
�Complex� eigenvalues and rotational axes

You have seen in other problems that rotations are represented by orthonormal matrices� When

you combine rotations� you multiply a lot of these� yet the �nal result should again be a rotation�
You can see this both from the physics of the situation� and from the mathematics� the product

of a number of orthonormal matrices is again an orthonormal matrix�

Since this result is a rotation� it is natural to ask� what is the rotation axis� and what is the

rotation angle� You can solve this easily using the eigenvalues and eigenvectors of the matrix�

But� some of the eigenvalues will be complex numbers�

��� Let us take as an example the matrix�
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You should recognize this as a rotation matrix� around the z�axis� over an angle �

�
� �If not�

do the �D rotation problem rotation�d�ps� and the 	D rotation problem rotation�d�ps�


��� When the rotation matrix acts on points� it changes their coordinates so that they appear

to rotate� This is true for all points� What is the special property of points on the rotation

axis�

��� How do you express that property in terms of eigenvalues�

��� So a point on the rotation axis �which passes through the origin
 is represented by one of

the eigenvectors of eigenvalue �� No other points remain the same� or change to a multiple

of themselves� so would expect them to have no real eigenvalues� And you are right� the

eigenvalues are complex�

��� Compute the eigenvalues of A� �Answer� �� � �� �� � �
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Note that the eigenvalues are either real� or a pair of complex conjugate values� �� � ���	

��� Compute the corresponding eigenvectors of A� �Answer� �
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�	� You see that the eigenvector of eigenvalue � is indeed along the rotation axis of A� The

complex eigenvectors are hard to interpret� but note that the complex eigenvalues e
�

�
i and

e
�

�

�
i contain the rotation angle �

�
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�
� Use the eigenvectors as a basis� What is the coordinate transformation matrix B that can

be used to interpret a vector of that basis� What kind of a matrix is it� mathematically �

�Answer� take for example the coordinate transformation�
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�which has determinant i	 from the eigenvector basis� It can be used to re
represent vectors�
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is the representation of the second eigenvector in terms of our

original coordinates� B is a unitary matrix� satisfying B�� � B
T

� with �� denoting the complex

conjugate� Check this�	
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��� Use B to represent A on the eigenvector basis� Why do you get a diagonal matrix� What

is on the diagonal�

�Answer� The diagonal matrix � follows from A � B�B
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The eigenvalues are on the diagonal� of course�	

���� Thus by a complex� unitary coordinate transformation we achieve diagonalization of a

rotation matrix� The real eigenvector with eigenvalue � is along the rotation axis� The

other eigenvalues are each other�s complex conjugate� and their argument is �plus or minus


the rotation angle�
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