  
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