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11.0 Meta

Typo’s

I p332 first line under 11.33
data xa and xa ->
data xa and x′a

I p335 line 5
M, N (1), and N (1) ->
M, N (1), and N (2)

I Throughout the chapter:
3-D Motion Analysis ->
3-D Motion and Scene Reconstruction Analysis ->



11.1 General Theory

The problem

I two camera seeing a
non-rigid object

I moving camera seeing a
rigid object

I stationary camera seeing
a moving rigid object

I moving camera seeing a
moving rigid object . . .

{h, R}
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11.1 General Theory

input

I noisy image point correspondences:

xα = x̄α + ∆xα

x′α = x̄′α + ∆x′α
I noise characteristic: ∆xα ∈ N (0, V[xα]) and ∆x′α ∈ N (0, V[x′α])
I i.e. non realistic noise assumptions

Extra post-presentation note:
Non realistic, because their are usually outliers as a result of mismatches. Also,
usually point correspondences resulted from somewhat different 3d landmarks,
because of view point change et al.



11.1 General Theory
Epipolar constraint

|x̄α, h, Rx̄′α| = 0 (1)

Scale ambiguity

|x̄α, ch, Rx̄′α| = 0 (2)
c|x̄α, h, Rx̄′α| = 0 (3)

Thus the scale of h can not be determined.



11.1 General Theory

DOF problem
Rotation R: +3
Translation h: +3
scale ambiguity: -1
net: 5

DOF correspondence
3d location landmark: -3
2d image 1 location: +2
2d image 2 location: +2
net: 1

#correspondences needed
N >= 5



11.1 General Theory

Optimal estimation of {h, R}
I {h, R} = minh,RJ[h, R] . . . is given in 11.1.2 . . . skipping for now
I non-linear, requires numerical search
I “Rigidity test”:

J[ĥ, R̂] > χ2
N−5,95%

I “Focus of expansion”.
Just the location of the epipole, right? Extra post-presentation note: indeed
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11.1 General Theory

Theoretical bound on accuracy
The general idea:

I Determine the covariance of {h, R} given V[xα]’s and V[x′α]’s
I results in:(

V̄(ĥ) V̄(ĥ, R̂)
V̄(R̂, ĥ) V̄(R̂)

)
=

(∑
α

Wα(h̄, R̄)
(

āα

b̄α

)(
āα

b̄α

)T
)−

where aα = xα × Rx′α and bα = (xα, Rx′α)h− (h, Rx′α)xα

Practical bound on accuracy?

I replace all s̄ by ŝ and a by Pĥa to get a practical covariance measure of
the motion (?)

I Question is, how useful it is, with all the linearization.



11.1 General Theory

side note: Mystic derivation of bound

In Equation 11.29
(

∆h
∆Ω

)(
∆h
∆Ω

)T

is expanded using 11.26. The idea

is to compute the
∑

α(...)
∑

β(...).

It would (for me...) be more clear if
I W̄β was written out: Wβ(h̄, R̄)

I

(
āα

b̄α

)(
āβ

b̄β

)T

was used

I
∑

α(...)
∑

β(...) instead of
∑

α,β .

Maybe it’s just me....



11.2 Linearization and Renormalization

The essential matrix G

|x̄α, h, Rx̄′α| = 0 (4)

rewrite:

(x̄α, h× R x̄′α) = 0 (5)
(x̄α, G x̄′α) = 0 (6)

better know as:
x̄T
αEx̄′α = 0 (7)

which is related to fundamental matrix F, which incorporates some “linear”
camera calibration parameters:

(x̄α, K(h× R)K
′T x̄′α) = 0 (8)

(x̄α, F x̄′α) = 0 (9)



11.2 Linearization and Renormalization

Use G to estimate h and R
Two steps:

I estimate G such that (x̄α, Gx̄′α) = 0 (this Section)
I decompose G in h and R (next Section)

Estimating G

I G has 9 elements, but scale ambiguity: 8 DOF
I Thus minimum nr of correspondences = 8
I ...eight-point-algorithms



11.2 Linearization and Renormalization

Linear estimation of G
I first rewrite (x̄α, Gx̄′α) = 0 into an Mg = 0 problem:

X1X′
1 · · · XNX′

N
X1Y ′

1 · · · XNY ′
N

X1Z′
1 · · · XNZ′

N
Y1X′

1 · · · YNX′
N

Y1Y ′
1 · · · YNY ′

N
Y1Z′

1 · · · YNZ′
N

Z1X′
1 · · · ZNX′

N
Z1Y ′

1 · · · ZNY ′
N

Z1Z′
1 · · · ZNZ′

N



T 

g11
g12
g13
g21
g22
g23
g31
g32
g33


= 0, (10)

in which (X, Y, Z)T are the coordinates of x.
I This is similar to 11.7 and 11.39.
I The eigen-vector g∗ associated with the smallest eigenvalue of MTM

minimizes Mg∗



11.2 Linearization and Renormalization
Iterative re-weighting

I Minimizing the residual is not what we want
I We have to iteratively weight it using W given in 11.12 and 11.41
I Disregarding the noise-variance (V[x] = I) this is:

Wα =
1

||GTxα||2 + ||Gx′α||2 + gTg

I This is very similar (but not the same (?)) to square "Sampson Weng"
weights:

Wisw
α =

1
||GTxα||2 + ||Gx′α||2

Extra post-presentation note:
Sampson-Weng weights are determined by taking the partial derivatives of the
algebraic errors with respect to the pixel locations: ∂(̂xα,Gx̂′α)

∂x̂α ,̂x′α
.

