Chapter 2

Fundamentals of Linear Algebra

This chapter presents fundamentals of linear algebra that will be neces-
sary in subsequent chapters. Also, the symbols and terminologies that
will be used throughout this book are defined here. Since the materials
presented here are well established facts or their easy derivatives, the-
orems and propositions are listed without proofs; readers should refer
to standard textbooks on mathematics for the details.

2.1 Vector and Matrix Calculus

2.1.1  Vectors and matrices

Throughout this book, geometric quantities such as vectors and tensors are
described with respect to a Cartesian coordinate system, the coordinate axes
being mutually orthogonal and having the same unit of length!. We also
assume that the coordinate system is right-handed?.

By a wector, we mean a column of real numbers®. Vectors are denoted by
lowercase boldface letters such as a, b, u, and v; their components are written
in the corresponding lowercase italic letters. A vector whose components
are @y, as, ..., dn is also denoted by (a;), ¢ = 1, ..., n; the number n of
the components is called the dimension of this vector. If the dimension is
understood, notations such as (a;) are used. In the following, an n-dimensional
vector is referred to as an n-vector. The vector whose components are all 0
is called the zero vector and denoted by 0 (the dimension is usually implied
by the context).

A matriz is an array of real numbers. Matrices are denoted by uppercase
boldface letters such as A, B, S, and T'; their elements are written in the
corresponding uppercase italic letters. A matrix is also defined by its elements
as (Aij), i =1, ..., m, j = 1, ..., n; such a matrix is said to be of type mn. In
the following, a matrix of type mn is referred to as an mn-matriz; if m = n,
it is also called a square matriz or simply n-dimensional matriz. If the type is

'This is only an intuitive definition, since “orthogonality” and “length” are later defined
in terms of coordinates. To be strict, we need to start with axioms of one kind or another
(we do not go into the details).

2In three dimensions, a Cartesian coordinate system is right-handed if the z-, y-, and
z-axes have the same orientations as the thumb, the forefinger, and the middle finger,
respectively, of a right hand. Otherwise, the coordinate system is left-handed. In other
dimensions, the handedness, or the parity, can be defined arbitrarily: if a coordinate system
is right-handed, its mirror image is left-handed (we do not go into the details).

3We do not deal with complex numbers in this book.
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28 Chapter 2. Fundamentals of Linear Algebra

understood, notations such as (4;;) are used. The matrix whose elements are
all 0 is called the zero matriz and denoted by O (the type is usually implied
by the context). If not explicitly stated, the type is understood to be nn in
this chapter but 33 wn the rest of this book.

The unit matriz is denoted by I its elements are written as d;; (not I;;):
the dimension is usually implied by the context. The symbol d;;, which takes
value 1 for i = j and 0 otherwise, is called the Kronecker delta. Addition and
subtraction of matrices and multiplication of a matrix by a scalar, vector, or
matrix are defined in the standard way.

The trace of nn-matrix A = (A4;;) is the sum Y 7, A;; of its diagonal
elements and is denoted by trA. Evidently, trI = n. The transpose of a
vector or matrix is denoted by superscript T. A matrix A is symmetric if
A = A". We say that a matrix is of type (nn) or an (nn)-matriz if it is
an n-dimensional symmetric matrix. A matrix A is entisymmetric (or skew-
symmetric) if A = —A'. We say that a matrix is of type [nn] or [nn]-matriz
if it is an n-dimensional antisymmetric matrix. Note the following expression,
which is sometimes called the outer product of vectors a and b:

apby  apby -+ arb,

- ng] agbg ot ] agbn
ab = (a,-bj-) = " " . . (21)

a,,‘bl G-“-b;g zimre a,,lbﬂ
The following identities are very familiar:
(A7) = A, (AB)T=B"AT,
tr(AT) = tra, tr(AB) = tr(BA). (2.2)
The inner product of vectors @ = (a;) and b = (b;) is defined by

