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11.0 Meta

Typo’s

» p332 first line under 11.33
data x, and x, ->
data x, and X,

» p335line 5
M, ND and N >
M, N and N@)
» Throughout the chapter:
3-D Motion Analysis ->
3-D Motion and Scene Reconstruction Analysis ->
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> two camera seeing a
non-rigid object
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11.1 General Theory

The problem

> two camera seeing a
non-rigid object

» moving camera seeing a
rigid object

> stationary camera seeing
a moving rigid object

» moving camera seeing a
moving rigid object . ..
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11.1 General Theory

input
> noisy image point correspondences:
Xo = Xo + Axq
X, =X, + Ax,
» noise characteristic: Ax, € N(0, V[x,]) and Ax,, € N (0, V[x,])

> i.e. non realistic noise assumptions

Extra post-presentation note:
Non realistic, because their are usually outliers as a result of mismatches. Also,
usually point correspondences resulted from somewhat different 3d landmarks,

because of view point change et al.



11.1 General Theory

Epipolar constraint

[Xas by RX,| = 0
Scale ambiguity
|Xo,ch,RX,| = 0
clXa, B, RX,| = 0

Thus the scale of & can not be determined.
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11.1 General Theory

DOF problem

Rotation R: +3
Translation A: +3
scale ambiguity: -1
net: 5

DOF correspondence

3d location landmark: -3
2d image 1 location: +2
2d image 2 location: +2
net: 1

#correspondences needed
N>=5



11.1 General Theory

Optimal estimation of {/, R}

» {h,R} = minygJ[h,R] ...is givenin 11.1.2 ... skipping for now
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11.1 General Theory

Optimal estimation of {/, R}

v

{h,R} = miny gJ[h,R] ...is given in 11.1.2 ... skipping for now
» non-linear, requires numerical search
> “Rigidity test”:
1, R > X35 95%
» “Focus of expansion”.
Just the location of the epipole, right? Extra post-presentation note: indeed



11.1 General Theory

Theoretical bound on accuracy

The general idea:
» Determine the covariance of {&, R} given V[x,]’s and V[x/|’s

> results in:

where a,, = xo X Rx], and b, = (Xo, Rx],)h — (h, Rx.,)x,,

Practical bound on accuracy?

» replace all’s bys and a by P;a to get a practical covariance measure of
the motion (?)
» Question is, how useful it is, with all the linearization.
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11.1 General Theory

side note: Mystic derivation of bound

T
. Ah Ah . . .
In Equation 11.29 AQ ( AQ is expanded using 11.26. The idea

is to compute the 3 (-..) > 25(--.)-

It would (for me...) be more clear if
» Ws was written out: Wg(h, R)

- () (3

> > )Zﬂ( )1nsteadofzaﬁ.

@\ Q
m Q\

T
> was used

Maybe it’s just me....
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11.2 Linearization and Renormalization

The essential matrix G

e, h, RX,| =0 4)
rewrite:
(Xo, hxR X)=0 5)
(Xa; G X,)=0 (6)
better know as:
X Ex, =0 @)

which is related to fundamental matrix F, which incorporates some “linear”
camera calibration parameters:

(Yo, K(hxRKT x,)=0 ®)
(Xa, F x)=0 9)



11.2 Linearization and Renormalization

Use G to estimate & and R
Two steps:

» estimate G such that (X, Gx,,) = O (this Section)

» decompose G in & and R (next Section)

Estimating G

» G has 9 elements, but scale ambiguity: 8 DOF
» Thus minimum nr of correspondences = §

> ...eight-point-algorithms



11.2 Linearization and Renormalization

Linear estimation of G

» first rewrite (X, Gx,,) = 0 into an Mg = 0 problem:

X, X!
X,Y!
X,Z,
YiX)
Y1Y,
Y\Z,
Z\X,
7Y
VAV4

in which (X, Y, Z)T are the coordinates of x.

Xy X,
XyY)
XnZly
Y Xy
YaY},
YnZ
Zn Xl
ZnY},
ZnZ),

» This is similar to 11.7 and 11.39.

» The eigen-vector g* associated with the smallest eigenvalue of M’ M

minimizes Mg*

811
812
813
821
822
823
831
832
833
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11.2 Linearization and Renormalization

Iterative re-weighting

» Minimizing the residual is not what we want
> We have to iteratively weight it using W given in 11.12 and 11.41
» Disregarding the noise-variance (V[x] = I) this is:

1

W, =
IG7xal? + |Gx, [ + 878

» This is very similar (but not the same (?)) to square "Sampson Weng"
weights:

Wi = 1
1Gxal? +[|Gxg |2

Extra post-presentation note:
Sampson-Weng weights are determined by taking the partial derivatives of the
(ke ,GYL)

B3 ALy
If V[x] = I and € = 0 then Sampson-Weng weights are equivalent to Kanatani’s.
However, it is unclear what e = 0 (the average overal scale of the pixel error) would
mean...

algebraic errors with respect to the pixel locations:

Anyways, Kanatani does take into account non-isotropic noise, which isnice.



11.2 Linearization and Renormalization
Iterative renormalization
» Kanatani shows this method (including reweighting) is statistically
biased.