If V[x] = I and ε = 0 then Sampson-Weng weights are equivalent to Kanatani’s.
However, it is unclear what ε = 0 (the average overal scale of the pixel error) would
mean...
Anyways, Kanatani does take into account non-isotropic noise, which is nice.



11.2 Linearization and Renormalization
Iterative renormalization

I Kanatani shows this method (including reweighting) is statistically
biased.

I Thus: renormalization as explained in Chap 9, by compensating for the
bias and estimating the noise (p335).

I Kanatani shows in 2007 that renormalization for motion estimation
works better than HEIV.... ( Extra post-presentation note: in "Performance
evaluation of iterative geometric fitting algorithms")

Adding robustness....

I Perhaps some of the correspondences resulted from mismatches.
I Check by computing Sampson distance = residual * weights
I Use robust weighting scheme, eg: Huber:

0

1

H
ub

er
 w

ei
gh

t

median()
Sampson dist

3 x median()



11.3 Optimal Correction and Decomposition

...Step 2: from G to h and R
Two possible tracks:

I make G decomposable and use "non-robust" decomposition (Horn
style)

I decompose G using "robust" decomposition (H&Z style) ( Extra
post-presentation note: not H&Z style, they also first make it decomposable.)

more about this later....

Making G decomposable

I apply svd: USVT = svd(G)
I G′ = Udiag(1, 1, 0)VT

But Kanatani gives an extension also taking V[G] into account.
Extra post-presentation note: see also the work of Ondrej Chum on Oriented epipolar
constraint (also termed Ch(e)irality constraint).



11.3 Optimal Correction and Decomposition

9− 3 6= 5
I Strange: G has nine elements and 3 constraints (Eq 11.59), but only 5

DOF.

I Hartley&Zisserman pointing out the two equal eigen values, resulting
in 1 DOF in the svd:

G = U

 cos(φ) − sin(φ) 0
sin(φ) cos(φ) 0

0 0 1

 1 0 0
0 1 0
0 0 0

 cos(φ) sin(φ) 0
− sin(φ) cos(φ) 0

0 0 1

VT



11.3 Optimal Correction and Decomposition

"Robust" decomposition

I Uses two svds...
I In general 4 solutions (due to modeling light-rays as lines)
I Kanatani removes 2 by forcing Z-coordinates > 0
I Another one is removed on p342 of Sec 4 after reconstruction...
I This is no good for omnidirectional cameras (see also not 11 p358)

"Non-robust" decomposition

I faster...
I H&Z use svd for this



11.3 Optimal Correction and Decomposition

"Robust"-track or "Non-robust"-track
I Optimal correction for decomposability seems... more optimal
I Experiments using simple H&Z decomposition shows minor

improvement....
I Why not force decomposability in the iterative reweighting scheme?

Extra post-presentation note: There was some discussion about the result of these
two tracks, i.e.: if they would result in different h and R’s. I think they would be the
same...

Missing in this section
A covariance estimate of h and R given V[G]...
(Eg 11.31 should be used)



11.4 Reliability of 3-D Reconstruction

Reconstruction and its variance
I Nothing much to add (anyone?)
I Is this similar to the "optimal triangulation method" from H&Z ?

Reconstruction for better motion
I By reconstructing mismatches can be determined
I If during iterative reweighting set their weights to 0
I For Ransac use it to

I ignore hypotheses
I remove support



11.4 Reliability of 3-D Reconstruction



11.5 Critical Surfaces

Note on critical surfaces
I CV-people get a kick out of planar surfaces. Extra post-presentation note:

This is most probably because estimating homographies is more
straightforward than epipolar geometry estimation.

I Actually surfaces are never planar in real life, ambiguities should be
expressed in the uncertainty, right?

I Kanatani says so on p367
I What is a "false" essential matrix?

Different critical-categories

I weak: only ambiguity in G
I strong: also ambiguity in h and/or R



11.6 3-D Reconstruction from Planar Surface Motion

Homography A

I If planar surface, then estimate homography
I homography: a projective transformation from 2d to 2d

Estimation
I Kanatani gives separate Homography algorithm
I Homography should be used if nearly planar (bij twijfel niet inhalen...)

Extra post-presentation note: This is confirmed by Isaac, who experienced bad
essential matrix estimation of images taken from the front of buildings/houses.



11.6 3-D Reconstruction from Planar Surface Motion

Homography DOFS

I camera position +3
I camera rotation +3
I plane position +3
I scale ambiguity -1
I net: 8

DOF correspondence
3d location landmark on plane: -2
2d image 1 location: +2
2d image 2 location: +2
net: 2

#correspondences needed
N >= 4



11.6 3-D Reconstruction from Planar Surface Motion
From A to h and R

I A already decomposable (because same degrees of freedom)
I But more ambiguities (7 pages on this...)

I The same 4 as G stemming from rays as lines

I + an ambiguity for different sides of the plane

I last one can not be resolved. Extra post-presentation note: yes it can:
force determined to be +1 (p357).



11.6 3-D Reconstruction from Planar Surface Motion



11.7 Camera Rotation and Information

Rotation only

I Looks like planar surface: points on plane at infinity
I R can be computed using G-track and A-track (?) Extra post-presentation

note: indeed

DOF problem
Rotation R: +3
net: 3

DOF correspondence
3d location landmark on plane at infinity: -2
2d image 1 location: +2
2d image 2 location: +2
net: 2

#correspondences needed
N >= 1.5 (i.e. 2 overdetermines)



Extra, copied figs I did not use
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