(a,b)=a"b= Za,‘b,-. (2.3)

Evidently, (a,b) = (b,a). Vectors a and b are said to be orthogonal if (a,b)
= (. The following identities are easily confirmed:

(a,Th) = (T "a,b), tr(ab’) = (a,b). (2.4)

The matrix consisting of vectors a;, as, ..., @, as its columns in that order
is denoted by (a;,as,...,a,). If

A=(a;.a5....a,), B=(by,by,...by,), (2.5)

the following identities hold:

AB' = Z a:b;,
=1
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(a.by) (ar.by) --+ (a;,by)
ATB = (02251) (ﬂzzbz) (‘12‘:bn) . (2.6)
(@0-B1) (Gnab3) <+ (@n,bn)

The norm* and the normalization operator N|-] are defined as follows:

la]l = V(a.a) =

gaﬁ. Nla] = ﬁ (2.7)

A wunit vector is a vector of unit norm. A set of vectors {ul, ey Uy} 18 said
to be orthonormal if its members are all unit vectors and orthogonal to each
other: (u;,uj) = &;;.

The following Schwarz inequality holds:

= llall - [ibl} < (a.b) < ||a]| - |Ib]l. (2.8)

Equality holds if vectors a and b are parallel, meaning that there exists a real
number t such that @ = tb or b = 0. The Schwarz inequality implies the
following triangle inequality with the same equality condition:

lla + b]| < [la]j + [|b]]- (2.9)

2.1.2 Determinant and inverse

The determinant of a square matrix A = (A;;), denoted by det A or |A], is
defined by

detA= > EinAii, o Aniy, (2.10)
o C s |
where €;,..;, is the signature symbol defined by (like a tensor)
1 if (iyig---i,) is an even permutation of (12---n),
Cirtpingy = -1 if (i1ig--+ip) is an odd permutation of (12---n),
0 otherwise.
(2.11)

Evidently, det I = 1. The following identity holds:
det(AB) = det A det B. (2.12)

“This norm is called the Fuclidean norm (or the 2-norm). In general, the norm |al|
can be defined arbitrarily as long as (i) ||a|| > 0, equality holding if and only if a = 0, (ii)
lleal| = |¢| - ||a]| for any scalar ¢, and (iii) the triangle inequality (2.9) holds. There exist
other definitions that satisfy these-—the [-norm |lalj; = £7_, |a;| and the co-norm ||a|lec =
max; |a;|, for instance. They can be generalized into the Minkowski norm (or the p-norm)
llall, = §/Si la;lP for 1 < p < o0: the I-norm, the 2-norm, and the co-norm are special

cases of the Minkowski norm for p = 1, 2, oo, respectively.



30 Chapter 2. Fundamentals of Linear Algebra

Replacing A;; by 6;j + €4;; in eq. (2.10) and expanding it in £, we obtain
det(I +cA) =1+etrA + O(¢?), (2.13)

where the order symbol O(---) denotes terms having order the same as or
higher than ---.

Let A"Y be the matrix obtained from a square matrix A = (A;;) by
removing the ith row and the jth column. The determinant det A is expanded
in the form

det A=) (—1)"94;;det A =Y (1)1 4;; det A1) (2.14)
i=1

i=1
This is called the cofactor ezpansion formula. The cofactor (or adjugate)
matriz At = (A;rj) of A is defined by
| itj (i1)

Al; = (=1)"7 det AV". (2.15)
Eq. (2.14) can be rewritten as

AAT = ATA = (det A)I. (2.16)
The following identity holds:

det(A +eB) = det A + str(ATB) + O(¢?). (2.17)

The elements of the cofactor matrix A! of nn-matrix A are all polynomials
of degree n— 1 in the elements of A. In three dimensions, the cofactor matrix
of A = (A;;) has the following form:

ApoAzz — AzpAps Az A1z — AjpAszz ApAzz — Agp A
At = ( AggAgy — AgzAz;  AzzAy — AjzAa ApgAg — AxAy )
Ag1Azy — Az Agy A1 Az — AnAsy ApnAsgy — Ag1Agp
(2.18)
The inverse A~" of a square matrix A is defined by

AA ' =A'A=1, (2.19)

if such an A~ exists. A square matrix is singular if its inverse does not exist,
and nonsingular (or of full rank) otherwise. Eq. (2.16) implies that if A is
nonsingular, its inverse A~ is given by

This is the reason

Al :
-1 for doing cofactors.

