Function approximation

If you need to evaluate a complicated function f very quickly, many times around the same point $x=x_{0}$, or if you would like to understand the local behavior around that point, then it is convenient to write the function as a polynomial. After all, polynomials can be computed quickly, and are simple to draw and visualize.

A Taylor approximation provides the technique to do this. The Taylor series in 1 dimension is:

$$
\begin{equation*}
f\left(x_{0}+\epsilon\right)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) \epsilon+f^{\prime \prime}\left(x_{0}\right) \frac{\epsilon^{2}}{2}+f^{\prime \prime \prime}\left(c_{\epsilon}\right) \frac{\epsilon^{3}}{6}, \quad \text { with } x_{0} \leq c_{\epsilon} \leq x_{0}+\epsilon \tag{1}
\end{equation*}
$$

We play with it in this problem, for the function $\sin (x)$, around $x=0$.
(1) Give the terms to 5 th order of the Taylor series development of $\sin (x)$ around the point $x=0$.
Answer $f(0+\epsilon) \approx \epsilon-\frac{\epsilon^{3}}{6}+\frac{\epsilon^{5}}{120}$.
(2) The first (and second!) order approximation is $\sin (\epsilon) \approx \epsilon$. This is reasonable in a small interval. When is the 'error' made smaller than 0.01 ?
Answer: use the third order term to bound the error; $\left|\frac{\epsilon^{3}}{6}\right|<0.01$, so $|\epsilon|<0.4$.
(3) The third (and fourth) order approximation is $\sin (\epsilon) \approx \epsilon-\frac{\epsilon^{3}}{6}$. This is reasonable in quite an interval. When is the 'error' made smaller than 1% ?
Answer: use the fifth order term to bound the error; $\left|\frac{\epsilon^{5}}{120}\right|<0.01$, so $|\epsilon|<1.0$.
(4) This figure shows what is going on. In red: $\sin (x)$, and in black: the subsequent Taylor approximations.

(5) How many extrema may a polynomial of order n have? So which curve is which approximation? Using this insight, how many terms would you need at least to make a good approximation of a full period $x \in(-\pi, \pi)$ of the sine function? And is that a good approximation?
(6) The polynomial you get for the Taylor approximation of the sine function depends on where you approximate it. Give the approximation to 5 -th order of $\sin \left(\frac{\pi}{4}+\epsilon\right)$ and compare to (1). Before doing so, do you expect an ϵ^{2} term?

Answer: $\sin \left(\frac{\pi}{4}+\epsilon\right) \approx \frac{1}{\sqrt{2}}\left(1+\epsilon-\frac{1}{2} \epsilon^{2}-\frac{1}{6} \epsilon^{3}+\frac{1}{24} \epsilon^{4}+\frac{1}{120} \epsilon^{5}\right)$. And you should have expected an ϵ^{2}-term since the sine function is not locally straight at $\frac{\pi}{4}$.
(7) Now apply Taylor series in two dimensions to computer vision, in taylor2.ps!