» Thus: renormalization as explained in Chap 9, by compensating for the
bias and estimating the noise (p335).

» Kanatani shows in 2007 that renormalization for motion estimation
works better than HEIV.... ( Extra post-presentation note: in "Performance
evaluation of iterative geometric fitting algorithms")

Adding robustness....

» Perhaps some of the correspondences resulted from mismatches.
» Check by computing Sampson distance = residual * weights

» Use robust weighting scheme, eg: Huber:

1

Huber weight

median()Qa d_?;t x median()

eaial~a 2]



11.3 Optimal Correction and Decomposition

..Step 2: from G to h and R
Two possible tracks:

» make G decomposable and use "non-robust" decomposition (Horn
style)

» decompose G using "robust" decomposition (H&Z style) ( Extra
post-presentation note: not H&Z style, they also first make it decomposable.)

more about this later....
Making G decomposable
» apply svd: USVT = svd(G)
» G' = Udiag(1,1,0)V7
But Kanatani gives an extension also taking V[G] into account.

Extra post-presentation note: see also the work of Ondrej Chum on Oriented epipolar
constraint (also termed Ch(e)irality constraint).



11.3 Optimal Correction and Decomposition

9—3+45
» Strange: G has nine elements and 3 constraints (Eq 11.59), but only 5
DOF.
G=G6G"6

i l6]=72
GG'G

66| =12

» Hartley&Zisserman pointing out the two equal eigen values, resulting
in 1 DOF in the svd:

cos(¢p) —sin(¢) 0 1 00 cos(¢)  sin(9)
G=U| sin(¢) cos(¢) O 010 —sin(¢) cos(¢)
0 0 1 0 00 0 0

0
0 |V
1

3
()
3



11.3 Optimal Correction and Decomposition

"Robust" decomposition

Uses two svds...
In general 4 solutions (due to modeling light-rays as lines)
Kanatani removes 2 by forcing Z-coordinates > 0

Another one is removed on p342 of Sec 4 after reconstruction...

vV v v vy

This is no good for omnidirectional cameras (see also not 11 p358)

"Non-robust" decomposition

» faster...
» H&Z use svd for this



11.3 Optimal Correction and Decomposition

"Robust"-track or "Non-robust"-track

» Optimal correction for decomposability seems... more optimal

» Experiments using simple H&Z decomposition shows minor
improvement....

» Why not force decomposability in the iterative reweighting scheme?
Extra post-presentation note: There was some discussion about the result of these

two tracks, i.e.: if they would result in different /2 and R’s. I think they would be the
same...

Missing in this section

A covariance estimate of 4 and R given V[G]...
(Eg 11.31 should be used)



11.4 Reliability of 3-D Reconstruction

Reconstruction and its variance

» Nothing much to add (anyone?)

> Is this similar to the "optimal triangulation method" from H&Z ?

Reconstruction for better motion

» By reconstructing mismatches can be determined
» If during iterative reweighting set their weights to 0
» For Ransac use it to

> ignore hypotheses
> remove support



11.4 Reliability of 3-D Reconstruction
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11.5 Critical Surfaces

Note on critical surfaces

» CV-people get a kick out of planar surfaces. Extra post-presentation note:

This is most probably because estimating homographies is more
straightforward than epipolar geometry estimation.

» Actually surfaces are never planar in real life, ambiguities should be
expressed in the uncertainty, right?

» Kanatani says so on p367
» What is a "false" essential matrix?

Different critical-categories

» weak: only ambiguity in G

» strong: also ambiguity in 4 and/or R



11.6 3-D Reconstruction from Planar Surface Motion

Homography A

» If planar surface, then estimate homography
» homography: a projective transformation from 2d to 2d

Estimation

» Kanatani gives separate Homography algorithm

» Homography should be used if nearly planar (bij twijfel niet inhalen...)
Extra post-presentation note: This is confirmed by Isaac, who experienced bad
essential matrix estimation of images taken from the front of buildings/houses.



11.6 3-D Reconstruction from Planar Surface Motion

Homography DOFS

camera position +3
camera rotation +3

| 4

>

» plane position +3
> scale ambiguity -1
>

net: 8

DOF correspondence

3d location landmark on plane: -2
2d image 1 location: +2

2d image 2 location: +2

net: 2

#correspondences needed
N>=4



11.6 3-D Reconstruction from Planar Surface Motion
From A to h and R

» A already decomposable (because same degrees of freedom)

» But more ambiguities (7 pages on this...)
> The same 4 as G stemming from rays as lines

> last one can not be resolved. Extra post-presentation note: yes it can:
force determined to be +1 (p357).



11.6 3-D Reconstruction from Planar Surface Motion
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11.7 Camera Rotation and Information

Rotation only

» Looks like planar surface: points on plane at infinity

> R can be computed using G-track and A-track (?) Extra post-presentation
note: indeed

DOF problem

Rotation R: +3
net: 3

DOF correspondence

3d location landmark on plane at infinity: -2
2d image 1 location: +2

2d image 2 location: +2

net: 2

#correspondences needed
N >= 1.5 (i.e. 2 overdetermines)
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