~ detA’

If we define A° = I, the following identities hold for nonsingular matrices (k
is a nonnegative integer):

(A—l)—l = A, {A.B)_] ZB_IA_l, (A—l)k = (Ak)_l,
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e ]_
ATy =AYy, det A~ = ; 5
The third identity implies that matrix (4" )* can be unambiguously denoted

by A~F. Note that the determinant and the inverse are defined only for square
matrices.

Let A be a nonsingular nn-matrix, and B a nonsingular mm-matrix. Let
8§ and T be nm-matrices. The following matriz inversion formula holds,
provided that the inverses involved all exist:

(A+SBT ) '=A"'—A"'SB'+T A'S)'TTA™ | (222

If m = 1, the nm-matrices S and T are n-vectors, and the mm-matrix B is a
scalar. If we let B = 1 and write § and T as s and £, respectively, the above
formula reduces to

A"lstTA"l
AtstTyt=a-1_ (2.23
( ! 14 (¢, 1+(t, A 's) )
For A = I, we obtain >|useful special cases |
i 2.24
(I+st’ C (2.24)

2.1.3  Vector product in three dimensions

In three dimensions, the signature symbol defined by eq. (2.11) is often re-
ferred to as the Eddington epsilon®. It satisfies the following identity:

3
Z EijmEklm = éikaﬂ == (sggtsjk. {225)

m=1

The vector (or exterior) product of 3-vectors a = (a;) and b = (b;) is defined
by

3 azbg — asb,
cross product |[exb= ()" eijrajbi) = | asbi—aibs ||- (2.26)
j.k=1 (11!')2 — ﬂgb]
Evidently,
axb=-bxa, axa=0,
(b,a x b) =(a,axb)=0. (2:27)

The following identities, known as the Lagrange formulae, are direct conse-
quences of eq. (2.25):

ax (bxe)=(a,c)b-(a,b)e,

5Some authors use different terminologies such as the Levi-Civita symbol.
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(a) (b)
Fig. 2.1. (a) Vector product. (b) Scalar triple product.

(a x b) x c=(a,c)b—(b,c)a. (2.28)

The expressions @ x (b x ¢) and (a x b) x ¢ are called vector triple products.
The following identities also hold:

(a x b,exd)=(a.c)(b,d) - (a,d)(b,c), (2.29)

lla x b]|* = {la|*|jb]|* - (a,b)?. (2.30)

If 3-vectors @ and b make angle 8, we have
(a.8) = [lal| - [lbllcost,  [la x b]| = [lal|- bl sin6.  (2.31)

Eq. (2.30) states the well-known trigonometric identity cos®f + sin®8 = 1.
From eq. (2.26), the third of egs. (2.27), and the second of egs. (2.31), we can
visualize @ X b as a vector normal to the plane defined by @ and b; the length
of @ x b equals the area of the parallelogram made by a and b (Fig. 2.1a).
The scalar triple product |a, b, ¢| of 3-vectors a, b, and ¢ is the determinant
of the matrix (a,b, c) having a, b, ¢ as its columns in that order. We say
that three 3-vectors {a, b, ¢} are a right-handed system if |a,b,c| > 0 and
a left-handed system if |a,b. ¢| < 0. The scalar triple product |a, b, ¢| equals
the signed volume of the parallelepiped defined by a, b, and ¢ (Fig. 2.1b); the
volume is positive if the three vectors are a right-handed system in that order
and negative if they are a left-handed system. The equality |a, b, ¢| = 0 holds
if and only if a, b, and ¢ are coplanar, i.e., if they all lie on a common plane.
We can also write

la,b,c| = (a x b,e) = (bxc,a)=(cxa,b). (2.32)

Since |a, b, a x b| = ||a x b||?, the vector product a x b is oriented, if it is not
0, in such a way that {a, b, @ x b} form a right-handed system (Fig. 2.1a).
The following identity also holds:

(a x b) x (e xd)=|a,b,dle —|a,b,c|d = |a,e,d|b— |b,e,dla. (2.33)
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Taking the determinant of (a, b, c)(a,b,c)" (see eq. (2.12)), we obtain

lall®* (a.b) (a.c)
|a,b,c|2: (b,a) |Bl|> (b.c)
(c.a) (eb) |leff?

(2.34)

The vector (or exterior) product of 3-vector @ and 33-matrix T' = (¢, ¢2,¢3)

is defined by

[ @axT=(axt,axtyaxts)]

From this definition, the following identities are obtained:

ax (Thb)=(axT)b,

—as 0

cross product
with matrices:
handy to have for
non-GA people

O —ly 5]
axI=| aa 0 -a || (axDT=-axl. (2.36)

The matrix a x I is called the antisymmetric matriz associated with the
3-vector a. The following identity is an alternative expression to the Lagrange

formulae (2.28):
(@axI)bxI)" =(a,b)I —ba.

(2.37)

The vector (or exterior) product of 33-matrix T and 3-vector b is defined by

[Txb=T®xD)7|

(2.38)

This definition implies the following identities: |for future reference... |

(axT)" =T xa, (Txb)T=bxT",

(T'x b)e =T(c x b). (2.39)
It is easy to confirm that
(axT)xb=ax (T xb), (2.40)
which can be written unambiguously as @ x T x b. We also have
(@axTxb)"=bxT' xa. (2.41)
Eq. (2.37) now reads
axIxb=(ablI—-ba'. (2.42)
The following identities are also important:
(@axb)(cxd)  =ax(bd")xc=bx(ac") x d, (2.43)

(axbT(exd))=(a,(bxTxd)e)=(b,(axT xc)d). (2.44)




34 Chapter 2. Fundamentals of Linear Algebra

(a) (b)
Fig. 2.2. (a) Projection onto a line. (b) Projection onto a plane.

The exterior product [A x B] of 33-matrices A = (4;;) and B = (B;;) is
a 33-matrix defined as follows®:

3
[A x B);; = z €ikl€jmn Akrm Bin. (2.45)

klmn=1

If A and B are both symmetric, their exterior product [A x B] is also sym-
metric.

2.1.4  Projection matrices

If a vector a is projected orthogonally onto a line I that extends along a unit
vector 1, it defines on ! a segment of signed length (n,a) (Fig. 2.2a); it is
positive in the direction n and negative in the direction —n. The vector a
is decomposed into the component (n,a)n parallel to I and the component
a—(n,a)n (= (I —nn")a) orthogonal it. Let {n}, be the one-dimensional
subspace defined by unit vector n, and {n}{ its orthogonal complement—the
set. of all vectors orthogonal to n. The projection of a vector a onto {n} f_‘ is
written as Ppa (Fig. 2.2b). The matrix Pp, is defined by

[projection on (dual) plane n| [ Pp =TI -nn" (2.46)

and called the projection matriz onto the plane orthogonal to m, or the pro-
jection matrix along n. The following identities are easily confirmed:

PnZPT-Es P121=Pn,
det Pp =0, trPp=n-1, ||Ppl=vn-1. (2.47)

Here, the matrix norm || - || is defined by ||A|| = \/):f;l Y7oy Aiz? for mn-

matrix A = (A;;). In three dimensions, eq. (2.42) implies the following iden-
tity for unit vector n:

nxIxn=(MnxI)(nxI)" =Py (2.48)

®For example, [A x B]i1 = A22B33 — A3z B2z — A2s Bs2 + A3z Baz.
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The projection matrix can be generalized as follows. Let the symbol R"
denote the n-dimensional space of all n-vectors. Let S be an m-dimensional
subspace of R", and N (= S1) its orthogonal complement—the set of all
vectors that are orthogonal to every vector in S. The orthogonal projection”
Py onto S is a linear mapping such that for an arbitrary vector v € R"

PyveS, v—PyveN. (2.49)

In other words, Py is the operator that removes the component in /. We
also use an alternative notation P° when we want to indicate the space to

be projected explicitly. Let {n,, ..., nn, ke an orthonormal basis of N. The
orthogonal projection Py has the following matrix ion:

Py=I-) nn/. (2.50)

i=]

Eqgs. (2.47) can be generalized as follows:

Py = Py, Pir=.Py,
det Py =0, trPy=n-m, |Py|=+vVn—m. (2.51)

2.1.5 Orthogonal matrices and rotations

Matrix R is orthogonal if one of the following conditions holds (all are equiv-
alent to each other):

|[RR"=1, R'R=1, R'=R"| (2.52)

Equivalently, matrix R = (71,...,7,) is orthogonal if and only if its columns
form an orthonormal set of vectors: (v;,7;) = dij.
For an orthogonal matrix R and vectors a and b, we have

(Ra,Rb) = (a,b),  |Ral| = |al. (2.53)

The second equation implies that the length of a vector is unchanged after
multiplication by an orthogonal matrix. The first one together with egs. (2.31)
implies that in three dimensions the angle that two vectors make is also un-
changed.

Applying eq. (2.12) to egs. (2.52), we see that det R = %1 for an orthogonal
matrix R. If det R = 1, the orthogonal matrix R is said to be a rotation

"The notation given here is non-traditional: the projection onto subspace S is usually
denoted by Pg. Our definition is in conformity to the notation Pn given by eq. (2.46).
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(a) (b)

Fig. 2.3. (a) Axis and angle of rotation. (b) Instantaneous rotation.

8

matriz®. In three dimensions, the orthonormal Cartesian coordinate basis
vectors are
1 0 0
t=4 0 1y J= 1: Py R=1 O] (2.54)
0 0 1

The columns of a three-dimensional rotation matrix R = (ry,7r2,73) define
a right-handed orthonormal system {7, 73, 73}. The matrix R maps the
coordinate basis {z, §, k} to {ry, T2, 73}. Such a map is realized as a rotation
along an azis I by an angle ) of rotation (Euler’s theorem; Fig. 2.3a). The
axis I (unit vector) and the angle Q (measured in the screw sense) of rotation
R are computed as follows:

R3y — Rag —
I=N[| Ris—Rs1 |], [Q2=cos™! &8 1. (2.55)
Ry — Ry»

Conversely, an axis [ and an angle ( define a rotation R in the following form:

cos Q4+ 1;%(1 — cos Q) ;112(1wc039) I3 sin Q
R= ngl(l—cosﬂ)—l—fasmﬂ cos 2 + Iy? (l—cosQ)

b Sl i Fah) I 0171 {1 T |

Rodrigues: R =1cosQ + (1-cosQ ) nnT + st nx

= | + sinQ n* + (1-cosQ) (n*)? 56)

cos 2+ 13%(1 — cos )

From this equation, we see that a rotation around unit vector I by a small
angle Af2 is expressed in the form

R=1+ A0 x I+0(AN?%), (2.57)

8The set of all n-dimensional rotation matrices forms a group, denoted by SO(n), under
matrix multiplication. It is a subgroup of O(n), the group consisting of all n-dimensional
orthogonal matrices. The group consisting of all nonsingular nn-matrices is denoted by
GL(n), and the group consisting of all nn-matrices of determinant 1 is denoted by SL(n).



